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Abstract: The presence of sinkholes has been widely studied due to their potential risk to infrastruc-
ture and to the lives of inhabitants and rescuers in urban disaster areas, which is generally addressed
in geotechnics and geophysics. In recent years, robotics has gained importance for the inspection and
assessment of areas of potential risk for sinkhole formation, as well as for environmental exploration
and post-disaster assistance. From the mobile robotics approach, this paper proposes RUDE-AL
(Roped UGV DEployment ALgorithm), a methodology for deploying a Mobile Cable-Driven Paral-
lel Robot (MCDPR) composed of four mobile robots and a cable-driven parallel robot (CDPR) for
sinkhole exploration tasks and assistance to potential trapped victims. The deployment of the fleet is
organized with node-edge formation during the mission’s first stage, positioning itself around the
area of interest and acting as anchors for the subsequent release of the cable robot. One of the relevant
issues considered in this work is the selection of target points for mobile robots (anchors) considering
the constraints of a roped fleet, avoiding the collision of the cables with positive obstacles through a
fitting function that maximizes the area covered of the zone to explore and minimizes the cost of the
route distance performed by the fleet using genetic algorithms, generating feasible target routes for
each mobile robot with a configurable balance between the parameters of the fitness function. The
main results show a robust method whose adjustment function is affected by the number of positive
obstacles near the area of interest and the shape characteristics of the sinkhole.

Keywords: genetic algorithms; multi-robot system; CDPR; MCDPR; ROS; roped fleet; navigation

1. Introduction

Sinkholes are hollows in the ground surface formed by the dissolution of limestone or
geological features, considered closed cavities drained due to subsoil dissolution in karst
rocks [1]. This land subsidence and collapse represents a major hazard that substantially
impacts economic and human losses [2], as well as in nearby infrastructures [3]. In the last
decade, several karst collapses have taken place, causing the collapse of roads and buildings
in urban areas , causing safety risks to residents [4]. Different natural storms have caused
sinkholes such as in Guatemala (Guatemala City—2010) [5], USA (Florida—2004) [6].

Pressure wireless sensor network (WSN) technologies and neural network learning
databases use UAVs and thermal cameras for sinkhole detection and monitoring [7]. There
are also approaches for the use of robotic total stations (RTS) together with total stations (TS)
to calculate the horizontal and vertical displacement of the earth for sinkhole detection [8],
opening the line of integration of mobile robots and their application for monitoring,
exploration, and assistance for search and rescue (SAR) tasks.

The success of search and rescue (SAR) missions depends on the performance of
robotic platforms individually [9]. However, search and exploration tasks can be enhanced
through cooperative systems using multiple unmanned ground vehicles (UGVs) [10]. There
are several types of cooperative systems used in urban search and rescue (USAR) [11],
wilderness search and rescue (WiSAR) [12] and air-sea rescue (ASR) operations [13].
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Regarding deployment of robot fleets in disaster environments, [14] details of thirty-
four official deployments have been reported and analyzed, where UGVs have been used
in twenty-two incidents. In contrast, UAVs and unmanned aquatic vehicles (UMVs) in
eight incidents [15], mainly at the subway level in mining environments, building collapse,
earthquakes, and hurricanes, due to their potential to save lives by offering faster response
times [16], support in hazardous environments [17], real-time monitoring [18], and area
mapping [19].

The most important robotic challenges in subway environments are the limitation of
wireless communications and detection task such as toxic gas analysis. Robots used for
WiSAR tasks must be prepared for difficult weather conditions and interfere minimally
with environmental data acquisition [20], so robots with mobile base cables with robust
situational awareness are currently proposed for autonomous navigation, where environ-
mental monitoring sensors are mounted for gas discrimination [21], air quality sensing, or
gas concentration [22], with which information assistance is provided to rescue personnel
for hazardous area detection.

In terms of SAR tasks using mobile robots, these systems can be considered cooperative
Cable-Driven Parallel Robots (CDPR), where each robot represents an anchor point for
the wires. This configuration is a major challenge for base localization in the environment,
obstacle avoidance, and adaptive control of payload position and orientation [23].

This work is part of a Robotics and Cybernetics Group (ROBCIB) of the Polytechnic
University of Madrid (UPM) project, which main objective is to perform the deployment of a
Mobile Cable-Driven Parallel Robot (MCDPR) inside a sinkhole automatically, considering
mobile robots as mobile bases that will release a parallel cable-driven robot in the region
of interest. Therefore, challenges are related to the deployment of the mobile robots
(mobile bases) and relative localization of the CDPR. Accordingly, the strategy is focused
on two stages: first, the traversability of a path for the mobile bases from the base station
to the surroundings of the sinkhole, considering that the mobile bases of the MCDPR
will be attached by ropes; then, the release of the CDPR, avoiding contact with positive
obstacles. Regarding the relative localization challenge, in order to get a good precision of
portable localization systems (radar, infrared, UWB), using trilateration methods, a first
approach presents the use of a fleet of four mobile robots and a CDPR carried on top of
one of the mobile platforms, applying two physical configurations: node-edge fleet and
roped individual.

This paper’s main contribution is RUDE-AL (Roped UGV Deployment Algorithm),
an algorithm for the autonomous selection of anchoring points of a mobile robot fleet for
sinkhole exploration through computer vision techniques to filter positive and negative
obstacles, and genetic algorithms for solving optimization problems.

The mission comprises two stages: the first one consists of finding a feasible fleet
trajectory in a node-edge configuration with four nodes and three edges; the second
corresponds to the deployment of each robot to its corresponding vertex.

For this purpose, multiple tests were carried out on 2D images representing 2.5D
maps, which were generated manually (using image edition tools) and automatically
(images containing splines generated using Bézier curves), evaluating the behavior of the
algorithm to produce feasible roped navigation paths for environments with different
physical characteristics.

Implementing a heuristic method (genetic algorithms) considerably reduces compu-
tational time, allowing to adjust the weights of the variables to be optimized through a
weighted fitness function for multi-objective optimization. The algorithm is applied to the
navigation of a fleet of four simulated robots in Gazebo.

The work is made up of the following sections. Section 2 presents the state of the art
and related works. Section 3 details the problem formulation and the proposal. Section 4
describes the generation of the different environments for testing and description of the
performed experiments. Section 5 shows the results obtained by the target point selection
algorithm. Finally, Section 6 presents the conclusions obtained.



Sensors 2023, 23, 6487 3 of 26

2. Related Work
2.1. Mobile CDPRs

CDPRs are emerging as an attractive proposition due to their advantages in covering
large volumes with fast movements while maintaining a balance between light weight and
high durability [24].

CDPR-related research has been reported since 1984, originally for underwater appli-
cations. The RoboCrane project [25], developed under the Defense Advanced Research
Project Agency (DARPA), extended CDPR applications to land, sea, air, and space. CDPRs
show high load-to-weight ratio, while relying on stable configurations, flexibility, and
maneuverability over rough terrain surfaces.

An example of mobile CDPRs are the so-called extended-crane systems, which rep-
resent a combination between a cable robot and a conventional crane, where the robotic
configuration is intended to separate positioning and balancing tasks. Another example
of a reconfigurable structure for cable robots is found in agricultural applications, adding
mobile pillars to transport winches while controlling the position of the mobile platform.

In terms of CDPR applications, the IPAnema family of robots [26] is used for industrial
inspection, handling, and assembly tasks, heavy lifting, CoGiro [27], motion simulators,
CableRobot [28], and recreation of underwater environments [29]; in logistics warehousing
tasks, CABLAR [30] and FASTKIT [31], and in search and rescue operations, the MARI-
ONET family of robots [32].

At conceptual level, the MoPick prototype [33] presents an approach to parallel ca-
ble robots with mobile bases (MCDPR) for pick and place tasks. A parallel cable robot
for multiple mobile cranes (CPRMCs) is proposed by [34], detailing the design and a
multilateration-based localization algorithm, whose global planning is performed with
a grid-based artificial potential field method. It also uses sensors for cooperative obsta-
cle avoidance, integrating autonomous level control for the platform, together with a
co-simulation by using Matlab and Labview.

A CDPR with three mobile cranes for search and rescue operations is shown by [35],
where each mobile base consists of a reconfigurable telescopic boom that can rotate
(Figure 1a). The cable is mounted from the tip of the telescopic arm to the end effec-
tor. Although the cranes are fixed, the system can be reconfigured to increase the working
space and keep the system in static equilibrium. The objective of this study is to compare
the stress distribution and the size of the working space when applying payloads.

Considering strategies for motion planning of a fleet of mobile robots for deployment
of a cable robot, ref. [36] proposes a modular CDPR carried by a rover for inspection and
light manipulation tasks on celestial bodies (Figure 1b), whose applications focus on solar
panel inspection and maintenance, as well as lava cave exploration (Figure 2).

(a) (b)
Figure 1. MCDPR system configurations and deployment. (a) Schematic of CDPR with mobile cranes.
Source: Authors. (b) Deployment procedure of a rover. Obtained from [36].
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(a) (b)
Figure 2. Applications of modular CDPR. (a) Maintenance of large ground solar array. Obtained
from [36]. (b) Exploration of lava tubes on celestial bodies. Obtained from [36].

In the related works described in Table 1, no strategies for the implementation of a
self-contained portable CDPR have been found.

Table 1. Comparison of state-of-the-art CDPR prototypes.

Reference Robot Name Mobile Bases Application Environment Physical
Implementation

Number of
Robotic Platforms

Degrees of
Freedom

[25] Robocrane YES Research Indoor/Outdoor YES 3 6
[26] IPAnema NO Industry Indoor YES 1 6
[27] CoGiro NO Research Indoor YES 1 6
[28] CableRobot NO Research Indoor YES 1 6
[29] - NO Research Indoor YES 1 6
[30] CABLAR NO Logistics Indoor YES 1 6
[31] FASTKIT YES Logistics Indoor YES 2 6
[32] MARIONET-CRANE YES Rescue Outdoor YES 1 6
[33] MoPick YES Logistics Indoor YES 4 3
[34] - YES Research Outdoor NO 4 4
[35] - YES Research Outdoor NO 3 3
[36] - YES Research Outdoor NO 3 3

2.2. Multi-Objective Optimization

State-of-the-art path planning methods are commonly formulated based on a single-
objective optimization for distance cost [37]. However, more factors need to be considered in
real-world applications, which turns the study problem into a multi-objective optimization
method applicable for multi-robot fleet path planning [38]. Common approaches use
methods such as summing the weights of each objective as a function, known as the
scalarized approach or weighted sum method [39], whose importance lies in correctly
deciding the weight coefficients based on empirical checks.

The use of multi-objective genetic algorithms has been widely studied in building
design [40], balancing of operations in hydroelectric reservoirs [41], sizing of microgrid
systems [42], and sustainable mechanization allocation for spraying and harvesting sys-
tems [43]. It has been shown relevant in robotics for trajectory optimization [44,45], con-
troller design [46], industrial robotic arm design [47], and cloud robotic platform service
scheduling [48], and for multi-robot trajectory planning for area coverage [49].

On the application of evolutionary algorithms (EA) for target selection in multi-robot
systems, ref. [50] proposes the use of an evolutionary algorithm with Indirect Represen-
tation and Extended Nearest Neighbor (IREANN) with a simple mutation operator for
GTSPC (Generalized Travelling Salesman Problem with Coverage). The trajectory op-
timization for MDCPR of the MoPick platform using direct transcription optimization
method where the optimization task adds the CDPR constraints in planning, and direct
transcription increases the confidence of the data, is studied by [51].

3. Methodology
3.1. Problem Statement

As explained in Section 1, the strategy proposed to perform the deployment of the
MCDPR must assure the traversability of a path for the mobile bases from a start point
to the surrounds of the sinkhole, considering that the robots are attached by ropes that
cannot pass through positive obstacles. After that, using optimization techniques, a feasible
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configuration that minimizes the fleet path distance cost and maximizes the area of the
region of interest (ROI) to be covered must be found.

For the conceptualization of the problem, the starting point is a 2D map of free space,
positive and negative obstacles. Figure 3a shows positive obstacles (gray) which block
the traversability of mobile robots and ropes, while negative obstacles (black) block the
traversability of mobile robots, but allow the passage of ropes. The figure is the actual
image used as an input for the proposed algorithm.

Posi ve obstacles

Nega ve 

obstacle

(a)

Posi ve 

obstacles

Nega ve 

obstacle

(b)
Figure 3. Map representation of environment. (a) A 2.5D map representation. (b) A 3D map repre-
sentation. Source: Authors.

Figure 3b shows a Gazebo representation of a structured environment, where the
undercut corresponds to a negative obstacle.

Physically, the self-contained CDPR is on top of one of the mobile robots (Figure 4).
However, the scope of the proposed algorithm is in two dimensions, so the corded fleet as
seen from the top plane is four robots with one node from which the cables are projected.

Figure 4. Physical configuration of the fleet. Source: Authors.

Before performing path planning, the possibility of finding nearby positive obstacles
that affect feasible target points for fleet route planning or deployment route must be
considered. For these cases, a range of up to two nearby positive obstacles affecting the
planning is defined, dividing into zones of interest where the user selects which area to
explore.

Once the feasible candidates are available, the fleet route planning is performed for
each candidate point, calculating the distance cost of each route. Then, candidate point
ranges are defined for each mobile robot, where for each combination of candidate points
the area covered is calculated. The distance cost of the minimum fleet route is minimized
and the area covered is maximized for each combination of candidate points using a
weighted fit function.

Through the optimization of the fitness function, the target points are obtained,
with which the deployment routes between them are planned (Figure 5a); subsequently,
the feasible deployment routes are evaluated, avoiding collisions of the ropes with positive
obstacles near the sinkhole to be explored (Figure 5b). Finally, the mission is executed in
the simulator, adding a 2D display of the roped fleet.
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FLEET PATH

DEPLOYMENT 

PATHS

(a)

FLEET PATH

FEASIBLE 

DEPLOYMENT 

PATH

(b)
Figure 5. Deployment procedure, (a) definition of fleet path (red) in node-edge configuration and
deployment path (blue) in individual configuration, (b) feasible deployment configuration with
roped restrictions. Source: Authors.

3.2. RUDE-AL Algorithm

The main contribution of this article is the Roped UGV fleet DEployment ALgorithm
(RUDE-AL), designed to provide a feasible goal selection based on the minimization of
distance cost of fleet deployment and maximization of covered area, considering rope
contact restrictions for negative and positive obstacles. It has been divided into two phases
and three stages:

• Phase 1. Node-edge fleet configuration

– Map, obstacle, and start selection for offline planning
– Definition, sorting, and choosing of feasible goal candidates based on area cover-

age and distance cost of fleet deployment

• Phase 2. Roped individual configuration

– Goal local planning and establishment of deployment configuration based on
rope restrictions

The flow diagram of the process of RUDE-AL is shown in Figure 6.

RUDE-AL

NODE-EDGE 
CONFIGURATION

ROPED INDIVIDUAL 
CONFIGURATION

              

        

        

                              

Detection of contour
of ROI

Filter no feasible
candidates

Plan fleet route
for candidates

Definition of goal
candidates

Maximize ROI covered area
and minimize fleet route

Planning of deployment
routes

Feasible configuration Fleet route and deployment
configuration

START

Figure 6. RUDE-AL algorithm procedure. Source: Authors.

3.2.1. Phase 1. Node-Edge Fleet Configuration

In this phase, the four robots are formed in a worm configuration consisting of
four nodes and three edges (Figure 7). For navigation, the strategy used is to assign
the front robot as the leader, and the others as followers. Each robot is assigned the fleet
route, and minimum distance constraints are added to avoid collisions between them.

LeaderFollowerFollowerFollower

Node 1Node 2Node 3Node 4

Edge 1Edge 2Edge 3

Figure 7. Node-edge configuration with cable robot on the leader robot. Source: Authors.
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Map, Obstacle, and Start Selection for Offline Planning

In this stage, computer vision techniques are used to generate two-dimensional maps
of positive and negative obstacles, separating them into individual masks for individual
processing. Table 2 shows the associated color coding, as well as land navigation conditions
and roped fleet restrictions for traversability.

Table 2. RGB color definition used in 2D maps for RUDE-AL. Source: Authors.

Tipo RGB Color UGVs Navigation Allowed Cable Cross Allowed

Free space (255, 255, 255) YES YES
Positive obstacle (136, 138, 133) NO NO
Negative obstacle (0, 0, 0) NO YES

OpenCV tools are used for contour detection, obstacle inflation (erode and dilate tools),
and graphical representation of the algorithm. The starting point of the mission and the
negative obstacle to be explored are manually selected. The existence of positive obstacles
near the undercut that affect the roped deployment process is evaluated, and a group of
candidate points is automatically obtained. Figure 8 shows the candidate point selection
process for maps with several positive obstacles and one negative obstacle.

(a) (b) (c) (d)
Figure 8. First stage candidate points with no nearby positive obstacles, (a) obstacle selection,
(b) contour candidates, (c) evaluation of feasible and non-feasible candidates (red feasible, blue no
feasible, (d) first stage candidate points (green). Source: Authors.

Figure 9 shows the process for selecting candidate points with a positive obstacle close
to the zone of interest.

(a) (b) (c) (d)

Figure 9. First stage candidate points with one nearby positive obstacles, (a) obstacle selection,
(b) contour candidates, (c) evaluation of feasible and non-feasible candidates (red feasible, blue no
feasible, (d) first stage candidate points (green). Source: Authors.

Figure 10 shows the selection of candidate points when there are two positive obstacles
close to the area of interest.
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(a) (b) (c) (d) (e)

Figure 10. First stage candidate points with two nearby positive obstacles, (a) obstacle selection,
(b) contour candidates, (c) evaluation of feasible and non-feasible candidates (red feasible, blue
no feasible), (d) selection of available areas to explore, (e) first stage candidate points (green).
Source: Authors.

Then, path planning is performed with a multi-query planner, in this case, a proba-
bilistic roadmap (PRM), in order to obtain the candidate fleet routes from the starting point
to the candidate target points of the first stage (Figure 11).

Figure 11. Multiple goal path planning for different scenarios. Source: Authors.

Algorithm 1 shows the pseudocode implemented for this stage, using as input vari-
ables: the required map, which is an RGB image in png format with a resolution of
1000 × 1000 pixels, whose colors correspond to the requirements of Table 2, and the value
of the starting point start. The following functions explain the processes:

• Erode (line 12), Dilate (line 13), Range (line 14), Contours (line 16) and Centroids
(line 18): are OpenCV functions used to inflate regions of images, define masks, and
get characteristics of contours.

• Remove_dup (line 28): is a function to delete the multiple occurrences of an object in
a list.

• Line(line 35): is a function that returns the slope and the constant “b” for a y = mx + b
line between two input points

• Check_click (line 51): is a function that determines where the user clicks and returns
the selected zone to explore (options are 1 or 2).

• Route (line 51) is a function that performs the prm path planning between two points.
Returns the feasible path between them.
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Algorithm 1 Fleet Planning
Input: map,start
Output: cpoint, cpath

1: //init_candidates: set of initial candidate points
2: //cpoint: set of candidate points
3: //cpath: set of candidate paths
4: //index_roi: index of the negative obstacle to explore
5: //index_pos_obst: list of index of positive obstacles close to ROI
6: //m: slope of line between two points
7: //b: constant of line between two points
8: //y_sup: bool that defines if “y” coordinate of a point is greater that the one described by equation constants
9: //upper_c: candidate points greater that line defined between two near positive obstacles

10: //lower_c: candidate points lower that line defined between two near positive obstacles
11: map← gray(map)
12: erodedn_m← Erode(map)
13: erodedp_m← Dilate(map)
14: black_m← Range(erodedn_m, 0, 10)
15: gray_m← Range(erodedp_m, 50, 150)
16: neg_contours← Contours(black_m)
17: pos_contours← Contours(gray_m)
18: pos_centroids← Centroids(pos_contours)
19: cpoint ← neg_contours[index_roi]
20: for j ∈ pos_centroids do
21: for j ∈ negcontours do
22: if gray_m[c_point[i]] == 1 then
23: Delete from c_point this neg_contours [i]
24: Append in index_pos_obst this j
25: end if
26: end for
27: end for
28: index_pos_obst← Remove_dup[index_pos_obst]
29: if length(index_pos_obst) == 1 then
30: for i ∈ cpoint do
31: cpath = Route(start, i)
32: end for
33: end if
34: if length(index_pos_obst) == 2 then
35: m, b← Line(pos_centroid[index_pos_obst[0]], pos_centroid[index_pos_obst[1]])
36: for i ∈ cpoint do
37: ysup ← check_line(cpoint, m, b)
38: if y_sup == true then
39: Append in upper_c this cpoint[i]
40: else
41: Append in lower_c this cpoint[i]
42: end if
43: end for
44: zone=Check_click()
45: if zone == 1 then
46: cpoint = upper_c
47: else
48: cpoint = lower_c
49: end if
50: for i ∈ cpoint do
51: cpath[i] = Route(start, i)
52: end for
53: end if
54: return cpoint, cpath

Definition, Sorting, and Choice of Feasible Goal Candidates Based on Area Coverage and
Distance Cost of Fleet Deployment

At this stage, the distance cost of the fleet route is minimized and the area covered by
the polygon formed by the combination of four points corresponding to the position of
the mobile robots is maximized. The candidate points are defined as c1, c2, c3, c4. Initially,
to reduce the number of combinations to be processed, a minimum distance criterion is
applied between subsequent points, defining minimum and maximum indices for each
point in the general list of candidates, as shown in Figure 12, from which different vectors
are obtained for each candidate point.



Sensors 2023, 23, 6487 10 of 26

Figure 12. Definition of minimum and maximum index for each candidate point. Source: Authors.

The calculation of the area covered by the combination of the candidate points is made
with the sum of the areas of the triangles that form the quadrilateral 1-2-3-4, shown in
Figure 13, with the Equation (1):

acov =
1
2
|~a×~b|+ 1

2
|~b×~c| (1)

where:

• acov: covered area by points
• ~a: vector between points 1–4
• ~b: vector between points 1–3
• ~c: vector between points 1–2

c

3

2

1

4

Figure 13. Vectors to calculate covered area. Source: Authors.

For the calculation of the distance cost, in each fleet route associated to each candidate
point (Figure 11), the Equation (2) is used:

croute =
i=n

∑
i=1

d(pi, pi−1) (2)

where:

• croute: accumulated distance cost of route
• d: euclidean distance between points

The cost values associated to each candidate route are normalized with respect to
the maximum distance cost. Since the aim is to maximize the fitness function, and the
area covered calculated with respect to the area of the obstacle obtained with OpenCV,
a weighted fitness function is defined using the scalarized approach (weighted sum method)
with the Equation (3):

f f itness =
warea ∗ acandidate

aobstacle
+ wroute ∗max(inv_route_costcandidates) (3)

where:

• f f itness: fitness function
• warea: weight applied for area coverage
• acandidate: weight applied for path distance cost
• aobstacle: covered by 4-candidate points combination
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• wroute: area of obstacle obtained from contours
• inv_route_costcandidates: vector of inverse normalized route cost for candidate points

To estimate candidates that maximize the fitness function while reducing the computa-
tional cost, genetic algorithms, implemented with the PyGAD package [52], are used. To use
the package, it is necessary to adapt the problem to the structure of a genetic algorithm.

A combination of four candidate points is sought, whose coordinates are defined with
values of type “integer”, where each candidate point is contained in a pool of feasible
solutions, and has an associated fleet path cost value. For the application of PyGAD to
the problem, the indices of the lists of each candidate point are used as solutions, having
as objective the maximization of the f f itness function, delimiting the maximum values of
mutation range to the length of the vector of each feasible candidate. The data type is of
type “int”. For the generation of the instance, the parameters described in Table 3 are set.

Table 3. Parameters defined in PyGAD instance.

Parameter Definition Value

num_generations Number of generations 1200

mutation_num_genes Number of genes por instance
random_mutation() 4

num_parents_mating Number of solutions to be selected
as parents 2

sol_per_pop Number of solutions in the population 70
num_genes Number of genes in each solution 4
fitness_function Fitness function f f itness

init_range_low Lower value of random range where
initial population is selected. 0

init_range_high Upper value of random range where
initial population is selected. len(candidate1)/2

crossover_type Type of crossover operation. “single_point”

random_mutation_min_val
Start value of the range from
which a random value is selected
to be added to the gene.

1

random_mutation_max_val
End value of the range from
which a random value is selected
to be added to the gene.

100

mutation_type Type of mutation operation “random”

gene_space
Specify the posible values for
each gene in order to restrict
the gene values.

[range (0, len(candidate1)),
range (0, len(candidate2)),
range (0, len(candidate3)),
range (0, len(candidate4)) ]

gene_type Gene type (numeric data type) int

The value of warea is 2, and wroute is 3, prioritizing the minimization of the fleet
route distance cost, which represents the process with the highest energy cost due to the
relationship with the number of robots in the fleet.

Algorithm 2 takes as input variables the candidate points cpoint, and the paths of each
candidate cpath. The following functions explain the process:

• Get_area (line 13) is a function that gets the area of the contour made by a list of points.
The output is the area of the contour.

• Route_cost (line 14) is a function that calculates the accumulated individual distance
cost for a list of paths.

• Index_range (line 15) is a function that defines the lower and upper limit indexes for
each candidate point according to a minimum distance between points. The output is
a range of index for each of the four candidate points.

• Get_candidates (line 16) is a function that defines independent lists of candidate points
of a main list according to the given limits. The output is four lists of points.
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• Fitness_function (line 17) is a function that iterates testing different combinations
according to Ga_instance parameters. It includes the Area_calc() in order to calculate
area for every iteration different combination of points.

• Area_calc (line 17) is a function that calculates the area described between four points
according to cross product and sum of areas described in Equation (1).

• Ga_instance (line 18) is pygad instance to configure the genetic algorithm that include
the parameters described in Table 2. The instance must run using Ga_instance.run.
The output of Ga_instance.best_solution() is the best combination of four points
according to the fitness function.

Algorithm 2 Points Selection
Input: cpoint, cpath
Output: sol_points,fleet_path

1: //roi_area: area on negative obstacle in pixels2

2: //cpoint: set of candidate points
3: //cpath: set of candidate paths
4: //range_c_points: 2x4 matrix of range of points for candidates 1, 2, 3, 4
5: //c1: list of candidate 1 points
6: //c2: list of candidate 2 points
7: //c3: list of candidate 3 points
8: //c4: list of candidate 4 points
9: //sol_points: solution of four points

10: //fit_function: fitness function used in pygad instance
11: //sol_paths: fleet paths for solution points
12: //path_cost: list of distance costs related to the input cpath
13: roi_area← Get_area(cpoint)
14: path_cost=Route_cost(cpath)
15: range_c1, range_c2, range_c3, range_c4=Index_range(cpoint)
16: c1, c2, c3, c4=Get_candidates(range_c_points, cpoint)
17: fit_function=fitness_function(c1,c2,c3,c4, roi_area, path_cost, Area_calc())
18: ga_instance(fit_function, range_c_points)
19: sol_points=ga_instance.best_solution()
20: for i ∈ sol_points do
21: sol_paths[i]=cpath[sol_points[i]]
22: end for
23: fleet_path=min(sol_paths)
24: return sol_points,fleet_path

3.2.2. Phase 2. Roped Individual Configuration

In this phase, the robots are freed from the constraints of the worm configuration,
where each mobile robot is attached by a rope to the parallel cable robot (Figure 14). In this
phase, it is important to note that the lead robot will not always carry the wire robot, as the
robot to carry will be defined by obtaining the feasible deployment configuration. Each
robot in the fleet will have its own route, added to the fleet route from the previous phase.

Leader
Follower

Follower

Follower

Figure 14. Roped individual configuration. Source: Authors.
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Goal Local Planning and Establishment of Deployment Configuration Based on
Rope Restrictions

After having selected the best feasible candidate points, a route planning is performed
between the selected points to obtain the deployment routes and propose a feasible de-
ployment configuration considering the roped fleet constraints (Table 2). By having one
fleet route and several deployment routes, different combinations of possible routes can be
generated, shown in Figure 15.
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(e)
Figure 15. Candidate deployment configurations, (a) available deployment paths, (b) deployment
path without A-B route, (c) deployment path without A-D route, (d) deployment path without B-C
route, (e) deployment path without C-D route. Source: Authors.

The point corresponding to the fleet robot carrying the cable robot is also taken into
account since, in addition to generating a feasible deployment path for UGV navigation,
corded fleet constraints for positive obstacles must be considered; see Figure 16.

START

A

B

C

D

FLEET PATH

DEPLOYMENT 

PATH CABLES

(a)

START

A

B

C

D

FLEET PATH

DEPLOYMENT 

PATH CABLES

(b)
Figure 16. Cable robot position, (a) At point A (no roped feasible configuration because of collision),
(b) At point B (roped feasible configuration). Source: Authors.

In addition to the previous considerations, it must be evaluated that at each instant of
the deployment, there is a rope connecting each mobile robot with the cable robot, where
contact with positive obstacles must be avoided; see Figure 17.

START

A

B

C

D

FLEET PATH

DEPLOYMENT 

PATH CABLES

Figure 17. Evaluation of rope contact with positive obstacles at interpolated path for follower robot
at A-D candidate route. Source: Authors.

Table 4 details the conditions considered to obtain feasible paths and feasible configu-
rations for possible situations using different start positions.
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Table 4. Feasible configuration for deployment path.

Point 1st Feasible Path 2nd Feasible Path 3rd Feasible Path Feasible Configuration

A

R1 R2 R3 A →(R1,R2,R3)
R1 R2 R4 A →(R1,R2,R4)
R1 R3 R4 A →(R1,R3,R4)
R1 R3 R4 A →(R2,R3,R4)

B

R1 R2 R3 B →(R1,R2,R3)
R1 R2 R4 B →(R1,R2,R4)
R1 R3 R4 B →(R1,R3,R4)
R1 R3 R4 B →(R2,R3,R4)

C

R1 R2 R3 C →(R1,R2,R3)
R1 R2 R4 C →(R1,R2,R4)
R1 R3 R4 C →(R1,R3,R4)
R1 R3 R4 C →(R2,R3,R4)

D

R1 R2 R3 D →(R1,R2,R3)
R1 R2 R4 D →(R1,R2,R4)
R1 R3 R4 D →(R1,R3,R4)
R1 R3 R4 D →(R2,R3,R4)

Finally, the routes of each robot are defined according to the possible configurations
for fleet deployment (Figure 18), using the criteria defined in Table 5.

Table 5. Definition of individual robot paths for feasible deployment path configurations.

Principal Node Point Feasible Configuration Robot 1 Path Robot 2 Path Robot 3 Path Robot 4 Path

A

type 1 FP+ADCB FP + ADC FP + AD FP
type 2 FP + ABCD FP + ABC FP + AB FP
type 3 FP + ADC FP + AD FP + AB FP
type 4 FP + ABC FP + AB FP + AD FP

B

type 1 FP + BADC FP + BAD FP + BA FP
type 2 FP + BCDA FP + BCD FP + BC FP
type 3 FP + BAD FP + BA FP + BC FP
type 4 FP + BCD FP + BC FP + BA FP

C

type 1 FP + CBAD FP + CBA FP + CB FP
type 2 FP + CDAB FP + CDA FP + CD FP
type 3 FP + CBA FP + CB FP + CD FP
type 4 FP + CDA FP + CD FP + CB FP

D

type 1 FP + DCBA FP + DCB FP + DC FP
type 2 FP + DABC FP + DAB FP + DA FP
type 3 FP + DCB FP + DC FP + DA FP
type 4 FP + DAB FP + DA FP + DC FP

The criterion for selecting robot routes is to apply the longest route to the leader robot,
progressively descending to the shortest route to follower robot 3, in type 1 and type 2
configurations. For type 3 and type 4 configurations, the path to the longest boundary node
is assigned to the leader robot, the shortest leg of the path from the leader robot to follower
robot 1, the path to the shortest boundary node to follower robot 2, and the shortest path to
follower robot 3.

The pseudocode is detailed in Algorithm 3. The functions that help to understand this
section are:

• Route (line: 10) is a function that performs the PRM path planning between two points.
It returns the feasible path between them.

• Route_check (line: 14) is a function that creates an interpolated line between input
point and every interpolated point of the input route, and checks if there are collisions
between the interpolated line (rope) and a positive obstacle. Output is a Boolean true
if there is collision, and false if there is no collisions.
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• GetRobotPaths (line: 35) is a function in which input is feasibility of each path of
the roped configuration deployment check, and it returns the path for each robot
according to Table 5.
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(d)
Figure 18. Feasible deployment path configuration using point A as principal node. (a) Type 1. (b)
Type 2. (c) Type 3. (d) Type 4. Source: Authors.

Algorithm 3 Roped deployment
Input: sol_points, f leet_path, map
Output: f leet_path, r1_path, r2_path, r3_path, r4_path

1: //init_candidates: set of initial candidate points
2: //check_path: is a Boolean that indicates if the path is feasible to navigate with roped fleet conditions (true=no valid,

false=valid)
3: //p1_check: is a list that contains boolean values related to a feasible path between point 1 and a route
4: //p2_check: is a list that contains boolean values related to a feasible path between point 2 and a route
5: //p3_check: is a list that contains boolean values related to a feasible path between point 3 and a route
6: //p4_check: is a list that contains boolean values related to a feasible path between point 4 and a route
7: map← gray(map)
8: gray_m← Range(map, 50, 150)
9: for i ∈ (sol_points− 1) do

10: deployment_paths[i]=Route(sol_points[i],sol_points[i+1])
11: end for
12: for i ∈ (sol_points) do
13: for j ∈ deploymentpaths do
14: check_path=Route_check(sol_points[i],deployment_paths[j])
15: if check_path == true then
16: if i == 1 then
17: Append in p1_check this check_path
18: break
19: end if
20: if i == 2 then
21: Append in p2_check this check_path
22: break
23: end if
24: if i == 3 then
25: Append in p3_check this check_path
26: break
27: end if
28: if i == 4 then
29: Append in p4_check this check_path
30: break
31: end if
32: end if
33: end for
34: end for
35: robot1_path, robot2_path, robot3_path, robot4_path=GetRobotPaths(p1_check, p2_check, p3_check, p4_check)
36: return robot1_path, robot2_path, robot3_path, robot4_path

4. Experiments

In order to test the performance of the algorithm on environments with different
characteristics, two groups of environments are defined. The first, GLOBAL TEST, is
intended to test different combinations of environments with various positive and negative
obstacles, to test the robustness of the fleet in node-edge configuration; this group consists
of manual generation of maps, using combinations associated with the characteristics of
the fleet environment. The second group, SHAPE TEST, modifies the shape features of
the region of interest to be explored, in order to test the robustness of the algorithm and
identify the mission characteristics (shape of ROI, number of positive obstacles near the
ROI, start point) that can affect the performance.



Sensors 2023, 23, 6487 16 of 26

For GLOBAL TEST, the experiments are performed on six maps with the characteristics
shown in Table 6.

Table 6. Characteristics of GLOBAL TEST environment maps.

Map Number of Positive Obstacles Number of Negative Obstacles Number of Positive Obstacles around ROI Shape of Negative Obstacle

1 0 1 0 Irregular
2 4 1 1 Irregular
3 5 1 2 Irregular
4 8 1 0 Ellipse
5 12 6 0 Ellipse
6 17 34 0 Irregular ellipse

For each map, feasible fleet paths are obtained just once to get the feasible fleet
candidate path cost, because the main goal is evaluating the performance of algorithm, not
to be a PRM path planner.

For GLOBAL TEST, the maps shown in Figure 19 are used with the characteristics
described in Table 6.

(a) (b) (c)

(d) (e) (f)
Figure 19. Manually generated maps for GLOBAL TEST, (a) map 1, (b) map 2, (c) map 3, (d) map 4,
(e) map 5, (f) map 6. Source: Authors.

For SHAPE TEST, thirty types of maps are automatically generated for each number of
positive obstacles around the area of interest, varying the shape of the sinkhole. These maps
are generated through a point connection script using cubic Bezier curves [53]. The criteria
for autogeneration of the maps are explained in Table 7.

Table 7. Characteristics for automatic generated maps.

Maps Number of Positive Obstacles around ROI Cprad Smoothness Nrandom Scale

1–10 0–2 0.2 0.05 6 500
11–20 0–2 0.3 0.08 7 250
21–30 0–2 0.1 0.1 8 300

Where:
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• Maps: The range of maps that are auto-generated with the indicated characteristics.
• Nrandom: number of random points to connect to generate the Bezier curve.
• Cprad: radius around the points where control points are. A larger radius means a

sharper feature.
• Smoothness: Parameter to define the smoothness of the curve.
• Scale: X and Y pixel rectangle size where the random points will be generated.

The total number of generated maps is 90. Tests are performed by planning the routes
from four start points ([100,100], [100,900], [800,100], [800,800]), with a total of 360 tests of
the algorithm.

The 1000 × 1000 pixel resolution maps have a scale of 0.1 m per pixel, thus, the size
range of the generated sinkholes goes from 20 m to 50 m approximately. The reference
mobile robot size is the SummitXL (0.7 m length, 0.6 m width, 0.45 m height).

Some of the used maps are shown in Figure 20.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20. Automatic generated maps for SHAPE TEST, (a) maps 1–10 with 0 nearby positive
obstacles, (b) maps 1–10 with 1 nearby positive obstacles, (c) maps 1-10 with 2 nearby positive
obstacles, (d) maps 11–20 with 0 nearby positive obstacles, (e) maps 11–20 with 1 nearby positive
obstacles, (f) maps 11–20 with 2 nearby positive obstacles, (g) maps 21–30 with 0 nearby positive
obstacles, (h) maps 21–30 with 1 nearby positive obstacles, (i) maps 21–30 with 2 nearby positive
obstacles. Source: Authors.

All experiments were carried on Intel Core i7-9750H PC with 16GB RAM, under the
ROS Noetic operating system and Python 3.8, on a computer running Ubuntu 20.04. For
simulation, Gazebo is used through Robotnik Stack for Summit-XL [54], using mobile
platforms of four wheels with differential locomotion.

5. Results

This chapter presents the results of the experiments. Table 8 shows the summary of
the results obtained, detailing the exceptions for SHAPE TEST, which are explained in the
following sections. The results are encouraging, allowing us to identify the circumstances
of the map that caused incorrect results.
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Table 8. Summary of results.

Experiment Number of Maps Number of Experiments Number of Successful Experiments Successful Rate

Global TEST 6 24 24 100%
SHAPE TEST
(feasible paths) 90 360 357 99.16%

SHAPE TEST
(feasible paths with
workspace limitation)

90 360 352 97.78%

SHAPE TEST
(feasible paths with
collision risk)

90 360 350 97.2%

SHAPE TEST
(feasible paths with
exceptions)

90 360 354 98.33%

SHAPE TEST 90 360 333 92.5%

Tests are performed from the starting point [100,100], obtaining a feasible fleet route,
deployment routes, and cable layout. Figures 21–26.

Figure 21. GLOBAL TEST procedure for Map 1. Source: Authors.

Figure 22. GLOBAL TEST procedure for Map 2. Source: Authors.

Figure 23. GLOBAL TEST procedure for Map 3. Source: Authors.
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Figure 24. GLOBAL TEST procedure for Map 4. Source: Authors.

Figure 25. GLOBAL TEST procedure for Map 5. Source: Authors.

Figure 26. GLOBAL TEST procedure for Map 6. Source: Authors.

In GLOBAL TEST experiments, the algorithm finds feasible solutions for 100% of
the cases.

In SHAPE TEST experiments, maps with the features in Table 7 are tested. Figure 27
shows some of the results obtained by the algorithm in the experiments performed in the
SHAPE TEST environment.

Figure 27. Feasible fleet and deployment paths tested in SHAPE TEST generated environment.
Source: Authors.

For the 360 tests, the algorithm returns feasible routes in 357, representing 99.16%
efficiency for fleet route and deployment route generation.
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Since the scope of the paper is delimited to point selection and feasible route generation
for a fleet of corded robots, the workspace of the effector mounted on one of the robots
is not considered. However, post-fleet navigation issues are discussed, through caveats
defined in two groups: limitations of the corded robot workspace, and risk of collision of
the cords in the release of the end effector.

Selected points representing a limitation to the workspace are obtained eight times
(Figure 28), i.e., 2.22%, while the risk of cable collision with positive obstacles occurs
10 times (Figure 29), 2.78% of the time.

Figure 28. Selected points for feasible fleet and deployment paths that limit the release of the CDPR.
Source: Authors.

Figure 29. Selected points for feasible fleet and deployment paths close to hit positive obstacles
during release of cable drive robot. Source: Authors.

There are also exceptional cases where navigation and deployment of the fleet is
feasible, but the release of the effector would present an error. These cases occur in
six occasions (1.67%), shown in Figure 30.

Figure 30. Selected feasible points that present problems during the release of the cable driven robot.
Source: Authors.

5.1. Fitness

In order to analyze statistical significance, box and whisker plots associated with the
relationships between the fit variables (fitness, weighted fleet route distance cost, weighted
area covered) and map characteristics (number of positive obstacles in the ROI, shape
characteristics for map generation, starting points) are presented.

Figure 31 shows the box and whisker plots of fitness and map characteristics. The one-
way analysis of variance (ANOVA) shows that there are significant differences with α = 0.05
of fitness vs. number of positive obstacles in the ROI (F = 305.53, p = 0), fitness vs. shape
(F = 4.04, p = 0.0184), and that there are no significant differences of fitness vs. starting
point data (F = 1.08, p = 0.3588).
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(a) (b) (c)
Figure 31. Box and whiskers diagrams for fitness and its variables, (a) fitness vs. number of positive
obstacles on ROI, (b) fitness vs. automatic generated shapes, (c) fitness vs. start points. Source:
Authors.

Figure 32 collects the plots for the weighted cost of the area covered and the map
features. Analysis of variance indicates significant differences with α = 0.05 of area weighted
cost vs. number of positive obstacles in the ROI (F = 266.65, p = 0), area weighted cost vs.
shape (F = 3.4, p = 0.0345), and that there are no significant differences of area weighted
cost vs. start point data (F = 0.07, p = 0.9748).

(a) (b) (c)
Figure 32. Box and whiskers diagrams for weighted normalized covered area and its variables,
(a) weighted normalized covered area vs. number of positive obstacles on ROI, (b) weighted normal-
ized covered area vs. automatic generated shapes, (c) weighted normalized covered area vs. start
points. Source: Authors.

Figure 33 points out the plots for the weighted fleet route distance cost and map
features. Analysis of variance reveals significant differences with α = 0.05 of weighted fleet
route distance cost vs. number of positive obstacles in the ROI (F = 9.64, p = 0), weighted
fleet route distance cost vs. shape (F = 5.98, p = 0.0028), and that there are no significant
differences of fleet route distance vs. start point data (F = 1.64, p = 0.1791).

(a) (b) (c)
Figure 33. Box and whiskers diagrams for weighted normalized fleet path cost and its variables,
(a) weighted normalized fleet path cost vs. number of positive obstacles on ROI, (b) weighted
normalized fleet path cost vs. automatic generated shapes, (c) weighted normalized fleet path cost vs.
start points. Source: Authors.

In summary, it can be said that the fitness value obtained as a result of the algorithm
is mainly affected by the number of positive obstacles close to the ROI, and secondarily,
by the shape of the land depression to be explored. The starting point does not affect in a
relevant way the fitness function value.
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5.2. Algorithm Complexity

The complexity of an algorithm is usually calculated based on the Big-O notation,
divided into time complexity, referring to the execution time of the algorithm, and space
complexity, the amount of memory used by an algorithm [55]. In this section, the temporal
complexity of the genetic algorithm is discussed. The amount of data processed by an
algorithm is represented by N. If the algorithm does not depend on N, it has a constant
complexity, represented by the notation O(1). If the algorithm depends on N, the complexity
is represented as a function of this variable with the notations O(N), O(N2), O(log N), O(N
log N), O(2N), O(N!). Figure 34 shows the evolution of the execution time of the genetic
algorithm as a function of the number of samples. Input range goes from 76 to 806, with a
maximum time of 16.55 s, and an average time of 9.48 s. A linear regression is performed
to estimate the fit to the measured time data, obtaining the Equation (4):

time = 0.0101 ∗ ninputs + 5.8094 (4)

With a value of R2 of 0.5523, the algorithm has a proportional behaviour, understood
in the Big-O notation as O(n), considered a fair complexity.
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Figure 34. Execution time of GA algorithm. Source: Authors.

5.3. Test on Gazebo Simulator

For the fleet navigation simulation, the Summit XL robot ROS package is adapted
to use four robots. The 3D environments are developed by approximating the splines
of the generated maps and exporting to a compatible format for import into the Gazebo
environment. A script is implemented to track the trajectories of each robot, and a viewer
is set up parallel to the execution of the mission. Figure 35 shows the operation of the
algorithm and the navigation of the robot fleet. The size scale used is 0.1 m per pixel for the
map, so the sinkhole is approximately 50 m long, 30 m wide, and 20 m deep.

Figure 35. Gazebo simulation of navigation and deployment of the robot fleet around a sinkhole.
Source: Authors.
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6. Conclusions

In this work, the use of a fleet of UGV land mobile robots is proposed for the deploy-
ment of a mobile cable-driven parallel robot to perform the exploration of sinkholes.

For the positioning of the mobile bases of the MCDPR, fleet route planning and corded
deployment are performed using maps with different characteristics, generated either
manually or automatically.

Several experiments have been performed by varying the fleet route environment and
the features of the sinkhole to explore. The results of the experiments show the robustness
of the algorithm for the generation of feasible routes, in addition to corroborating that
both the shape of the sinkhole and the number of positive obstacles in the ROI region of
interest present significant differences for the cost function fit. The validity of the routes in
a simulation model in Gazebo has been also evaluated.

The use of evolutionary algorithms considerably reduces the calculation time of the
algorithm. However, parameter settings should be tailored for each task, so it is important
to initially consider the scope and scalability of the proposed solution.

Future work should focus on optimization of fleet routes, smoothing of planned routes
to improve navigation, consideration of physical characteristics of ropes, and integration
into real roped robotic fleets. For real-world scenarios, navigation can be improved with
the addition of local planning techniques to avoid dynamic obstacles. Simulation can focus
on testing the algorithm on rope capable simulators considering the dynamical restrictions
of the real roped robotic fleet. In addition, the workspace of the released CDPR as part of
the proposed weighted fitness function should be analyzed.
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ASR Air Sea Rescue
CDPR Cable Driven Parallel Robot
CPRMC Cable Parallel robot for multiple mobile cranes
DARPA Defense Advanced Research Project Agency
EA Evolutionary Algorithms



Sensors 2023, 23, 6487 24 of 26

GA Genetic Algorithms
MCDPR Mobile Cable-Driven Parallel Robot
PRM Probabilistic Roadmap
ROI Region of Interest
RTS Robotic Total Station
RUDE-AL Roped UGV fleet Deployment ALgorithm
SAR Search and Rescue
TS Total Station
UGV Unmanned Ground Vehicle
USAR Urban Search and Rescue
WiSAR Wilderness SAR

Appendix A

Link to the video RUDE-AL: Roped UGV deployment algorithm of a MCDPR for
sinkhole exploration: (accesed on 30 May 2023). https://youtu.be/2yYPXLVhq2I.

Appendix B

The obtained results can be found on https://github.com/davidorbea92/rude_al
(accesed on 30 May 2023).
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