
Citation: Silva, A.L.; Oliveira, P.;

Durães, D.; Fernandes, D.; Névoa, R.;

Monteiro, J.; Melo-Pinto, P.; Machado,

J.; Novais, P. A Framework for

Representing, Building and Reusing

Novel State-of-the-Art Three-

Dimensional Object Detection

Models in Point Clouds Targeting

Self-Driving Applications. Sensors

2023, 23, 6427. https://doi.org/

10.3390/s23146427

Academic Editor: Rebeca P.

Díaz Redondo

Received: 8 May 2023

Revised: 7 July 2023

Accepted: 13 July 2023

Published: 15 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Framework for Representing, Building and Reusing Novel
State-of-the-Art Three-Dimensional Object Detection Models in
Point Clouds Targeting Self-Driving Applications
António Linhares Silva 1,*,† , Pedro Oliveira 1,† , Dalila Durães 1,*,† , Duarte Fernandes 1,2 , Rafael Névoa 3 ,
João Monteiro 1 , Pedro Melo-Pinto 1,4 , José Machado 1,5 and Paulo Novais 1,5

1 Algoritmi Centre, University of Minho, 4800-058 Guimarães, Portugal;
pedro.jose.oliveira@algoritmi.uminho.pt (P.O.); duarte.fernandes@dtx-colab.pt (D.F.)
joao.monteiro@dei.uminho.pt (J.M.); pmelo@utad.pt (P.M.-P.) jmac@di.uminho.pt (J.M.);
pjon@di.uminho.pt (P.N.)

2 Associação Laboratório Colaborativo em Transformação Digital (DTx Colab), 4800-058 Guimarães, Portugal
3 Bosch Car Multimédia, 4700-113 Braga, Portugal; rafael.nevoa@pt.bosch.com
4 Capacity Building and Sustainability of Agri-Food Production, Centro ALGORITMI, University of

Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
5 Intelligent System Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
* Correspondence: asilva@algoritmi.uminho.pt (A.L.S.); dad@di.uminho.pt (D.D.)
† These authors contributed equally to this work.

Abstract: The rapid development of deep learning has brought novel methodologies for 3D object
detection using LiDAR sensing technology. These improvements in precision and inference speed
performances lead to notable high performance and real-time inference, which is especially important
for self-driving purposes. However, the developments carried by these approaches overwhelm the
research process in this area since new methods, technologies and software versions lead to different
project necessities, specifications and requirements. Moreover, the improvements brought by the
new methods may be due to improvements in newer versions of deep learning frameworks and not
just the novelty and innovation of the model architecture. Thus, it has become crucial to create a
framework with the same software versions, specifications and requirements that accommodate all
these methodologies and allow for the easy introduction of new methods and models. A framework is
proposed that abstracts the implementation, reusing and building of novel methods and models. The
main idea is to facilitate the representation of state-of-the-art (SoA) approaches and simultaneously
encourage the implementation of new approaches by reusing, improving and innovating modules in
the proposed framework, which has the same software specifications to allow for a fair comparison.
This makes it possible to determine if the key innovation approach outperforms the current SoA by
comparing models in a framework with the same software specifications and requirements.

Keywords: autonomous driving; deep learning methods; LiDAR sensing technology; 3D object detection

1. Introduction

The field of computer vision has seen significant advancements in recent years, partic-
ularly in the area of 3D object detection from point cloud data. However, there is still a need
for a general representation framework that can be applied to a wide range of 3D object
detection tasks, regardless of the specific sensor or application domain. The development
verified in recent years of the computational power offered by cutting-edge GPUs has
allowed for the application of deep learning algorithms to detect objects in several domains.
One such domain is autonomous driving using light detection and ranging (LiDAR) data,
representing a considerable gain in detection efficiency, precision and inference speed [1].

In recent years, there has been significant progress in 3D object detection models based
on LIDAR data for self-driving applications. A multitude of frameworks and projects

Sensors 2023, 23, 6427. https://doi.org/10.3390/s23146427 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146427
https://doi.org/10.3390/s23146427
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7075-3364
https://orcid.org/0000-0001-7143-5413
https://orcid.org/0000-0002-8313-7023
https://orcid.org/0000-0001-9736-5812
https://orcid.org/0000-0001-5576-6175
https://orcid.org/0000-0002-3287-3995
https://orcid.org/0000-0001-8257-0143
https://orcid.org/0000-0003-4121-6169
https://orcid.org/0000-0002-3549-0754
https://doi.org/10.3390/s23146427
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146427?type=check_update&version=2

Sensors 2023, 23, 6427 2 of 25

have been proposed, each with its own unique approach to addressing the challenges of
detecting and tracking objects in a 3D environment. However, this diversity also poses a
challenge when it comes to deploying these models for onboard inference in a self-driving
vehicle [2,3].

The misclassification of off-road regions is one of the difficulties with LiDAR-based
object detection highlighted in [4]. Finding and classifying off-road areas is essential for
safe and accurate autonomous navigation. It also suggests combining high-definition (HD)
maps with LiDAR data to overcome this problem. The platform improves the process
of item recognition and categorization by adding HD maps, which offer comprehensive
information about the road network. The LiDAR system can more easily distinguish
between legitimate impediments and off-road areas thanks to HD maps’ comprehensive
road geometry data. By enhancing object identification precision and lowering false
positives and false negatives, this integration makes autonomous navigation safer and
more dependable. Another key idea is that to improve item recognition and classification
in the context of automated driving systems, it uses LiDAR’s abilities to capture exact 3D
information about the environment and integrate it with HD maps.

One major issue is the enormous variation in software versions, libraries and sup-
ported platforms, making it difficult to assemble and deploy these models correctly. Ad-
ditionally, self-driving requirements must be taken into consideration, such as the need
for operationalization with different modules and the limited computational resources
available in onboard systems.

Regardless, the 3D object detection models discussed in the literature take point clouds
as input and are known to be more complex. These models have a deeper pipeline and
process a more significant amount of data. For example, a point cloud usually comprises
between 100 k–120 k [3], where each point holds data related to the Euclidean distance and
signal reflection, that is, 128 bits to translate each information of each point.

The literature includes recent research such as [3,5–7]; it has been suggested that the
minimum operating requirements for self-driving applications should include an overall
class classification of at least 60 mAP and an inference time of less than 100 ms.

In this context, the need for a standardized and optimized framework for 3D object
detection based on LIDAR data becomes even more important. Such a framework could
simplify the deployment process, enable better interoperability across different systems
and facilitate the development of more efficient and effective self-driving systems.

Our Contribution

This paper aims to propose a general SoA representation framework for 3D object
detection from the point cloud. It supports multiple SoA 3D object detection methods with
highly refactored codes for both one-stage and two-stage methods. Also, it enables the
implementation and reusing of different approaches with less manual engineering effort
by proposing an abstract way of building object detectors. At the same time, it facilitates
the implementation of new methods in each module of the framework. By implementing
different SoAs, we are trying to facilitate a new approach for the scientific community.
In this way, it will be possible to offer a framework for real-time testing inference and
measure the trade-off between metrics (mAPvs inference time) in single-framework 3D
model objects applied to self-driving applications.

Therefore, the contributions proposed in this paper are as follows:

• An abstract framework for the implementation/representation of edges for 3D object
detection models using LIDAR data.

• Less engineer effort to implement new methods in different framework models.
• A simpler way to change hyperparameters and retrain models using YML files.
• An easily represented model using these YML files automatically.

The organization of this paper is as follows: In the next Section 2, some of the state-
of-the-art works related to 3D object detection systems and hardware platforms for their
implementation are presented. Section 3 shows a four-step method used to select, train and

Sensors 2023, 23, 6427 3 of 25

tune a deep learning model for deployment on a hardware device. Section 4 presents the
selected 3D object detection model, as well as its deep learning components, specifying the
details about the architecture of the target hardware device and the implementation of the
hardware components and software. The presentation of performance evaluation results,
comparison of results and discussion of these results occur in Section 7. Finally, Section 8
presents the main results achieved in this paper and future work.

2. Related Work

In recent years, object detection models in point clouds presented in the literature have
been highly improved, and higher and higher detection performance has been achieved.
Based on the literature, the most discussed models are divided into two broad categories:
approaches based on CNN 3D and approaches based on CNN 2D, where different data
representations, backbone networks and multiscale resource learning techniques can be
adopted [3].

When it comes to 3D object detection approaches, they can be classified into three
types. The first category is based on volumetric representation. The second is based on
pillars. Finally, the third is based on raw points. Furthermore, they are novel models
recognized by the scientific community that provide innovation in the diverse architecture
pipeline, as well as high accuracy and performance in 3D object detection.

The first category, which can be divided into one-stage or two-stage, is usually based
on the volumetric representation to discretise the point cloud. The one-stage representa-
tion only has a single stage, and SECOND [8] is an example. This 3D convolution-based
technique produces item class prediction, bounding box regression and orientation clas-
sification. The two-stage representation obtained the same results as the single stage but
fine-tuned the bounding box. Examples of two-stage representation are P-RCNN [9], Voxel-
RCNN [10] and PartA2 [11]. Usually, these methods require more resources in terms of
computing power because they either use the costly volumetric representation of the point
cloud or rely on computationally intensive 3D convolutions.

The second category of models fall under one-stage methods, and use 2D convolutions
in place of the computationally intensive 3D convolutions. PointPillars [12] is an example of
this approach. To decrease the high computational cost of handling 3D LiDAR data, these
models usually compress the data into a 2D projection or organize it into pillars [12]. While
these methods are quicker and suitable for real-time applications, they sacrifice detection
capabilities by losing some information. This highlights the trade-off between inference
time and accuracy.

The third category of methods, such as Point RCNN [13], utilizes a two-stage approach
based on raw point data and voxel representation to take advantage of their respective
benefits. In the first stage, the network uses voxel representation as input and performs
light convolutional operations, which results in a small number of high-quality initial
predictions. An attention mechanism effectively combines coordinate and indexed convo-
lutional features of each point in the initial forecast, maintaining both accurate localization
and contextual information. The second stage uses the fused feature of interior points to
refine the prediction [14].

Accurate object recognition in autonomous vehicles can be considerably improved
by utilizing shared visual data from numerous vehicles and infrastructure sensors. This
method can get beyond restrictions like occlusion and a narrow field of view by exchanging
information with nearby infrastructure and vehicles. Accurate vehicle position, velocity
and attitude information are essential to achieve this improvement [4].

The autonomous vehicle kinematics and dynamics synthesis can estimate a vehicle’s
side slip angle (SSA), which is an important vehicle state parameter in vehicle dynamics and
is based on a consensus Kalman filter. The kinematics and dynamics of the vehicle are very
nonlinear; yet, after linearization, the linear system may mimic them well. The vehicle state,
which consists of the vehicle’s position, velocity and attitude, is present in the linear system.
The first-order differential equation can simulate the vehicle kinematics and dynamics,

Sensors 2023, 23, 6427 4 of 25

determining how the vehicle state changes in the linear system. The consensus Kalman
filter-based SSA estimation approach can estimate the SSA accurately and robustly. Based
on a first-order differential equation, the technique estimates the SSA using the vehicle’s
kinematics and dynamics. The nonlinear SSA estimation approach is well approximated by
the linear system following linearization. The very accurate SSA estimate approach can
be utilized to enhance vehicle control and safety [4]. This method’s accurate estimation of
vehicle kinematics, including location, velocity and attitude, can considerably improve au-
tonomous cars’ ability to identify objects. The system may better comprehend the dynamics
and behavior of nearby automobiles, pedestrians and other objects in the environment by
adding this information into the object detection algorithms. As a result, object detection
becomes more accurate, especially in conditions when occlusion and a small field of view
present difficulties. So, autonomous vehicles can get over limitations like occlusion and
a small field of view by incorporating this information into object detection algorithms.
The precision of object identification and the general perception abilities of autonomous
vehicles are considerably improved by the precise estimation of vehicle kinematics.

Object detection in vehicle surrounding surroundings or remote sensing provide
distinct problems in comparison to natural scene picture detection. Specialized detection
techniques are needed in these domains to identify certain things of interest, such as cars,
people walking or tassels in UAV footage. The “YOLOv5-Tassel” method is one of the
many strategies being investigated by researchers to improve object detection performance
in these fields [15]. Improvements including architecture adjustments, data augmentation
methods and hyperparameter optimization are included in the YOLOv5-Tassel model.
These improvements aim to increase the reliability and precision of tassel detection in
UAV photography. The YOLOv5-Tassel model’s performance on a variety of datasets is
thoroughly evaluated by the authors, who also compare it to other detection techniques to
show how successful it is. The results of the tests show that YOLOv5-Tassel detects tassels
in UAV imagery with a high degree of accuracy. When comparing remote sensing with
object recognition in natural scenarios, object detection in remote sensing images is more
challenging because it calls for the detection of targets from different scenes. Although
there are a lot of remote sensing images, there are not as many of them labeled as there are
in a dataset of natural scenes, which makes it harder for training models to converge [16].

3. Methodology

To implement/represent the 3D object detection models based on deep learning in
the framework, we employed a three-step methodology, which is depicted in Figure 1.
(1) Firstly, a set of model architecture and hyperparameter specifications are defined in
different configuration files. These files define the specifications of the components of
each module in the framework (described in Section 4) as well as the training and test
specifications that are then used to build, train and test the object detectors. We chose
the models for 3D object detection based on a review of the existing literature, which is
outlined in Section 2 and elaborated further in [3]. The framework, described in Section 4,
was developed to facilitate the representation of any object detection model.

Once the object detector is built, it is subjected to a training and evaluation pipeline (2),
where various optimizations can be performed to enhance the accuracy metrics and fulfill
the inference time requirements. In our project, since different components need to operate
simultaneously, such as the SLAM algorithm and object detector, we define an overall mAP
of 60% and an inference time of less than 100 ms (metrics are always subject to trade-offs).
The training and evaluation step can be carried out by changing the training specification
in the respective model configuration. The concept behind defining the training and testing
parameters in these configuration files is to make it easier to modify them and subsequently
submit the object detector to the same training and evaluation pipeline. The pipeline was
executed on a server-side node with an Intel Core i9 processor, 64 GB of RAM and a Quadro
RTX 8000 GPU. Therefore, the proposed workflow follows an iterative process, where the
model is fine-tuned. The training and evaluation steps are repeated whenever necessary

Sensors 2023, 23, 6427 5 of 25

until they meet the requirements and satisfy the application requirements. The evaluation
and comparison process is carried out using KITTI benchmarks using the validation set on
the aforementioned server node. In conclusion, this workflow guarantees that the models
meet the application requirements and attain the highest possible accuracy. This procedure
identifies a group of potential object detection models for the subsequent step.

After completing step (2) workflow, a comparison phase of the resulting models
(step (3)) is conducted to select the model that can ensure a better balance between precision
and inference time. The subsequent section presents information on the architecture of
the framework, the chosen deep learning models and the parameters used in the fine-
tuning process.

Figure 1. Methodology for object detection model fine-tuning.

4. Framework for Representing 3D Object Detection Models

Our framework’s key innovation is that it facilitates the representation of any object
detector through YML configuration files that define their module specifications in each
framework component. Moreover, this framework, shown in Figure 2, aims to facilitate the
implementation and integration of new modules in each framework component to allow
for the comprehensive representation of the different state-of-the-art 3D object detectors.

Figure 2. Framework used for the implementation/representation of object detection models.

Sensors 2023, 23, 6427 6 of 25

The first component, (1) data representation, receives the set of points and discretizes
them in a set of data structures, such as pillars or voxels, or only passes the set of points
to be used by the middle extractor module (3). (2) The local feature encoder receives as
input these data structures—more specifically, the set of pillars or voxels—and encodes
and concatenates their features. Then, in the middle extractor (3), 3D and/or 2D backbones
extract features from local encoded features, which are used by the (4) detection head
to predict object class, bounding box offsets and direction (5). (4.1) This detection head
based on RPN can be assisted by two modules, a (4.2) point head module and (4.3) region
of interest (RoI) head module, which refines the predicted bounding box offsets and
orientation. (4.2) The point head module is composed of three networks: a point intrapart
offset head [11], a point-based segmentation head for keypoint segmentation [17] and
another point-based segmentation head based on [13]. The (4.3) RoiHead module is defined
for each state-of-the-art model based on their specificities, but typically it is composed of
a proposal layer, which proposes a set of RoIs, a RoI feature extraction that pools the RoI
features and a RoI head that predicts RoI class and bounding box offsets.

4.1. Point Cloud Data Representation

We receive an unordered set of points PC = {p1, p2, p3 · · · pn}, where n > 0 and each
point p is represented as (px, py, pz, pr), where px, py and pz correspond to coordinates in the
three-dimension Cartesian axis and pr is the reflectance value provided by the LiDAR sensor.
A point cloud range PCR is a tuple (L, H, W), where L consists of (xmin, xmax), H consists
of (ymin, ymax) and W consists of (zmin, zmax). We denote a point cloud subset with respect
to PCR as PCR = {pi : pi ∈ PC, xmin ≤ px

i ≤ xmax, ymin ≤ py
i ≤ ymax, zmin ≤ pz

i ≤ zmax}.

4.1.1. Pillar Representation

The framework receives the points in PCR and discretizes them in the X–Y axis, thus
creating a set of pillars PLp = {pl1, pl2, pl3, · · · , PLp}, where p = mp, mp is the max
number of pillars and mp ∈ N+. Each PLp has a fixed size in PCR, and it is represented
by a tuple SPLp = (w, h), where w is the width of the pillar along the x axis, and h is the
height of the pillar along the y axis. The points are grouped accordingly with the pillar
that resides.

To deal with the sparsity problem and save computation, a max number of points per
pillar NP is defined. The points are randomly sampled if the number of points in each
pillar is higher than NP. On the other hand, zero padding is added in cases of less than
NP points.

4.1.2. Voxel-Based Representation

The voxelization process assumes a similar way as proposed in pillar discretization;
however, the received points are discretized in the X–Y–Z axis. It allows for the creation
of a set of voxels VLj = {vl1, vl2, vl3 · · · vlj}, where j = mv, mv means the max number of
voxels and mv ∈ N+, and each VLj assumes a fixed size in PCR; and a tuple represents
SVLj = (w, h, d). w is the width of the voxel along the x axis, h is the height of the voxel
along the y axis and d is the depth of the voxel along the z axis.

A random sampling strategy is also applied to save computation, and a max number
of points per voxel NV is also used. The strategy to sample points or apply zero padding is
the same as the pillar representation.

4.1.3. Point-Based

The idea in the point-based strategy is to pass the cropped point cloud, herein denoted
as PCR, to the middle feature encoder.

4.2. Local Feature Encoder

The local feature encoder receives the data representation structures DS, such as
pillars, denoted as PL; voxels, VL; or just the set of points of cropped area, PCR. Then,

Sensors 2023, 23, 6427 7 of 25

a set of methods are applied to obtain features and produce dense tensors in the case of
pillar feature network (PFN) and voxel feature encoder (VFE) or calculate these features by
simply calculating the mean values of point coordinates within each voxel using the mean
VFE method.

4.2.1. Pillar Feature Network

The features of each pillar, PL, are augmented in a tensor D = (x, y, z, r, xc, yc, zc, xplc,
yplc), where c describes the distance to the arithmetic mean of all points in PL, and plc is
the offset distance from the Plx,y center.

For this purpose, (1) the pillar feature network (PFN) receives the pillar augmented
features as input and applies linear transformations to each point, herein described as
linear(Plin) = Plout, where Plin corresponds to the initial tensor Plin = (P, N, Din), and
Plout to the output tensor. In Plout, all but the last dimension are the same shape as the
input. Dimension Dout results from the linear transformation of Din, thus producing
Plin = (P, N, Dout). Then, batch-norm and ReLU are applied to this tensor. Afterwards, all
resulting features are aggregated. This process allows for the generation of a dense tensor
to represent the pillar as a tuple (D, P, N), where D is the above-mentioned augmented
point, P is the number of non-empty pillars per batch and N is the number of points per
pillar. Next, max pooling operations over the channels are used to generate a tensor of size
(Dout, P).

4.2.2. Voxel Feature Encoder

Similar to PFN, the points in each voxel, VLj = {pti = (xi, yi, zi, ri) ∈ R4}, i =
{1, 2, . . . , NV}, are augmented by calculating offset distance of the point to the VLx,y,z center,
herein denoted as vlc, which generates the tensor VLj = {pti = (xi, yi, zi, ri, xvlc, yvlc, zvlc) ∈
R7}, i = {1, 2, . . . , NV}, where NV as mentioned before is the max number of points per
Voxel. Afterwards, each pti is subject to VFE layers VFELl , where l ≥ 1. Each VFELl
is composed by a set of transformations, where linear transformation, batch-norm and
ReLU are applied. Then, all points features of VLj resulting from the above-mentioned
transformations, herein described as p f j, are aggregated. Each p f j can be described as
p f j ∈ Rout, where out is the output dimension that results from the linear transformation of
all points pti. The output size out resulting from the linear transformation can be described
as outl = Fo/2, where Fo = { f1, f2, . . . , fo}, Fo ∈ N+ means the output features of a specific
VFEL index l. Then, all point features PF, p f j ∈ PF are subject to a max pooling operation
over the channels. The output tensor is described as p f rm ∈ Rout, where m = 1. Afterwards,
a repeat process of the above tensor is performed repeat(p f r, k) in VLj, which means the
repeat point feature resulted from max pooling k times, where k = {1, 2, 3, . . . , NV}. Each
p f rk is augmented with p f j to generate p f oj = (p f rk, p f j) ∈ R2out, k = {1, 2, . . . , NV} and
j = {1, 2, . . . , NV}. The set of features for each voxel can be described by the tuple VLout =
{VLj = stack(p f oj)}, where j = {1, 2, 3, . . . , NV}, stack = (p f o1 × p f o2 × . . . p f oj), and
applies linear, batch-norm, ReLU and max pooling to each VLj. Thus, VLj ∈ RF means
that VLj has the output dimension F, the output feature of the last VFE layer.

Finally, it generates a list of obtained voxel features VLAout, VLAout = {VLj =

{vl1, vl2, . . . , vlj}, VLj ∈ RF, F = fo, where VLAj is the above-mentioned augmented
features of all voxels.

4.2.3. Mean Voxel Feature Encoder

Mean VFE receives a set of voxels VL, sums all points residing in each voxel in a
specific axis and divides by the number of points of each one. This operation can be
described as VLMout , {mean(vlj)

mv
k=0 = {pt fi = (∑(ptx)nv

i=1 | count(ptx) , ∑(ptyi)
nv
i=1 |

count(pty) , ∑(ptzi)
nv
i=1 | count(ptz) , ∑(ptri)

nv
i=1 | count(ptr)) ∈ R4}}, k = [0, NV[,

count(ptx) → ptx ∈ vlj, count(pty) → pty ∈ vlj, count(ptz) → ptz ∈ vlj, count(ptr) →
ptr ∈ vlj. nv corresponds to the total number of points of the voxel vlj ∈ VL in a given
axis; mv the max number of voxels; and pt fi ∈ VLPF corresponds to a resulting point. This

Sensors 2023, 23, 6427 8 of 25

strategy considers the voxel-wise features of a new voxel center VLx,y,z,r and approximate
equivalence to raw point cloud data. The idea herein is to process the voxel-wise features
in the middle feature encoder more efficiently, especially by the 3D sparse convolutions,
since they generate mv (max number of voxels, as described in Section 4.1) number of
non-empty voxels.

4.3. Middle Feature Extractor

The (3) middle feature extractor is responsible for extracting more features from the (2)
local feature encoders to provide more context for the shape description of objects for the
networks of the detection head module. Various methods are used; herein, we separated
them into 3D backbones and 2D backbones, which will be described in more detail below.

4.3.1. Backbone 3D

A variety of methods resort to 3D backbones using the sparse CNN component. Also,
models can use a voxel set abstraction 3D backbone, aiming to encode the multiscale
semantic features obtained by sparse CNN to keypoints. Others use PointNet++ with
multiscale grouping for feature extraction and to obtain more context to the shape of
objects, and then pass these features to the (4) detection head module.

3D Sparse Convolution
The 3D sparse convolution method receives the voxel-wise features of VFE, VLAout or

mean VFE, VLMout.
This backbone is represented as a set of blocks BLC, in the form {blc1, blc2, . . . blcm},

where m = 6. Each block blcj ∈ BLC, j = m can be defined by a set of sparse sequential
operations denoted as SSQs = {ssq1, ssq2, ssq3, . . . ssqs}, s ≥ 1. Each SSQs is described
by ((SuM→ ¬SpC) ∨ (SpC → ¬SuM)), Bn, RL), where SuM means submanifold sparse
convolution 3D [18], SpC means spatially sparse convolution 3D [19], Bn means 1D batch
normalization operation and RL represents the ReLU method. The last method assumes
the standard procedure, as mentioned in [20].

In our framework, the set of blocks assumes the following configurations:

• The input block blc1 can be described by blc1 = {sq1 = (SuM, BN, RL)};
• The next block is represented in the form blc2 = {sq1 = (SuM, BN, RL)};
• The block 3 is represented as blc3 = {sq1 = (SpC, BN, RL), sq2 = (SuM, BN, RL),

sq3 = (SuM, BN, RL)};
• The block 4 is denoted as blc4 = {sq1 = (SpC, BN, RL), sq2 = (SuM, BN, RL),

sq3 = (SuM, BN, RL)};
• The block 5 is denoted as blc4 = {sq1 = (SpC, BN, RL), sq2 = (SuM, BN, RL),

sq3 = (SuM, BN, RL)};
• The last block is defined by blc6 = {sq1 = (SpC, BN, RL)}.

The batch normalization Bn element is defined by (InB, ep, mn), which represents
the formula in [21]. InB represents the input features, which are the output features
of submanifold sparse or spatially sparse convolutions 3D, so that (OutS → ¬OutM ∨
OutM→ ¬OutS). ep represents the eps, and mn the momentum values. These values are
defined in Table 1.

Table 1. Values used in Bn.

Bn Element Value

ep 0.001
mn 0.01

The element SpC can be represented as (InS, OutS, KsS, StS, PdS, DlS, OpS). InS
represents the input features of SpC, and it is denoted as SpC ∈ N+, InS = OutM, where
OutM represents the output features of submanifold sparse Conv3D. The element OutS
represents the output features resulting from applying SpC. KsS means kernel size of a

Sensors 2023, 23, 6427 9 of 25

spatially sparse convolution 3D, and it is denoted as KsSs = {KsS1, KsS2, KsSs}, where
s = {1, . . . , 3}, KsSs ∈ N+ and ksSs = ksSs+1. The stride StS can be described as a set
StSr = {sts1, sts2, stsr}, r = {1, . . . , 3}, StSr ∈ N+ and stsr = stsr+1. PdS designates
padding, and a set can define it PdSv = {pds1, pds2, pdsv}, v = {1, . . . , 3}, Pdv ∈ N+,
pdsv = pdsv+1. DlS means dilation, and can be defined as a set DlSl = {dls1, dls2, dlsl},
l = {1, . . . , 3}, DlSl ∈ N+, dlsl = dlsl+1. The output padding OpS is represented as a in
the form OpSa = {ops1, ops2, opsa}, a = {1, . . . , 3}, OpSa ∈ N+ and opsa = opa+1. The
configurations used in our framework are represented in Table 2.

Table 2. Configurations used in SpC for each element.

SpC Element Value

KsSt 3
StSr 1
PdSv 1
DlSl 1
OpSa 0

SuM is represented by (InM, OutM, ksM, StM, PdM, DlM, OpM) [18]. InM represents
the input features passed by (2) the local feature encoder or by the last sparse sequential block
Sqs, and OutM represents the output features of SuM. Thus, InM ∈ N+, InM = 4 in the case
of the local encoder being mean VFE, otherwise In = F, where F represents the output features
of the VFE network. Also, InS can be represented by InM = OutM and InM = OutS, where
OutS represents the output features of a SpC. The element Ks represents the kernel size,
which can be defined as Kst = {ks1, ks2, kst}, where t = {1, . . . , 3}, Kst ∈ N+ and kst =
kst+1. StM means stride, and can be defined as a set Str = {st1, st2, str}, r = {1, . . . , 3},
Str ∈ N+ and str = str+1. PdM represents padding, and a set can describe it in the form
Pdp = {pd1, pd2, pdp}, p = {1, . . . , 3}, Pdp ∈ N+, pdp = pdp+1. Dl means dilation, and
can be described as a set Dld = {dl1, dl2, dld}, d = {1, . . . , 3}, Dld ∈ N+, dld = dld+1. Op
represents the output padding, and a set describes it in the form Opu = {op1, op2, opp},
u = {1, . . . , 3}, Opu ∈ N+ and opu = opu+1. The configurations used in our framework are
represented in Table 3.

Table 3. Configurations used in SuM and SpC for each block. N.A.—not applicable.

SuM Element InS OutS InM OutM Ks St Pd Dl Op

blc1 ∧ sq1→ SuM N.A. N.A. 4 16 3 1 1 1 0

blc2 ∧ sq1→ SuM N.A. N.A. 16 16 3 1 0 1 0

blc3 ∧ sq1→ SpC 16 32 N.A. N.A. 3 2 1 1 0
blc3 ∧ sq2→ SuM N.A. N.A. 32 32 3 1 0 1 0
blc3 ∧ sq3→ SuM N.A. N.A. 32 32 3 1 0 1 0

blc4 ∧ sq1→ SpC 32 64 N.A. N.A. 3 2 1 1 0
blc4 ∧ sq2→ SuM N.A. N.A 64 64 3 1 0 1 0
blc4 ∧ sq3→ SuM N.the A. N.A. 64 64 3 1 0 1 0

blc5 ∧ sq1→ SpC 64 64 N.A. N.A. 3 2 0 1 0
blc5 ∧ sq2→ SuM N.A. N.A. 64 64 3 1 0 1 0
blc5 ∧ sq3→ SuM N.A. N.A. 64 64 3 1 0 1 0

blc6 ∧ sq1→ SpC 64 128 N.A. N.A. 3 2 0 1 0

The hyperparameters used in each blcj are defined in Table 7.
Finally, the output spatial features SP are defined by SP ∈ R, where SP is defined by a

tuple (B, C, D, H, W). B represents the batch size; C the output features of blc5 represented
in SpC as OutS; D depth; H height; and W width.

Sensors 2023, 23, 6427 10 of 25

PointNet++
We use a modified version of PointNet++ [9] based on [13] to learn undiscretized

raw point cloud data (herein denoted as PCR) features in multiscale grouping fashion.
The objective is to learn to segment the foreground points and contextual information
about them. For this purpose, a set abstraction module, herein denoted as SAM, is used to
subsample points at a continuing increase rate, and a feature proposal module, described
as FPM, is used to capture feature maps per point with the objective of point segmentation
and proposal generation. A SAM is composed of SAM = {ptn1, ptn2, · · · , ptng}, g ∈ N+,
g = {1, 2, · · · , 4}, where ptn means PointNet set abstraction module operations. Each
ptng ∈ PTN is represented by (QGL, ML), where QGL corresponds to query and grouping
operations to learn multiscale patterns from points, and ML is the set of specifications of
the PointNet before the global pooling for each scale.

QGL means ball query operation QL followed by a grouping operation GL. It can
be defined by the set {qgl1, qgl2}, where qgl1 and qgl2 correspond to two query and
group operations. A ball query QL is represented as (R, NS, P , CP), where R means
the radius within all points will be searched from the query point with an upper limit
NS, NS ∈ N+, in a process called ball query; P means the coordinates of the point fea-
tures in the form PF = {p fn = (xn, yn, zn,) ∈ R3}, n ∈ N that are used to gather the
point features; CP represents the coordinates of the centers of the ball query in the form
CP = {cpp = (xcp, ycp, zcp) ∈ R3}, p ∈ N+, p ≤ n, p = {1, 2, · · · , 4}, where xc, yc, and zc
are center coordinates of a ball query. Thus, this ball query algorithm searches for point fea-
tures P in a radius R with an upper limit of NS query points from the centroids (or ball query
centers) CP. This operation generates a list of indices ID in the form {id1, id2, · · · , idx},
x ≥ 1, idx ∈ ID, idx ∈ NNCP×NS, where NCP corresponds to the number of CP. ID
represents the indices of point features that form the query balls. Then, a grouping
operation GL is performed to group point features, and can be described by (PF, ID),
in which PF and ID correspond to point features and indices of the features to group
with, respectively. In each QGL of a ptn, the number of centroids NCP will decrease,
so that NCPp > NCPp+1, p = {1, 2, · · · , 4}, NCP ∈ N+, and due to the relation of the
centroids in ball query search, the number of indices NID and corresponding point fea-
tures will also decrease. Thus, in each ptn, the number of points features is defined by
NPn > NPn+1, NPn+1 = NCPp, p > 1. The number of centroids defined in QGL during
ptn operations is defined in Table 4.

Table 4. Configurations used in NCP for each element.

NCP Element Value

ncp1 4096
ncp2 1024
ncp3 256
ncp4 64

Afterwards, an ML is performed, defined by a set of specifications of the PointNet
before the QGL operations. The idea herein is to capture point-to-point relations of the
point features in each CP local region. The point feature coordinate translation to the
local region relative to the centroid point is performed by the operation LR = { f r f =

(px f − xc f , py f − yc f , pz f − zc f) ∈ R3}, f = {1, 2, · · · , NS}. px, py and pz are coordi-
nates of point features PF as mentioned before, and xc, yc and zc are coordinates of the
centroid center. ML can be defined by a set SQ = {sq1, sq2} that represents two sequential
methods. Each SQ is represented by the set of operations OP = {ops = (C2D , Bn2D, RL)},
s = {0, 1, · · · , 3}, where C2D means convolution 2D, Bn2D 2D batch normalization and
RL represents the ReLU method. C2D is defined by (InC2D, OutC2D, KsC2D, SC2D).
InC2D, where InC2D ∈ N+ represents the input features that can be received by QGL or
by the output features OutC2D, OutC2D ∈ N+ of the ops−1, KsC2D the kernel size, and

Sensors 2023, 23, 6427 11 of 25

SC2D represents the stride of the convolution 2D. The kernel size KsC2D is defined by the
set {ksc2d1, ksc2d2}, ksc2d1 = ksc2d2 and ∀ops ∈ SQ, SQ ∈ ML, ML ∈ PTN, ksc2d1 = 1.
Also, the stride SC2D is represented by a set {sc2d1, sc2d2}, sc2d1 = sc2d2 and sc2d1 = 1,
with ∀ops ∈ SQ, SQ ∈ ML, ML ∈ PTN. The set of specifications used in our models
regarding OP are summarized in Table 5. ptni ∈ PTN can be defined as:

PTN , {ptni = max(ML(SG(p fi)))}, (1)

where max denotes max pooling, SG denotes random sampling of p fi features and ML
denotes the multilayer perceptron network to encode features and relative locations.

Table 5. Set of configurations used in OP of a specific SQ of the ML element in a specific PTN.

NCP Element InC2D OutC2D

op1 ∧ sq1 ∧ ptn1 4 16
op2 ∧ sq1 ∧ ptn1 16 16
op3 ∧ sq1 ∧ ptn1 16 32
op1 ∧ sq2 ∧ ptn1 4 32
op2 ∧ sq2 ∧ ptn1 32 32
op3 ∧ sq2 ∧ ptn1 32 64

op1 ∧ sq1 ∧ ptn2 99 64
op2 ∧ sq1 ∧ ptn2 64 64
op3 ∧ sq1 ∧ ptn2 64 128
op1 ∧ sq2 ∧ ptn2 99 64
op2 ∧ sq2 ∧ ptn2 64 96
op3 ∧ sq2 ∧ ptn2 96 128

op1 ∧ sq1 ∧ ptn3 259 128
op2 ∧ sq1 ∧ ptn3 128 196
op3 ∧ sq1 ∧ ptn3 196 256
op1 ∧ sq2 ∧ ptn3 259 128
op2 ∧ sq2 ∧ ptn3 128 196
op3 ∧ sq2 ∧ ptn3 196 256

op1 ∧ sq1 ∧ ptn4 515 256
op2 ∧ sq1 ∧ ptn4 256 256
op3 ∧ sq1 ∧ ptn4 256 512
op1 ∧ sq2 ∧ ptn4 515 256
op2 ∧ sq2 ∧ ptn4 256 384
op3 ∧ sq2 ∧ ptn4 384 512

Finally, a feature proposal FPM is applied employing a set of feature proposal modules
{ f p1, f p2, · · · , f pm}, m = {1, 2, · · · , 4}, m ∈ N+. Each f pm ∈ FPM is defined by the
element SQ as defined above. Also, the element SQ assumes a set {sq1, sq2}, and each SQ
has the same operations, with the only difference in the element s that describes the number
of operations, assuming s = {1, 2} instead of s = {1, 2, 3}. The configurations used in our
models are summarized in Table 6.

Sensors 2023, 23, 6427 12 of 25

Table 6. Set of configurations used in OP of a specific SQ in a specific FPM.

NCP Element InC2D OutC2D

op1 ∧ sq1 ∧ f p1 257 128
op2 ∧ sq2 ∧ f p1 128 128

op1 ∧ sq1 ∧ f p2 608 256
op2 ∧ sq2 ∧ f p2 256 256

op1 ∧ sq1 ∧ f p3 768 512
op2 ∧ sq2 ∧ f p3 512 512

op1 ∧ sq2 ∧ f p4 1536 512
op2 ∧ sq2 ∧ f p4 512 512

Voxel Set Abstraction
This method aims to generate a set of keypoints from given point cloud PCR and use

a keypoint sampling strategy based on farthest point sampling. This method generates
a small number of keypoints that can be represented by K , {pj = (xj, yj, zj) ∈ RB∗3},
j = [1, NK], where NK is the number of points features that have the largest minimum
distance, and B the batch size. The farthest point sampling method is defined accord-
ing to a given subset PA , {paj = (xaj, yaj, zaj)}, j = {1, 2, · · · , M}, PA ⊂ PF, where
M is the maximum number of features to sample, and subset PB , {pbk(xbk, ybk, zbk)},
k = {0, 1, 2, . . . , N}, PB ⊆ PF, where N is the total number of points features of PF; the
point distance metric is calculated based on D , {di = {(xbk − xaj)

2 + (ybk − yaj)
2 + (zbk −

zaj)
2)}}, i ≤ M. Based on D, an operation SM , {smk = {min(di, smi−1)}}, k ≤ M, i ≤ N

is performed, which calculates the smallest value distance between di and smi−1. smk ∈ SM,
k < N and SM represent the list of the last known largest minimum distances of point features.
Assuming smk = smi−1 | di < smi−1, it returns the index IDX = {idxk = (i− 1)},. Based on
smk = {di | di > smi−1}, thus IDX = {idxk = (i)}. Finally, this operation generates a set of
indexes in the form IDX , {idx0, idx1, . . . , idxm}, idxm ∈ IDX, m ≤ M, and IDX ∈ RB∗M,
where B corresponds to the batch size and M represents the maximum number of features to
sample. The keypoints K are given by K , {p fidx0 , p fidx1 , · · · , p fidxm}

These keypoints K are subject to an interpolation process utilizing the semantic features
encoded by the 3D sparse convolution as SP. In this interpolation process, these semantic
features are mapped with the keypoints to the voxel features VL that reside. Firstly,
this process defines the local relative coordinates of keypoints with voxels VL by means

VLI , {vlii = (
(kxi−PCRxmin

)

vlxk
,
(kyi−PCRymin

)

vlyk
) ∈ R2}, k = [0, NK[, i = [0, NV[. Then, a

bilinear interpolation is carried out to map the point features SP from 3D sparse convolution
in a radius R with the VLB, the local relative coordinates of keypoints. This is perform
PR , {∀sp ≤ R, sp ∈ SP | R = (xr, yr) ∈ R2, spi = (pfxi, pfyi)}, i = [0, NK[. Afterwards,
indexes of points are defined according to vlia ∈ VLI | vliai = vlii in the form (xa, ya) and
another vlib , (xb = (xa + 1), yb = (ya + 1)). The expression that gives the features spi
from the BEV perspective based on vlia and vlib is the following:

• SBEVA , (spvliax, spvliay)

• SBEVB , (spvlibx, spvliay)

• SBEVC , (spvliax, spvliby)

• SBEVD , (spvlibx, spvliby)

Thus, the weights between these indexes vliai, vlibi and vlii are calculated, as follows:

• WA , {(vlixi − prxi)× (vliyi − vliyi)};
• WB , {(vlixi − prxi)× (vliyi − vliyai))}
• WC , {(vlixi − praxi)× (vlibyi − vliyi))}
• WD , {(vlixi − praxi)× (vliyi − vliayi))}

Sensors 2023, 23, 6427 13 of 25

Finally, the bilinear expression that gives the features spi from the BEV perspective is
PFBEV , (sbevai ∗ wai) + (sbevbi ∗ wbi) + (sbevci ∗ wci) + (sbevdi ∗ wdi), where sbevai ∈
SBEVA, sbevbi ∈ SBEVB, sbevci ∈ SBEVC, sbevdi ∈ SBEVD. Also, wai ∈ WA, wbi ∈ WB,
wci ∈WC, wdi ∈WD, and i = [0, NV[.

The local features of p f bevj ∈ PFBEV are indicated by vlbi =| vlk − spi |, k = [0, NK[,
i = [0, NV[and aggregated using PointNet++ according with their specification defined
above. They will generate PTN, which are voxel-wise features within the neighboring voxel
set vlii of spi, transforming using PointNet++ specifications. This generates ptni ∈ PTN
according to PTN , ptni = ptn0, ·, ptnNK, and each ptni is an aggregate feature of 3D
sparse convolution spi with p f bi from different levels according to Table 4.

4.3.2. Backbone 2D

Two-dimensional backbones are used to extract features from 2D feature maps result-
ing from a PFN component, such as those used by PointPillars, and to readjust the objects
back to LiDAR’s Cartesian 3D system with minimal information loss utilizing a backbone
scatter component. Also, models can compress the feature map of 3D backbones into a
bird’s-eye view (BEV) feature map employing a BEV backbone and use an encoder Conv2D
to perform feature encoding and concatenation. Such methodology is employed by models
such as by SECOND, PV-RCNN, PartA2 and Voxel-RCNN.

Backbone Scatter
The features resulting from the PFN are used by the PointPillars scatter component,

which scatters them back to a 2D pseudoimage of size (Dout, H, W), where H and W denote
height and width, respectively.

BEV Backbone
The BEV backbone module receives 3D feature maps from 3D sparse convolution

and reshapes them to the BEV feature map. Admitting the given sparse features SP ,
(B, C, D, H, W), the new sparse features are (B, C × D, H, W). The BEV backbone is rep-
resented as a set of blocks BLC, in the form blc1, blc2, . . . blcm, where m ≥ 1. Each block
blcj ∈ BLC, j ≤ m, is represented by (n, F, U, S). The element n represents the number of
convolutional layers in BLCj. The set of convolutional layers C in BLCj is described as a set
{c1, c2, c3. . . cn}, where n ≥ 1. F represents the number of filters of each ci ∈ C, i ≤ n, U is
the number of upsample filters of ci. Each of the upsample filters has the same characteris-
tics, and their outputs are combined through concatenation. S denotes the stride in c1. If
S > 1, we have a downsampled convolutional layer (c1). There are a certain convolutional
layers (ci, such that i > 1) that follow this layer. batch-norm and ReLU layers are applied
after each convolutional layer.

The input for this set of blocks BLC is spatial features extracted by 3D sparse convolu-
tion or voxel set abstraction modules and reshaped to the BEV feature map.

Encoder Conv2D
Based on features extracted in each block blcj and after upsampling based on U = 2D,

where D means the downsample factor of the convolution layer C, the upsample features uj ∈
U,
j = [0, m[are concatenated, such that UF , cat(uj), where cat means uj + uj+1, j = [0, m[.

4.4. Detection Head

After that, the (4) detection head component receives the 2D encoded features as input
and performs operations based on three modules: RPN head, point head, and RoI head.

4.4.1. RPN Head

Based on the 2D encoded features, a set of convolutions to predict class labels, re-
gression offsets and direction are performed. Thus, a set of 1 × 1 convolutions C1x =
{c1x1, c1x2, · · · , c1xk}, where k = 3, is applied. Each c1xk can be represented by C2D ,
(IC, OC, KS), where C2D means convolution 2D, IC input channels, OC output chan-
nels and KS kernel size. c1x1 is the class prediction convolution, and can be described by

Sensors 2023, 23, 6427 14 of 25

(UF, NA×NC, 1), where NA means number of anchors per location and NC number of tar-
get classes to predict. c1x2 is the convolution for bounding box offset regression, and can be
defined by (UF, NA× NC× 7, KS), where it generates two anchors NA for each class NC
and seven bounding box offsets. Finally, c1x3 is performed based on (UF, NA× NB, KS)
where NA represents the same number of anchors per location, as previously mentioned;
NB represents the number of bins per anchor location; and KS represents kernel size.

The figure representing our baseline network for each block can be seen in Figure 2.
We use three blocks with a BEV backbone for PointPillars, while for the other models, we
use two blocks. Each block is represented as described in Table 7. Table 8 describes the
configuration of the RPN head.

Table 7. The different block configuration (blcj ∈ BLC) used. N.A.—not applicable.

Models blc1 blc2 blc3

PointPillars (3, 64, 128, 2) (5, 128, 128, 2) (5, 128, 128, 2)
SECOND (5, 64, 128, 1) (5, 128, 256, 2) N.A.
PV-RCNN (5, 64, 128, 1) (5, 128, 256, 2) N.A.

PointRCNN N.A. N.A. N.A.
PartA² (5, 128, 256, 2) (5, 128, 256, 2) N.A.

VoxelRCNN (5, 128, 256, 2) (5, 128, 256, 2) N.A.

Table 8. The different RPN configurations (c1xk ∈ C1x) used. N.A.—not applicable.

Models c1x1 c1x2 c1x3

PointPillars (512, 18, 1) (5, 128, 128, 2) (5, 128, 128, 2)
SECOND (512, 18, 1) (512, 42, 1) N.A.
PV-RCNN (512, 18, 1) (512, 42, 1) N.A.

PartA² (512, 18, 1) (512, 42, 1) N.A.
VoxelRCNN (5, 128, 256, 2) (5, 128, 256, 2) N.A.

4.4.2. Point Head

Different implementations of point head have been proposed to refine RPN predic-
tions or generate class labels, bounding box regression offsets and direction. It can be
composed of a class layer regression CR in the form CR , linear(IN, OT) and bound-
ing box layer BBR described as PR , linear(IN, OT). The point class layer CR pro-
vides the segmentation score of foreground points, and PR gives the relative location of
foreground points as PR , {prp = (x f , y f , z f)} and calculated based on a foreground

point f pp = (xp, yp, zp) using {(xt =
(xp−xc)

w + 0.5, yt=(yp−xc)
l + 0.5, zt = { (zp−zc)

h +
0.5}, (cos(θ)p − cos(θ)c, sin(θ)p − sin(θ)c))}, where xc, yc, zc are center coordinates of the
bounding box; h, w, and l means height, width and length of the bounding box, respectively;
and θ is the box orientation in bird view.

Firstly, bounding box targets are normalized in a canonical coordinate system by
first checking if the given points PT , pi = (xi, yi, zi), PT ∈ bbk are within the bounding
box bbk , (xci, yci, zci, dxi, dyi, dzi, θi) by performing ((|xi−xck |

2 + 0.00001| | xi − xck |<
dxi & |yi−yck |

2 + 0.00001| | yi − yck |< dyi), where if the given statement is true, the local lxni
and lyni are calculated. The operation is lxni = ((xi − xck)× (cos(−θi))) + ((yi − yck)×
(−sin(−θi))) and lnyi = ((xi − xck)× (sin(−θi))) + ((yi − yck)× (cos(−θi))). Then, we
determine the local relative coordinate of pi concerning bounding box bbk in X–Y by
means lri = ((xi − xck)× (cos(−θi))) + ((yi − yck)× (−sin(−θi))), lyni = ((xi − xck)×
(sin(−θi))) + ((yi − yck)× (cos(−θi))), and then determine if a point belongs, and return
the respective index to bounding box by (�(lnxi <

dxi
2 + 0.00001∨ lnyi

2 + 0.00001 < dyi)→
id = i,. After obtaining the points indexes within the bounding boxes, all inside points are
aggregated with PointNet++.

Sensors 2023, 23, 6427 15 of 25

Point Intrapart Offset
This consists of both CR and PR to predict point class labels and point bounding box

offsets.
Point Head Simple
This is only composed of CR. However, it has modifications to its architecture CR ,

{cr1, cr2, cr3}, where each cr is represented by a tuple (LR, BN, RL), where LR means linear
regression, BN means batch normalization and RL means the ReLU method. BN can be
defined by (NF), where NB means the number of features, and typically assumes the same
value as OT.

Point Head Box
This is composed of CR and PR with architecture modifications. CR{cr1, cr2} where

CR , (LR, BN, RL) where LR means linear regression, BN means batch normalization and
RL means the ReLU method. PR is composed of PR , {pr1, pr2}, where each pr is defined
by the same tuple (LR, BN, RL).

4.4.3. RoI Head

The regions of interest (RoI) head is responsible for taking the RoI features of each
box proposal of the RPN Head and then optimizing the imperfect bounding box proposals
by predicting and fixing the size and location (centre and orientation) residuals relative
to the input bounding box predictions. Besides each model’s specificities, any RoI head
is composed of a proposal layer that generates/refines a set of RoIs based on RPN RoIs,
denoted as PL; an RoI feature extraction method RF; and a head module HM that can be
composed but not restricted to the shared fully connected layer SFC, up–down layer UL
and DL, class layer CL, regression layer RL, RoI point pool 3D layer (RoIPL), RoI grid pool
layer (RoIGL), RoI-aware pool 3D layer (RoiAP3D) and a convolution part (CnvP) and
convolution RPN (CnvRPN).

SFC is responsible for feature extraction and can be defined by a set {s f c0, · · · s f c f },
f = [0, 2[, and s f c f ∈ SFC and s f c f are represented by a tuple (C1D, BN1D, RL, DRO),
where C1D means convolution 1D, BN1D means batch normalization 1D, RL means ReLU
and DRO means dropout. CL can be defined by the set {cl0, · · · , clc}, c = [0 , 2[and each
clc by (C1D, BN1D, RL, DRO). RL produces box predictions and is composed by the set
{rl0, · · · , rlr}, r = [0, 2[, where each rlr is defined by (C1D, BN1D, RL, DRO). DL and UL
mean bottom-up box generation proposal layers from foreground points. A sequence of
convolution 2D and ReLU methods can define the DL. A UL is represented as ul1, ul2 and
each ul by the same sequence of convolution 2D and ReLU methods.

RoIPL are specifically pool 3D points and their corresponding point features according
to the location of each 3D proposal of PL. Admitting the given output of bounding boxes
BB and a specific bounding box bbn ∈ BB, where BB , {bbn = (xn, yn, zn, hn, wn, ln, θn)},
where x, y, z are center coordinates of the predicted bounding box, h, w, and l denote the
height, width and length of the bounding box, and θ denotes the orientation of the bounding
box. Herein, the ROIPL produces an enlarged set of bben ∈ BBE that can be defined by
(xn, yn, zn, hn + η, wn + η, ln + η, θn), where η represents a constant value to resize the
bounding box. The depth information loss for each bounding box proposal is compensated
by including the distance information to the LiDAR sensor to the u fp ∈ UF that are BEV

spatial features. Each u fp is augmented with db ,
√
(xp − xc)2 + (yp − yc)2 + (zp − zc)2,

db ∈ D, where xp, yp, and zp correspond to coordinates of point features of the local encoder
module and xc, yc and zc are the center coordinates of the LiDAR sensor. Thus, it generates
a tensor in the form (VLMout, D) that is fed to PointNet++, as described in Section 4.3.1, to
encode the augmented tensor with local features with global semantic BEV features UF.
This generates a feature vector for confidence classification and box refinement.

The idea of RoIGL is to aggregate the keypoint features to the RoI grid points with
multiple receptive fields. Grid points are uniform sampling, and can be described by
GP , {gp1, gp2, · · · , gps}, s = 216, which means that a grid 6× 6× 6 is usually adopted.
Firstly, the identification of neighboring keypoints to grid gpi in a radius R is performed

Sensors 2023, 23, 6427 16 of 25

by means GF , {∀p ≤ r, p ∈ K | R = (xr, yr, zr) ∈ R3, pj = (pxj , pyj, pzj) ∈ R3 | gps =

(gpxj , gpyj, gpzj) ∈ R3| ‖ pj − gps ‖2}, i = [0, NK[. After all, a PointNet block is used to
aggregate the neighboring keypoint set GF in the same way as Equation (2):

PTN , {ptni = max(ML(SG(g fi)))} (2)

Then, the two MLP layers, SFC(PTN) and SC(PTN), are performed.
RoIAP3D aims to provide bounding box score confidence and refinement by aggregat-

ing the local feature information (VLMout) with global semantic BEV features (UF) within
the proposals. Two operations are performed within the point features p fi of bounding
boxes BB, such that BB , {bbk = {p fi ∈ RC}}, i = [0, m[, p fi ∈ PF and is scattered to the
voxel data structures VLB , {vlbk = (xj, yj, zj), i = [0, m[} where xj, yj, zj are encoded in
canonical coordinates using the point head module, and m is the number of inside points
within bounding box bbk. The objective is to solve the problem of different proposals
generating the same pooled points. For this purpose, average pooling for pooled part
features operation—denoted as PPF—and max pooling for pooled RPN features—defined
as PRPN—are adopted, and can be described as PPF , RoIMax(VLB, PF, BB), PPF ∈
RSx×Sy×Sz×C and PRPN , RoIAvg(VLB, PF, BB), PPF ∈ RSx×Sy×Sz×C where Sx, Sy, Sz
are the resolution of the voxels’ spatial shape. The operations RoIMax and RoIAvg can be
described more specifically:

RoIMax =

{
max({p fi ∈ vlbk}), if count(PPF) > 0
0, otherwise

RoIAvg =

∑
count(PPF)
i=0 p fi
count(PPF) , p fi ∈ vlbk({p fi ∈ vlbk}), if count(PPF) > 0

0, otherwise

5. Three-Dimensional Object Detection Model Specifications

Herein, we will specify each model in the different module frameworks. These models
were selected based on the requirements established and defined in Section 1, since they
are the models that best guarantee the trade-off between metrics (mAP and inference time).
The set of models and their specificities concerning the developed framework are illustrated
in Figures 3–8. The modules of each model are represented in the figures as green boxes,
and the flow of the tensors occurs in the direction of the orange arrows.

Figure 3. Structure of the PointPillars model represented in the developed framework.

Sensors 2023, 23, 6427 17 of 25

Figure 4. Structure of the SECOND model represented in the developed framework.

Figure 5. Structure of the PointRCNN model represented in the developed framework.

Figure 6. Structure of the PV RCNN model represented in the developed framework.

Sensors 2023, 23, 6427 18 of 25

Figure 7. Structure of the PartA2 model represented in the developed framework.

Figure 8. Structure of the VoxelRCNN model represented in the developed framework.

5.1. Data Representation

Typically, the models of Figures 4 and 6–8 are chosen to represent the point cloud in
Voxels. In this data structure, the point cloud is delimited (using the cropping technique),
and a grid is produced where the data are discretized along the X–Y–Z axis.

Only PointPillars, illustrated in Figure 3, discretizes this delimited space of the point
cloud on the X–Y axis, creating a set of pillars.

In the case of the PointRCNN model (Figure 5), it provides the delimited point cloud
without any data discretization and structuring process for the middle feature encoder.

5.2. Local Feature Encoders

As illustrated in the Figures, three strategies are used by the models to improve the
efficiency of the object detectors in the feature extraction of the data structures. Typically,
these modules are responsible for the local feature extraction, and then, via concatenation,
aggregate these features. Three networks are used: VFE for SECOND (Figure 4), PFE
for PointPillars (Figure 3) and mean VFE for PV RCNN (Figure 6), PartA2 (Figure 7) and
VoxelRCNN (Figure 8).

Sensors 2023, 23, 6427 19 of 25

5.3. Middle Feature Extractor

The methods described herein use 3D backbones based on sparse and submanifold
convolutions, such as SECOND (Figure 4), PV-RCNN (Figure 6), PartA2 (Figure 7) and
Voxel-RCNN (Figure 8). PV-RCNN uses the 3D voxel set abstraction backbone to encode
the feature maps obtained by the 3D sparse CNN for keypoints. PointRCNN (Figure 5)
uses PointNet++ [9] to extract features and pass them to the detection head module.

Only PointPillars (Figure 3) uses 2D backbones, since they require fewer computa-
tional resources when compared to 3D backbones. However, they introduce a loss in the
information that is easily mitigated, since it is possible to readjust the objects again to the
Cartesian 3D system of LiDAR with less loss of information. For this purpose, the resulting
PFE features are used by the backbone scatter component, which scatters them back into a
2D pseudoimage. The next detection head component then uses this 2D pseudoimage.

Other models, such as SECOND (Figure 4), PV RCNN (Figure 6), PartA2 (Figure 7)
and Voxel-RCNN (Figure 8) compress the information in a bird’s-eye view (BEV) using the
BEV backbone for feature extraction, then encode and concatenate the features using the
encoder Conv2D component. After this process, the resulting features are passed to the
detection head.

5.4. Detection Head

As mentioned earlier, this module comprises three networks: RPN head, point head
and RoI head.

All models except PointRCNN use the RPN head to generate RoIs using a low-level
algorithm called selective search [22] to produce proposed regions per frame of the point
cloud. Selective search generates subsegments to generate many candidate regions, and
following bottom-up grouping, recursively combines similar regions into larger regions
to provide more accurate final candidate proposals. Each of these regions is submitted
independently to the CNN module. The output feature map is then fed to an SVM classifier
to predict the object class within the candidate RoI. Along with object class prediction, the
algorithm also predicts four bounding box offset values.

The point head is used to assist the RPN head, as illustrated in Figures 6 and 7, or
generate predictions of object classes and predict four values that are the bounding box
offsets, as shown in Figures 5 and 8. Point head generates various masks of objects or parts
of objects in a multiscale way, followed by a simple bounding box inference to generate
proposals, also called point proposals, using each point to contribute to the reconstruction
of the 3D geometry of the object.

The RoI head used by the PointRCNN (Figure 5), PV-RCNN (Figure 6), PartA2

(Figure 7) and Voxel-RCNN (Figure 8), naturally uses the RoI features of each bound-
ing box proposed in the RPN, and then optimizes the imperfect bounding boxes from
previous stages, predicting and correcting the size and location (center and orientation) in
relation to the predictions of the input bounding boxes.

6. Network Training and Fine Tuning

The models described in this document were trained using the KITTI data sets. In
addition, the models were evaluated based on the KITTY benchmarks, namely for detecting
3D objects and BEV, considering a validation set. Regarding the number of epochs used
in the training phase, a methodology spread by the literature was considered. Thus,
we use 200 epochs, considering the data described in Table 13. Considering training
hyperparameters, We define the initial learning rate of 0.01, learning rate decay of 0.1,
decay epoch methodology, weight decay of 0.01, gradient clipping normalization with a
max value of 10, beta1 of 0.95 and beta2 of 0.85. We use the learning rate decay, weight decay,
and gradient clipping normalization as regularization procedures to prevent overfitting.
The evaluation metrics in the results were based on the official KITTY evaluation detection
metrics. Hence, the metrics used were mAP for a BEV and 3D object detection. The
partition of the training data used in this work consisted of a division discussed in [2].

Sensors 2023, 23, 6427 20 of 25

This approach divides the 7481 training examples that are provided into a training set of
3712 samples, with the remaining 3769 samples belonging to the evaluation set. Moreover,
the benchmarks presented in this article are based on the evaluation set only.

We select three target classes in all experiments: car, pedestrian and cyclist. Typically,
all the models described herein generate two separate networks. One network is optimized
for predicting cars and another for pedestrians and cyclists. However, this approach can be
improper in self-driving car applications since low-edge devices with few resources must
cope with two parallel models. For this reason, we trained all classes in a one-single model
for all 3D object detectors.

For the fine-tuning process, we save the results of the mAP for each epoch to un-
derstand when models converge. Herein, we provide a study with the consequences of
the number of samplings and min points per class sampling compared with the study
made in [23]. In [23], we used different class sampling strategies but without changing the
number of min points for class sampling.

Sampling Instance Strategy. We focus on optimizing the number of sampling in-
stances and min points per class sample. The main objective of the sampling strategy is
to soften the KITTI dataset imbalance issue. During training, the point cloud is randomly
fed with these instances, which means they are placed into the current point cloud. Al-
though this is true, the min points affect whether or not a certain instance can be used
for sampling. If we increase the min number of points in the training process, instances
such as pedestrians and cyclists are less sampled because few points exist to describe
their shape. On the other hand, if we decrease too many min points, the model suffers in
distinguishing between the foreground and the background points. In our experiments, we
use the configurations described in Table 9. The min point for class sampling was fixed per
class as 5 instead of 10 points for pedestrian and cyclist classes and 5 points for the car.

Point Cloud Range. Any object detector’s detection range is impacted by the point
cloud range, which reduces it. For all models in our study, the ground truth object locations
are represented using the original point cloud range for all frames in the KITTI dataset
frame. For instance, it is feasible to confirm using depth data that most ground truth events
in automobiles occur between 0 and 70 metres. The number of cases starts to decline
sharply beyond 70 metres from the middle of the LiDAR sensor. This can be explained by
the fact that beyond this range, relatively few points can accurately characterize an item’s
geometry, making object detection challenging. In this experiment, the point cloud range
of PointPillars is compared to that of other models whose detection range is unaffected.
Table 10 shows the point cloud ranges. We also compare the research in [23] to the quantity
of data structures (maximum number of pillars or voxels).

Table 9. Number of sampling instances (SI) per class.

SI Configuration Car Pedestrian Cyclist

SI1 15 10 10
SI2 25 20 20

Table 10. The different point cloud ranges (PCR) configurations used in fine tuning.

PCR Configuration Xmin Xmax Ymin Ymax Zmin Zmax

PCR1 0 69.12 −39.68 39.68 −3 1
PCR2 0 70 −40 40 −3 1

Data structure sizes. The object detection model receives the points in PCR and
discretizes them in the X–Y axis, thus creating a set of pillars, or discretizes in X–Y–Z and
creates a set of voxels. Each data structure DS has a fixed size in PCR. The data structure
size directly impacts model accuracy and inference time. Increasing the data structure size
can result in too much data being encoded and consequently randomly sampled, leading to

Sensors 2023, 23, 6427 21 of 25

information loss (the maximum number of points per data structure is set for computational
saving purposes). On the other hand, reducing the data structure size can increase the
number of non-empty data structures, increasing memory usage and inference time. Two
DS configurations were used in our fine-tuning process, as shown in Table 11.

Table 11. Pillar size (SDS) configurations used in fine tuning.

SDS Configuration SDSlength SDSheight SDSdepth

SDS16 0.16 0.16 1
SDS5 0.05 0.05 0.1

Number of Data Structures.
Since most data structures will be empty, a maximum number of data structures is

established to investigate the KITTI dataset sparsity problem. In order to generate a dense
tensor, using several data structures might cause the majority of them to be filled with
zeros, making inference time inefficient. A maximum number of points is also established
using the KITTI dataset’s distribution of the number of points per data structure, as shown
in Table 12.

Table 12. Total number of data structures used in fine tuning.

P Configuration Total Number of DS Max Number of Points per DS

P12K 12 K 100
P16K 16 K 5

7. Performance Evaluation, Comparison and Discussion

This section details a series of tests conducted using the random search approach
to improve the trade-off between accuracy and inference time performance parameters.
The experiments and related network setups and models are shown in Table 13. To
comprehend the effects of constructing a model tuned to create three classes of output
instead of splitting into two separate networks (one for cars and another for pedestrians
and cyclists), PointPillars settings and their outcomes are also supplied.

Table 13. The set of experiments conducted and respective network configurations.

Experiment Model PCR Config. SI Config. No. Output SPL Config. P Config.Config. Classes

1 PointPillars PCR1 SI1 3 SDS16 P12K
2 SECOND PCR2 SI1 3 SDS5 P16K
3 PV-RCNN PCR2 SI1 3 SDS5 P16K
4 PointRCNN PCR2 SI1 3 SDS5 P16K
5 PartA² PCR2 SI1 3 SDS5 P16K
6 VoxelRCNN PCR2 SI1 3 SDS5 P16K
7 PointPillars PCR1 SI2 3 SDS16 P12K
8 SECOND PCR2 SI2 3 SDS5 P16K
9 PV-RCNN PCR2 SI2 3 SDS5 P16K

10 PointRCNN PCR2 SI2 3 SDS5 P16K
11 Part A² PCR2 SI2 3 SDS5 P16K
12 VoxelRCNN PCR2 SI2 3 SDS5 P16K

The results of the experiments provided in Table 13 are shown in Tables 14–17. We use
the metric AP for three difficulty levels (easy, moderate and hard) and various intersection-
over-union (IOU) thresholds according to KITTI benchmarks to provide the results. IOU is
70% for cars and 50% for cyclists and pedestrians. The experiment results from this study
are compared to the original ones from the literature in Table 18. The comparison considers

Sensors 2023, 23, 6427 22 of 25

the three target classes for both 3D and BEV. The results presented for the conceived
experiments consider the overall values per class for the best detection metric.

Table 14. Results in validation set for BEV detection metric for experiments 1–6.

Model Epoch Experiment
Car Cyclist Pedestrian

Overall
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN 197 6 96.9 94.89 95.08 73.03 77.68 80.3 85.03 85.54 85.97 87.12
PartA² 187 5 97.64 96.72 96.6 81.37 83.02 83.38 90.21 90.81 90.95 90.31
PointPillars 160 1 76.29 79.05 80.80 57.52 58.01 58.10 77.75 72.52 73.62 70.84
PointRCNN 24 4 92.83 88.64 88.55 80.71 79.85 80.9 89.35 89.03 88.67 86.04
PV-RCNN 92 3 94.52 93.91 93.58 78.65 79.46 80.65 80.83 80.32 80.59 84.94
SECOND 154 2 87.97 83.75 84.43 71.29 76.0 78.23 77.99 78.96 79.55 80.74

Table 15. Results in validation set for 3D detection metric for experiments 1–6.

Model Epoch Experiment
Car Cyclist Pedestrian

Overall
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN 140 6 89.55 83.37 82.63 69.72 72.7 73.53 72.16 71.38 72.71 76.29
PartA² 182 5 79.15 77.31 77.25 73.6 74.84 76.11 72.63 74.94 76.01 76.46
PointPillars 179 1 63.49 58.98 59.27 52.27 60.16 63.0 41.06 40.38 38.99 53.75
PointRCNN 89 4 84.87 79.86 79.37 68.96 71.11 71.35 76.55 75.01 74.36 75.03
PV-RCNN 139 3 88.86 83.57 82.89 71.52 73.21 74.39 64.34 64.53 64.28 73.86
SECOND 147 2 75.55 72.19 72.43 55.23 62.36 65.06 61.77 62.05 61.34 66.28

Table 16. Results in validation set for BEV detection metric for experiments 7–12.

Model Epoch Experiment
Car Cyclist Pedestrian

Overall
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN 199 12 97.19 96.11 96.32 74.43 77.55 79.92 88.53 88.29 88.42 88.22
PartA² 195 11 97.75 96.71 96.61 78.23 80.9 82.74 89.99 90.41 90.76 90.04
PointPillars 21 7 85.76 81.04 82.87 67.04 73.04 75.8 55.39 57.19 58.58 72.42
PointRCNN 16 10 96.3 90.84 90.83 78.31 78.51 79.01 85.88 85.24 85.32 85.05
PV-RCNN 190 9 96.4 93.45 94.08 69.05 72.34 74.74 78.77 80.17 80.7 83.17
SECOND 162 8 90.61 86.51 86.05 78.66 79.76 79.91 66.27 73.66 76.79 80.92

Table 17. Results in validation set for 3D detection metric for experiments 7–12.

Model Epoch Experiment
Car Cyclist Pedestrian

Overall
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN 186 12 83.72 81.21 81.33 68.44 71.01 73.69 67.62 69.28 70.42 75.15
PartA² 187 11 83.29 82.53 82.87 74.13 75.38 76.2 69.46 70.95 70.82 76.63
PointPillars 21 7 69.49 66.31 66.94 47.58 52.72 56.98 37.4 36.91 39.48 54.57
PointRCNN 39 10 89.96 83.36 81.59 68.66 71.26 71.32 73.52 74.04 72.66 75.19
PV-RCNN 44 9 83.42 80.46 80.61 63.75 67.41 70.22 63.18 63.38 63.45 71.42
SECOND 162 8 76.02 70.24 72.77 56.1 63.59 65.77 56.2 58.87 58.14 65.56

Sensors 2023, 23, 6427 23 of 25

Table 18. Our results in KITTI validation set vs. original results in KITTI test set for 3D and BEV
detection metrics.

Model

Our Results (Overall per Class) Original Results (Overall per Class)

3D BEV 3D BEV

Car Cyc. Ped. Car Cyc. Ped. Car Cyc. Ped. Car Cyc. Ped.

Voxel R-CNN 85.18 71.98 72.08 96.54 77.3 88.41 83.19 - - 89.94 - -
PartA² 82.9 75.24 70.41 96.99 82.59 90.66 79.94 66.54 45.50 88.03 71.34 34.92
PointPillars 67.58 52.43 37.93 83.22 71.96 57.05 75.29 62.56 44.09 86.48 66.07 50.67
PointRCNN 84.97 70.41 73.41 90.01 80.49 89.02 77.77 62.10 41.12 87.41 70.03 47.91
PV-RCNN 85.11 73.04 64.38 94.0 79.59 80.58 82.83 66.65 45.25 90.59 71.26 52.39
SECOND 73.39 60.88 61.72 87.72 79.44 72.24 79.20 62.56 44.09 88.4 68.36 47.63

As demonstrated in the aforementioned results, the model implementations in our
framework generally produced better mAP. Regarding the point cloud range in our net-
works, we reproduced original configurations for all models, with fewer DS when com-
pared with the study in [23] since most DS will be empty. This improvement drastically
decreases the inference time when comparing PointPillars with the same research. As
shown in Tables 19 and 20, some models, such as PointPillars, PartA2 and PointRCNN,
produce very close inference time results. On the other hand, our results for SECOND are
better, and are worse in the cases of PV-RCNN and VoxelRCNN. Clearly, there is always a
trade-off in terms of inference time for producing three-class inference models. This can be
explained by the fact that original models obtained their results by training separated net-
works, one for cars and another for pedestrians and cyclists (a standard literature practice
on KITTI benchmarks). By training three-class models, gradients are affected by all those
instances, which leads to our models losing the specialization for prediction. However, as
mentioned in [23], producing separate networks is impractical for self-driving applications.
One solution can be increasing the model’s layers to improve the capability to learn the
required patterns/weights/representations of the data. Although this is true, increasing the
model’s depth will decrease the inference speed, which can result in a model not meeting
the self-driving requirement for that metric (model’s inference time above 100 ms).

Table 19. Our inference time metric results.

Model Total (ms) ~ Speed (Hz) ~

PointPillars 17.25 57.97
SECOND 34.1 29.33
PV-RCNN 118.03 8.47
PointRCNN 97.83 10.22
PartA² 82.66 12.10
VoxelRCNN 59 16.95

Table 20. Original model inference time metric results.

Model Total (ms) ~ Speed (Hz) ~

PointPillars 16 62.5
SECOND 110 9.09
PV-RCNN 80 12.5
PointRCNN 100 10
PartA² 80 12.5
VoxelRCNN 40 25

Reducing the minimum points to consider a sample instance brought gains in terms
of mAP and for the same model architecture, since more instances can be used for data

Sensors 2023, 23, 6427 24 of 25

augmentation. This allows for the expansion of the diversity of the training data and our
models to learn more patterns from data.

8. Conclusions

The research about deep learning methods for 3D object detection on LiDAR data
has increased tremendously in recent years, with many models, repositories and different
technologies being developed. Although this benefits scientific development in this area,
the various technologies, software, repositories and models are a bottleneck for testing and
improving the current methods.

To cope with this limitation, we developed a framework for representing multiple
SoA 3D object detectors with highly refactored codes for both one-stage and two-stage
methods. The main idea of this framework is to facilitate the implementation, reusing
and implementation of new techniques in each framework module with less manual
engineering effort. In conclusion, it enables the abstract implementation, reusing and
building of any object detector in one single 3D object detector framework.

Nonetheless, it is evident that creating three-class inference models comes with a
trade-off regarding inference time. Our study’s results are based on the KITTI validation
set, while the original findings were obtained using the KITTI test set. We replicated
the original network configurations for all models concerning the point cloud range but
with fewer DS than the research mentioned in the previous section. The improvement
mentioned earlier leads to a considerable reduction in the inference time when PointPillars
is compared to the same research.

The current models for 3D object detection in LiDAR data targeting self-driving
applications show their results in powerful servers with dedicated graphics cards and
an unlimited power source. However, using this kind of server in the context of a self-
driving car is impractical due to limited space and power supply. This shows a limitation
regarding deploying 3D object detectors in such an environment. Research must evolve
to produce models capable of meeting performance metrics while being deployable in
resource-constrained edge devices with limited power supply and computational power.

Besides the capability to easily represent SoA 3D object detectors, other models should
be integrated as future work. This requires the constant update of the framework in inte-
grating the new components brought by novel methods since scientific research consistently
produces innovation, especially in this area.

Author Contributions: Conceptualization, A.L.S., P.O. and D.D.; methodology, A.L.S., P.O. and D.D.;
software, A.L.S. and P.O.; validation, P.M.-P., J.M. (José Machado), P.N., A.S, P.O., D.D., D.F., R.N.
and J.M. (João Monteiro); formal analysis, A.L.S., P.O., D.D., J.M. (José Machado), P.N., D.F., R.N.,
P.M.-P. and J.M. (João Monteiro); investigation, A.L.S., P.O. and D.D.; resources, J.M. (José Machado),
P.N., P.M.-P. and J.M. (João Monteiro); data curation, A.L.S., P.O. and R.N.; writing—original draft
preparation, A.L.S., P.O. and D.D.; writing—review and editing, A.L.S., P.O., D.D., R.N., D.F., J.M.
(José Machado), P.N., J.M. (João Monteiro) and P.M.-P.; visualization, A.L.S., P.O., D.D., D.F., J.M.
(José Machado), P.N., P.M.-P. and J.M. (João Monteiro); supervision, J.M. (José Machado), P.N., P.M.-P.
and J.M. (João Monteiro); project administration, J.M. (José Machado), P.N., J.M. (João Monteiro) and
P.M.-P.; funding acquisition, J.M. (José Machado), P.N., J.M. (João Monteiro) and P.M.-P. All authors
have read and agreed to the published version of the manuscript.

Funding: This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020 and the project “Integrated and Innovative Solutions for
the well-being of people in complex urban centers” within the Project Scope NORTE-01-0145-FEDER-
000086. The work of Pedro Oliveira was supported by the doctoral Grant PRT/BD/154311/2022
financed by the Portuguese Foundation for Science and Technology (FCT), and with funds from
European Union, under MIT Portugal Program. The work of Paulo Novais and Dalila Durães is
supported by National Funds through the Portuguese funding agency, FCT—Fundação para a Ciência
e a Tecnologia within project 2022.06822.PTDC.

Institutional Review Board Statement: Not applicable.

Sensors 2023, 23, 6427 25 of 25

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Beltrán, J.; Guindel, C.; Moreno, F.M.; Cruzado, D.; Garcia, F.; De La Escalera, A. Birdnet: A 3d object detection framework from

lidar information. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui,
HI, USA, 4–7 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3517–3523.

2. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

3. Fernandes, D.; Silva, A.; Névoa, R.; Simões, C.; Gonzalez, D.; Guevara, M.; Novais, P.; Monteiro, J.; Melo-Pinto, P. Point-cloud
based 3D object detection and classification methods for self-driving applications: A survey and taxonomy. Inf. Fusion 2021,
68, 161–191. [CrossRef]

4. Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An automated driving systems data acquisition and analytics
platform. Transp. Res. Part Emerg. Technol. 2023, 151, 104120. [CrossRef]

5. Cosmas, K.; Kenichi, A. Utilization of FPGA for onboard inference of landmark localization in CNN-Based spacecraft pose
estimation. Aerospace 2020, 7, 159. [CrossRef]

6. Ngadiuba, J.; Loncar, V.; Pierini, M.; Summers, S.; Di Guglielmo, G.; Duarte, J.; Harris, P.; Rankin, D.; Jindariani, S.; Liu, M.; et al.
Compressing deep neural networks on FPGAs to binary and ternary precision with hls4ml. Mach. Learn. Sci. Technol. 2020,
2, 015001. [CrossRef]

7. Sharma, H.; Park, J.; Amaro, E.; Thwaites, B.; Kotha, P.; Gupta, A.; Kim, J.K.; Mishra, A.; Esmaeilzadeh, H. Dnnweaver: From
high-level deep network models to fpga acceleration. In Proceedings of the Workshop on Cognitive Architectures, Atlanta, GA,
USA, 2 April 2016.

8. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
9. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings

of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.
10. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. arXiv 2017, arXiv:cs.CV/1711.06396.
11. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and

part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2647–2664. [CrossRef] [PubMed]
12. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

13. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 770–779.

14. Chen, Y.; Liu, S.; Shen, X.; Jia, J. Fast point r-cnn. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9775–9784.

15. Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting tassels in RGB UAV imagery with improved YOLOv5 based on
transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8085–8094. [CrossRef]

16. Chen, C.; Gong, W.; Chen, Y.; Li, W. Object detection in remote sensing images based on a scene-contextual feature pyramid
network. Remote Sens. 2019, 11, 339. [CrossRef]

17. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-voxel Feature Set Abstraction for 3D Object Detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 10529–10538.

18. Graham, B.; van der Maaten, L. Submanifold Sparse Convolutional Networks. arXiv 2017, arXiv:1706.01307.
19. Graham, B. Spatially-sparse convolutional neural networks. arXiv 2014, arXiv:1409.6070.
20. Lu, L.; Shin, Y.; Su, Y.; Karniadakis, G.E. Dying relu and initialization: Theory and numerical examples. arXiv 2019,

arXiv:1903.06733.
21. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 448–456.
22. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013,

104, 154–171. [CrossRef]
23. Silva, A.; Fernandes, D.; Névoa, R.; Monteiro, J.; Novais, P.; Girão, P.; Afonso, T.; Melo-Pinto, P. Resource-Constrained Onboard

Inference of 3D Object Detection and Localisation in Point Clouds Targeting Self-Driving Applications. Sensors 2021, 21, 7933.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.inffus.2020.11.002
http://dx.doi.org/10.1016/j.trc.2023.104120
http://dx.doi.org/10.3390/aerospace7110159
http://dx.doi.org/10.1088/2632-2153/aba042
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196
http://dx.doi.org/10.1109/TPAMI.2020.2977026
http://www.ncbi.nlm.nih.gov/pubmed/32142423
http://dx.doi.org/10.1109/JSTARS.2022.3206399
http://dx.doi.org/10.3390/rs11030339
http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.3390/s21237933
http://www.ncbi.nlm.nih.gov/pubmed/34883937

	Introduction
	Related Work
	Methodology
	Framework for Representing 3D Object Detection Models
	Point Cloud Data Representation
	Pillar Representation
	Voxel-Based Representation
	Point-Based

	Local Feature Encoder
	Pillar Feature Network
	Voxel Feature Encoder
	Mean Voxel Feature Encoder

	Middle Feature Extractor
	Backbone 3D
	Backbone 2D

	Detection Head
	RPN Head
	Point Head
	RoI Head

	Three-Dimensional Object Detection Model Specifications
	Data Representation
	Local Feature Encoders
	Middle Feature Extractor
	Detection Head

	Network Training and Fine Tuning
	Performance Evaluation, Comparison and Discussion
	Conclusions
	References

