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Abstract: Compared to wide-field telescopes, small-field detection systems have higher spatial reso-
lution, resulting in stronger detection capabilities and higher positioning accuracy. When detecting
by small fields in synchronous orbit, both space debris and fixed stars are imaged as point targets,
making it difficult to distinguish them. In addition, with the improvement in detection capabili-
ties, the number of stars in the background rapidly increases, which puts higher requirements on
recognition algorithms. Therefore, star detection is indispensable for identifying and locating space
debris in complex backgrounds. To address these difficulties, this paper proposes a real-time star
extraction method based on adaptive filtering and multi-frame projection. We use bad point repair
and background suppression algorithms to preprocess star images. Afterwards, we analyze and en-
hance the target signal-to-noise ratio (SNR). Then, we use multi-frame projection to fuse information.
Subsequently, adaptive filtering, adaptive morphology, and adaptive median filtering algorithms are
proposed to detect trajectories. Finally, the projection is released to locate the target. Our recognition
algorithm has been verified by real star images, and the images were captured using small-field
telescopes. The experimental results demonstrate the effectiveness of the algorithm proposed in this
paper. We successfully extracted hip-27066 star, which has a magnitude of about 12 and an SNR of
about 1.5. Compared with existing methods, our algorithm has advantages in both recognition rate
and false-alarm rate, and can be used as a real-time target recognition algorithm for space-based
synchronous orbit detection payloads.

Keywords: small-field telescope; space target detection; image preprocessing; target signal enhancement;
multi-frame projection; adaptive filtering

1. Introduction

Space targets include celestial bodies, in-orbit satellites, and space debris. As hu-
mans continue to launch aerospace equipment into space, more and more space debris is
generated by space activities. Due to the long natural decay cycle, various orbital spaces
outside Earth are becoming increasingly crowded. The US space surveillance network
has catalogued over 40,000 space targets, but there are still many smaller pieces of space
debris that are difficult to observe [1]. This space debris is usually small and very dim.
If a normally operating spacecraft collides with space debris, space traffic accidents will
occur and cause damage to or derailment of space equipment [2]. Identifying and locating
weak space debris is of great significance for ensuring the safety of the space environment
and spacecraft.

Space target monitoring methods mainly include radar technology and optoelectronic
technology. Radar technology belongs to active detection, which has the advantage of unin-
terrupted operation throughout the day. But the limited detection distance and accuracy
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make it difficult to identify small space debris in high orbits by radar. The advantages
of optoelectronic technology are the long detection distance and high detection accuracy,
which can be used for synchronous orbit debris detection [3]. But it is easily affected by
weather due to its passive detection mode. Space target detection modes can be divided
into ground-based and space-based detection. Usually, different detection methods are
combined to form a space surveillance network. The relatively mature technology is the
advantage of ground-based detection systems, but they are susceptible to geographical
limitations and atmospheric interference [4]. Space-based detection systems operate out-
side the atmosphere, so they can directly receive target radiation energy without passing
through clouds, and can detect a wider spatial range [5]. Space-based detection systems
have significant advantages over ground-based systems, and therefore will be the main
development direction in the future. The algorithm proposed in this article can be applied
to the optoelectronic detection of space-based synchronous orbits.

Due to the inherent detector noise, cosmic radiation noise, and stray light noise
generated by interference sources, weak targets usually have a very low signal-to-noise
ratio(SNR) in images. In addition, due to weak targets often being small and far away from
the camera, they only occupy few pixels and do not have obvious geometric texture features.
In cosmic space, with the increase in stellar magnitude, the number of stars increases
exponentially. Therefore, weak spatial targets have extremely complex backgrounds. The
real-time extraction of spatial targets in complex backgrounds with low SNR is currently a
research difficulty.

The best method for detecting small targets in sequence images is the three-dimensional
matching filter, which can maximize the target SNR when the motion information is
known [6]. However, when prior information on the target is unknown, it requires travers-
ing all paths in all images, which requires a huge computational load and cannot achieve
real-time processing. To balance the real-time capability and reliability of detection, many
algorithms have emerged in recent years attempting to identify small targets as accurately
as possible while reducing computational complexity.

Reference [7] proposes a star suppression method based on multi-frame maximum
projection and median projection, but there will be residual stars after processing, which are
difficult to distinguish in the case of weak targets. Reference [8] proposes a star detection
method of multiplying adjacent frames after registration, but it is difficult to detect weak
stars when registration is inaccurate. Reference [9] proposes a star suppression method
based on enhanced dilation difference, which solves the problem of edge residue caused by
inaccurate registration and star brightness changes, but it may lose weak targets near the
star. The above methods are essentially single-frame target extraction after fusing several
frames of images. Due to the inevitable information loss during the fusion process, the
reliability of target recognition is limited.

Reference [10] proposes a spatial object detection algorithm based on robust features,
but it is not suitable for weak targets with only a few pixels. References [11,12] use
guided filtering to remove stars and identify target motion fringes, but it is difficult to
directly generate stable and continuous target fringes in high-orbit small-field spatial
object detection. References [13,14] use deep learning algorithms to classify targets, but
currently the model can only distinguish target motion stripes and point noise under
different SNRs. Reference [15] proposes a spatial object detection method based on parallax,
but this method requires two imaging devices and can only distinguish between targets
and stars in synchronous orbits. The multi-level hypothesis testing method proposed in
references [16,17] predicts the conversion region through inter-frame motion, which can be
used to detect continuous or discontinuous target trajectories. However, it is inaccurate
and slow in multi-target detection. References [12,18] use Hough transform to detect target
trajectories, but it requires detecting and removing stars in advance. References [19,20] use
two-dimensional matched filtering to detect targets, but this method requires traversing
paths in different directions, lengths, and shapes in images. Although the computational
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complexity is smaller than that of three-dimensional matched filtering, it still takes a
long time.

Most existing algorithms recognize space targets with wide-view telescopes, but to
improve the detection ability for weak targets, small-field telescopes need to be used to
improve spatial resolution. This article proposes a method of weak-target extraction from
small-field starry backgrounds based on spatiotemporal domain adaptive directional filter-
ing, which achieves low SNR multi-spatial target recognition in small-field ground-based
optical systems. Due to the complex starry background, identifying stars is a necessary
operation before recognizing space debris when both are imaged as dots. Therefore, this
article analyzes the extraction of weak stars from images, providing necessary technical
guarantees for space debris recognition. The overall idea of the article is as follows: Firstly,
the bad points are repaired and the non-uniform background in the image is suppressed.
Secondly, enhancement algorithms are used to improve the SNR of weak stars. Thirdly, key
information is compressed and extracted from the sequence images with a multi-frame
projection algorithm, and an iterative thresholding algorithm is used for thresholding
processing. Then, the registration results are used to construct directional filter operators,
which retain trajectory features while filtering out noise. Afterwards, different morphologi-
cal operators are used to perform morphological closure operations to connect the target
trajectories. Next, adaptive median filter operators are used to eliminate false trajecto-
ries and obtain the final results of star trajectories. Finally, the trajectories obtained from
multi-frame projections are deprojected to obtain star detection results for a single image.

The method proposed in this article can effectively detect weak stars in images. The
maximum detectable magnitude is greater than 11 when using ground-based telescopes. If
space-based synchronous orbit detection is used, the relative speed between the stars and
camera is same as that of ground-based detection. In addition, space-based detection is
significantly less affected by noise interference compared to ground-based detection, and
weaker spatial targets can be detected under the same conditions. Therefore, the method
proposed in this article has important reference significance for the real-time detection of
weak targets in space-based synchronous orbits, spacecraft navigation, and space debris
identification and cataloging. The structure of this article is as follows: The first section
introduces the research background and current situation. The second section introduces
weak star recognition methods. The third section introduces the experimental results. The
fourth section summarizes the entire text.

2. Target Recognition

The small-field large aperture telescope can improve the angular resolution of the
imaging system and fully collect photons. To improve the target imaging SNR while
avoiding electron overflow caused by bright stars, we set the camera integration time to 1 s.
The motion speeds of high-orbit space debris and background stars in the image are both
slow, so they are imaged as point targets.

After analyzing the global histogram (Figure 1a) and local histogram (Figure 1b) of
the taken image, it is found that most pixels are distributed between 14,000 and 17,000 and
roughly obey the Gaussian distribution. According to the local grayscale histogram, it can
be seen that the pixel number on right side of the peak is more than that on left side, because
there are weak spatial targets submerged in Gaussian noise. If threshold segmentation is
directly used, it is easy to eliminate weak targets and mistakenly identify some noise as
targets. Identifying these weak targets that are difficult to distinguish from noise is the
significance of this article.
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Figure 1. Image grayscale histogram. Panel (a) is the original image. Panel (b) is the enlarged global 
histogram of the original image. Panel (c) is the local histogram of the original image. 

2.1. Bad Point Repair 
The detector-inherent bad points are usually caused by defects in the photoelectric 

conversion array. Morphological operators are structural elements with a specific size and 
shape which change the grayscale by locally matching structural elements with the image. 
In order to clearly observe bad points, this article uses large-size morphological operators 
(10 × 10) for corrosion operations. Then, it can be seen that there are several black points 
in the image. Black spots are local pixel anomalies caused by detector defects, which are 
amplified after morphological corrosion operations. Figure 2a,b, respectively, show the 
original image and the morphological corrosion image. It can be seen that the grayscales 
of different bad points are not same. Some points are completely damaged, causing the 
pixel grayscale to be zero, while others have small grayscale due to low photoelectric con-
version efficiency. 

The idea of the bad point repair algorithm used in this article is as follows: If the 
grayscales at the same position in multiple consecutive frames are significantly abnormal 
compared to the neighborhood, then the position is determined to be a detector bad point, 
and the grayscale is set to the mean of its neighborhood. Figure 2c,d, respectively, show 
local enlarged images before and after bad point repair. 
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Figure 2. Panel (a) is the original image. Panel (b) is the result of morphological erosion by a large 
operator on the original image. Panel (c) is a local enlarged image of a bad point in the original 
image. Panel (d) is the processed local enlarged image of bad point. 

2.2. Background Correction 
Due to the weak stray light in the cosmic environment and the non-uniform response 

of the detector, the starry image background is not uniform. Although it is difficult for 
humans to directly observe non-uniformity with their eyes, its impact on weak-target 

Figure 1. Image grayscale histogram. Panel (a) is the original image. Panel (b) is the enlarged global
histogram of the original image. Panel (c) is the local histogram of the original image.

2.1. Bad Point Repair

The detector-inherent bad points are usually caused by defects in the photoelectric
conversion array. Morphological operators are structural elements with a specific size and
shape which change the grayscale by locally matching structural elements with the image.
In order to clearly observe bad points, this article uses large-size morphological operators
(10 × 10) for corrosion operations. Then, it can be seen that there are several black points
in the image. Black spots are local pixel anomalies caused by detector defects, which are
amplified after morphological corrosion operations. Figure 2a,b, respectively, show the
original image and the morphological corrosion image. It can be seen that the grayscales
of different bad points are not same. Some points are completely damaged, causing the
pixel grayscale to be zero, while others have small grayscale due to low photoelectric
conversion efficiency.
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Figure 2. Panel (a) is the original image. Panel (b) is the result of morphological erosion by a large
operator on the original image. Panel (c) is a local enlarged image of a bad point in the original image.
Panel (d) is the processed local enlarged image of bad point.

The idea of the bad point repair algorithm used in this article is as follows: If the
grayscales at the same position in multiple consecutive frames are significantly abnormal
compared to the neighborhood, then the position is determined to be a detector bad point,
and the grayscale is set to the mean of its neighborhood. Figure 2c,d, respectively, show
local enlarged images before and after bad point repair.

2.2. Background Correction

Due to the weak stray light in the cosmic environment and the non-uniform response of
the detector, the starry image background is not uniform. Although it is difficult for humans
to directly observe non-uniformity with their eyes, its impact on weak-target recognition is
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significant. To observe the non-uniform background more intuitively, Figure 3a displays the
image in a partial grayscale range. It can be seen that the image edges are severely affected
by stray light, and there are also striped backgrounds formed by non-uniform response.
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Figure 3. Panel (a) is the original image after adjusting the grayscale display range. Panel (b) rep-
resents the image obtained from background correction. Panel (c) represents the first estimated
background. Panel (d) is the final estimated background.

Morphological operation is a commonly used method for detecting backgrounds [21].
But when the operator size is small, some larger stars will be mistaken for the background.
If the size of the operator is increased, although the above phenomenon will decrease, the
background estimation will be inaccurate, which is unacceptable in small-target detection.
To improve the performance of small-size operators, this paper proposes an improved mor-
phological background estimation algorithm. After obtaining the preliminary background
through morphological operation, the threshold is determined based on its mean and
variance. Then, the grayscale which is greater than the threshold is replaced with the mean
of its neighborhood. After correcting the background through the above operation, it is sub-
tracted to eliminate non-uniformity. This method takes the characteristics of slow changes
in non-uniform noise and corrects background areas with excessively large grayscales.
Figure 3b shows the image after non-uniformity correction, © shows the three-dimensional
image of preliminary estimated background, and (d) shows the three-dimensional image of
the final estimated background.



Sensors 2023, 23, 6315 6 of 18

2.3. Image Enhancement

In low-orbit target detection, due to the fast motion speed of targets, a camera can
usually obtain target motion fringes within the integration time. Currently, many works use
the motion information contained in fringes to identify the target. However, in high-orbit
target detection, the target’s movement is slower and usually point targets can only be
obtained within a limited integration time.

When detecting weak targets, there is a significant difference in energy between bright
and dark stars. When the exposure time is long, CCD will easily cause electron overflow
around bright stars, leading to overexposure. This will create bright stripes on the image
and cause significant interference in target recognition. Figure 4 shows the overexposed
image after extending the integration time. Therefore, it is difficult for cameras to increase
the integration time too much to detect weak targets.
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The image used in this article has an integration time of one second. The probability
of overexposure within a one-second integration time is low. The synchronous orbit
radius r = 42,157 km, gravitational constant G = 6.67× 10−11N·m2/kg2, and earth mass
M = 5.965× 1024 kg are included in the universal gravitation formula to calculate the
synchronous orbit satellite angular velocity w =

√
r3/G·M = 4.17× 10−3◦/s. So, during

the integration time, stars will not fly out of the camera’s field. But in star tracking mode,
the telescope needs to be moved.

SNR is defined as the ratio of mean signal to noise standard deviation. Within a certain
time range, the longer the camera exposure time, the higher the weak-target SNR in the
image. But when there are target dragging or streaks in the image, the target SNR will no
longer increase and gradually decrease, because at that time, the noise energy accumulates
but the signal energy remains unchanged.

To improve the SNR of weak targets, this article uses a multi-frame image enhancement
algorithm. Utilizing the principle of correlated target signals but uncorrelated noise signals
after registration, multiple frames of images are accumulated. After accumulating N
frames, the target signal is increased N times, and the noise variance is increased N times.
According to the SNR calculation in Formula (1), the total SNR is increased

√
N times [22].

Figure 5 shows the ratio curve of noise power between the N-frame-enhanced image and
the original image.

SNRN = (N·SNR0·σ0)/
√

N·σ02 =
√

N·SNR0 (1)
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Figure 5. The ratio of noise power between the original image and the enhanced image using
N frames.

Because the signal readout time is much shorter than the exposure time, we assume
that the frame interval is equal to the exposure time. If the target motion speed is v (pixel/s),
the target SNR reaches maximum when the camera integration time is 1/v. It is assumed
that the optimal signal/noise ratio is SNR, and the noise variance is σ0. If the camera
integration time is t, which is larger than 1/v, the signal/noise ratio of the stripe target is
calculated with Equation (2). If t is smaller than 1/v, the signal/noise ratio of the point
target is calculated with Equation (3).

SNR0 = (SNR·σ0)/
√

t·v·σ02 = SNR/
√

t·v (2)

SNR1 = (t·v·SNR·σ0)/
√

t·v·σ02 =
√

t·v·SNR (3)

When using (1/t·v) frames to enhance the point target, the SNR increased by 1/
√

t·v
times compared to the original image, which can achieve the optimal SNR. When the
number of frames used for enhancement is more than (1/t·v), the enhanced target SNR
will be better than the optimal target SNR of a single frame. From this, it can be seen that
the target SNR after the enhancement of a multi-frame short exposure image may be better
than the target stripe SNR obtained by a long exposure time.

Considering that the more images that are used for enhancement, the smaller their
common sub-images will be, and also balancing the real-time capability and reliability,
this article selects five consecutive frames for enhancement. The five registered images
are combined to obtain the target enhancement image. Due to the small variation, the
intuitive changes in the image are difficult to observe. From the grayscale histogram shown
in Figure 6, it can be seen that the noise variance in the enhanced image is significantly
reduced compared to before, and more small targets are no longer submerged in the noise.
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Figure 6. Panel (a) represents the local grayscale histogram of the preprocessed image. Panel
(b) represents the local grayscale histogram of the enhanced image.

2.4. Multi-Frame Projection

Through the analysis in Section 2.4, it can be concluded that short-exposure point
targets may have a better SNR than long-exposure stripe targets after multiple-frame
enhancement. However, point targets do not have the motion information contained in
striped targets, which makes it difficult to accurately extract them from noisy images even
with a high SNR. In order to quickly extract target motion information, this article uses
multi-frame projection to fuse information from several images so that the target forms
stripes in the image, which is conducive to extracting weak targets from noise.

Reference [23] proposes the optimal projection operator, which is derived from the
maximum likelihood ratio. The operator expression (4) is as follows. Where z0 is the pixel
value after projection, N is the number of projected frames, r(i, j, t) is the grayscale value of
a certain frame at position (i, j), and S is the SNR of this point. Due to the need to estimate
the SNR of each point, which requires estimating the mean and variance of the background
around the point, a significant amount of computation is required during projection.

z0(i, j) = ln
[
∑N

t=1 eS·r(i,j,t)
]

(4)

The full-dimensional matched filter sums the pixel grayscale in full-dimensional space
along the specific velocity to detect moving objects in multiple frames, while the two-
dimensional matched filter only detects targets with a specific size and shape in a single
image. Reference [24] points out that when the length of the signal trajectory is M and the
signal/noise ratio of the target signal is SNR, if the number of projected frames is N, then
the output signal/noise ratio of the full-dimensional matched filter is

√
M· SNR, and the

output signal/noise ratio of the two-dimensional matched filter after summation projection
is
√

M· SNR/
√

N. It is difficult to obtain an analytical solution for the output signal/noise
ratio after optimal projection and maximum projection. The output SNRs after projection
are all lower than that of full-dimensional matched filtering, which is an inevitable result of
partial information loss after multi-frame information fusion. When the SNR of the original
image is low, the output SNRs of optimal projection and summation projection are similar,
and the losses are both large. When the SNR of the original image is large, the output SNRs
of optimal projection and maximum projection are similar, and the losses are both small.
Equation (5) is the summation projection expression and Equation (6) is the maximum
projection expression, where K is the number of projection frames.

z1(i, j) = mean[r(i, j, k)], (1 ≤ k ≤ K) (5)
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z2(i, j) = max[r(i, j, k)], (1 ≤ k ≤ K) (6)

As we used five consecutive images in the target enhancement module, the output
SNRs of maximum projection and average projection of five frames are quantitatively
analyzed. Because of the high computational complexity, the optimal projection is discarded.
Using five unrelated noise images that follow the normal distribution (µ, σ), we statistically
analyze the noise distribution after maximum projection. The experiment shows that it
roughly follows a normal distribution (µ + 1.16σ,0.66σ). Figure 7 shows the grayscale
histogram of the noisy image before and after projection.
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Figure 7. Panel (a) is the statistical histogram of standard normal distribution, and panel (b) is the
statistical histogram after the projection of the maximum value of five frames.

Assuming the target grayscale is x, then Equation (7) is the expression for the target
SNR before projection, and Equation (8) is that after maximum projection. According to
the formula, when x > (µ + 3.4σ), the target SNR after processing is improved compared to
the original image. So, when using the maximum projection algorithm, if the target SNR
is large, it can be further improved. If using the summation projection, then Equation (9)
is the expression for the processed target SNR. According to the formula, the image SNR
after processing is always smaller than that of the original image. After comparing the two
projection methods, it can be concluded that when x > (µ + 2.37σ), the target SNR after
maximum projection is higher.

SNR2 = (x− u)/σ (7)

SNR3 = (x− (µ + 1.16σ))/(0.66·σ) (8)

SNR4 = ((x− u)/5)/
(

σ/
√

5
)

(9)

The appropriate projection method can be selected based on the target SNR. The
remaining part of this article selects the maximum projection method, which also has the
advantage of conveniently releasing projection, because only the pixel frame index of the
projected image needs to be recorded. Releasing the projection will play a significant role
in target localization. Figure 8a,b, respectively, show the results of mean and maximum
projection using five frames.
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2.5. Threshold Processing

The threshold segmentation algorithm is used to eliminate unwanted background
grayscale and residual noise. The commonly used threshold algorithms include the maxi-
mum inter class variance method, the iterative threshold method, and the adaptive thresh-
old method [25]. But these methods only work well when there are two peaks in the
histogram. In the grayscale histograms of starry images, there are usually single peaks
composed of noise, and the target is scattered irregularly on larger grayscale values without
forming peaks. This article improves on the traditional adaptive threshold method and
proposes an iterative adaptive threshold algorithm.

First, the mean (µ) and variance (σ) of the starry image are calculated, and (µ + 3σ)
is used as the threshold for preliminary threshold processing. Then, the mean (u1) and
variance (σ1) of grayscale below the threshold are counted, and the threshold is processed
again using (u1 + 3σ1). After, the threshold is iteratively calculated in this way. According
to the 3σ-Criterion, the iteration is stopped when the difference between new and previous
threshold is less than 0.15%. The noise in the stellar image roughly obeys normal distribu-
tion, but there are also targets in the image. So, the background variance obtained from
the first estimation is relatively large, and the value distributed within (µ− 3σ, µ + 3σ)
is relatively high. After multiple iterations of estimation, the estimated background will
gradually meet the 3σ guidelines.

The results from using the iterative threshold method to process starry images are
shown in Figure 9. The threshold remains basically unchanged after approximately three
iterations. After successfully estimating the background variance (σ0) in the original image,
the image is processed with (u0 + nσ0) as the threshold, where u0 is the mean of the
projected image. The value of n determines the SNR of detectable targets in the original
image. If n is too large, it is not conducive to weak-target recognition. If n is too small, it
increases the false-alarm rate and computational burden.
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2.6. Directional Filtering

To reduce the computational burden, the camera’s image acquisition rate is set to
2 s/frame, which makes some trajectories discontinuous. In addition, noise interference
also makes it difficult to extract trajectories. In response to the above difficulties, this
article proposes an adaptive directional filtering method. The specific steps are as follows.
Firstly, an adaptive filtering operator is used for neighborhood submaximum filtering to
preliminarily reduce noise. Then, the adaptive morphological operator is used to connect
trajectories. Finally, adaptive median filtering is used to eliminate false trajectories and
residual noise.

According to the method described in Section 2.5, we use 1.2 as the value of n to
threshold the projected image. After threshold processing, continuous or discrete target
motion trajectories are formed, while false targets and noise appear as points. Median
filtering belongs to nonlinear filters and is a commonly used noise removal algorithm.
However, when processing multi-frame projection images, the median filtering algorithm
is prone to destroying trajectories. Reference [12] proposes an improved median filtering
algorithm, while reference [13] proposes a local threshold filtering method. These methods
have improved compared to traditional median filtering in processing starry image, but
there are still some shortcomings.

In this paper, an adaptive filter operator is proposed. Based on the results of image
registration and the distance from the points to the ideal straight line, the best operator can
be found. The specific implementation method is as follows. Taking the filtering operator
center as fixed point and calculating the slope based on the registration result, an ideal
straight line is made within the filtering operator. Then, the distance from all pixels to the
ideal line is calculated in the filtering operator, and m pixels with shorter distances are
selected to form the filtering operator. Figure 10a shows the construction principle of the
5 × 5 filter operator, and the size and effective pixel number (m) of the operator can be set
as needed.
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Figure 10. Panel (a) is schematic diagram of constructing an adaptive filter operator with size of
5 × 5. Panel (b) is an adaptive directional filtering operator.

In this article, C is defined as the maximum translation parameter of adjacent frames.
Taking (6C + 1) as the adaptive filtering operator size, which can ensure that there are
discontinuous breakpoints, the trajectory will not be damaged. The effective pixel number
within the filtering operator is set to 2 (6C + 1). The filtering value is taken as the second
largest value in the neighborhood, which increases the filtering stability. Figure 10b is the
filtering operator used in this article. Logic and operation are performed on the images
before and after adaptive filtering to obtain the filtering results. The above filtering process
is repeated until the image grayscale no longer changes. If the original projection graph is
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M and the filtering operator is F , then Equation (10) is the calculation expression for the
directional filtering graph (DF), where ∗ is the filtering operation.

DF = M, DF = loop((DF ∗ F )&DF)
until(DF = loop((DF ∗ F )&DF))

(10)

Figure 11a,b show the local enlarged images before and after filtering. After using
the method proposed in this paper, the trajectory features were successfully preserved
while filtering out isolated noise. To demonstrate the superiority of our method, we
compare it with improved median filtering algorithms and local threshold filtering methods.
Figure 11c shows the image obtained after improved median filtering, with a small amount
of target trajectories being damaged. Figure 11d shows the image obtained after local
threshold filtering. Although it can retain most trajectory information while filtering out
noise, it still has a significant impact on discontinuous trajectories. Our algorithm has
significant advantages.
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Figure 11. Enlarged local results of different filtering methods. Panel (a) represents the image before
filter. Panel (b) represents the adaptive filtering result. Panel (c) represents the improved median
filtering result. Panel (d) represents the local threshold filtering result.

2.7. Trajectory Detection

After filtering out isolated noise points, the trajectory is connected using a large
expansion operator and a small corrosion operator. All morphological operators are
constructed using the adaptive method described in Section 2.6. The size of the expansion
and corrosion operators are both (2C + 1), which can connect the broken line and ensure
that the line length before and after processing is the same. The effective pixel number
of the dilation operator is set to 3 (2C + 1), and the effective pixel number of corrosion
operator is set to (3C + 1). A thinner corrosion operator can avoid line breakage. Equation
(11) is the calculation expression for the trajectory connection image (CT), where A is the
expansion operator and B is the corrosion operator, and ⊕ is the expansion operation and
� is the corrosion operation. Figure 12a,b, respectively, show the morphological dilation
operator and corrosion operator used in this paper.

CT = DF⊕ A � B (11)
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Figure 13a,b, respectively, show the enlarged images using adaptive morphological
operators of expansion and post-expansion corrosion. All trajectories in Figure 13b are
connected after morphological closure operations.
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After connecting trajectories through morphological closed operations, iterative adap-
tive median filtering is used to remove false trajectories and residual noise, resulting in
continuous trajectory detection results. The median filtering operator size is (4C + 1), which
can filter out false trajectories that are too short. The effective pixel number within the
operator is 2 (4C + 1). The median filtering used in this article does not take the median
value, because a better effect is achieved when taking the value at 2/3 positions sorted
from smallest to largest. Logic and operation are performed on the images before and
after adaptive median filtering to obtain the filtering results. The above filtering process
is repeated until the image no longer changes. Equation (12) is the calculation expression
for the median filtering image (MF), where ∗ is the median filtering operation and C is
the median filtering operator. Figure 14a shows the local adaptive median filtering graph.
Equation (13) performs logic and operation between the median filtering image (MF) and
the directional filtering image (DF) to obtain the final trajectory image (FT). Figure 14b
shows the local final trajectory detection graph.

MF = CT, MF = loop((MF ∗ C)&MF)

until(MF = loop((MF ∗ C)&MF))
(12)

FT = MF&DF (13)
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2.8. Target Positioning

This article applies a deprojection operation for the maximum projection image to
extract stars from single frame. Given the maximum projection image z2(i, j), the release
projection image (Ri) of each frame can be calculated. Equation (14) is the calculation
method for the release projection image of the fifth frame. The grayscale of each pixel at
the same position is compared between the maximum projection image and the fifth frame
image. If they are the same, it indicates the projected image points are from the fifth frame
image, and they are assigned to the release projection image of the fifth frame. Equation
(15) is the calculation expression of the positioning image (L5). By performing dot product
operation on the trajectory image (FT) and the fifth frame release projection image (R5),
the star positioning image of the fifth frame can be obtained. Figure 15 shows the star
positioning image and its partially enlarged image.

R5(i, j) =
{

z2(i, j) , r(i, j, 5) = z2(i, j)
0 , r(i, j, 5) 6= z2(i, j)

(14)

L5(i, j) = R5(i, j)·FT(i, j) (15)
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the image are located. Then, all the stars are identified by matching with the Hipparcos 

Figure 15. Panel (a) shows the fifth frame star positioning image. Panel (b) shows a partially enlarged
view of panel (a).

3. Experimental Result

In this section, we analyze the recognition rate, false-alarm rate, and limit detection
performance of the proposed method through experiments. The self-developed optical
system used in the experiment has a field of 3.17◦ × 3.17◦, 240 mm focal length, and
150 mm aperture. The detector uses e2v CCD47-20, which has 1024 × 1024 pixels, a
13.3 mm × 13.3 mm focal plane, 13 um pixel size, 11.18′′ pixel resolution, and 16 bit AD
quantization during image readout. Image processing is carried out in MATLAB R2017b,
the computer processor is Intel (R) Core (TM) i5-7300HQ CPU(4-core, 2.5 GHz) with 8 GB
memory. On the existing experimental platform, the algorithm can complete the operation
within 4 s.

We used the Hipparcos catalog to test the recognition rate and ultimate magnitude
recognition ability of our algorithm. Although the catalog contains stars that have magni-
tudes up to 12, it cannot be used to calculate false-alarm rates, because it only has complete
stars with magnitudes of 9. We use the triangle-matching algorithm [26] to match starry
images without prior information. If the matching fails, the points are reselected. When the
matching results are not unique, the fourth point is selected and the pyramid-matching
algorithm is used [27]. If the matching is successful, the attitude matrix is calculated based
on the matching results, and the right ascension and declination of all the stars in the image
are located. Then, all the stars are identified by matching with the Hipparcos catalog. The
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stars used for matching are marked in Figure 16a. The successfully identified stars are
marked in Figure 16b with a recognition accuracy of 0.01◦. Due to the flipped imaging of
the camera, Figure 16 has been corrected compared to the original taken image.
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In Figure 18a, two stars with magnitudes higher than 11 are marked. They are num-
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Figure 16. The successfully matched stars are marked in panel (a). The successfully identified stars
are marked in panel (b).

Based on the camera pointing, camera FOV, and the star catalog, we created the ideal
image, in Figure 17a, which only contains stars. The image rotation was calculated by using
the image registration algorithm, and Figure 17b was obtained after correcting the ideal
image. Because of the image rotation difference between the ideal and actual image, the
two images differ slightly at the edge. Except for the M37 nebula in the upper part of the
image, which is difficult to identify due to centroid positioning errors, other stars in the
Hipparcos catalog are successfully identified. The success rate of single-frame recognition
reaches 96.3%.
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In Figure 18a, two stars with magnitudes higher than 11 are marked. They are num-
bered hip-27066 and hip-27825 in the Hipparcos catalog. They have approximately 16,000
grayscale and 1.5 SNR in the image. These two are the weakest stars in the Hipparcos cata-
log within this sky region, occupying less than 10 pixels, and both have been successfully
identified. Figure 18b is the partially enlarged image of Figure 18a.
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Due to the lack of a complete star catalog, it is difficult to use the star-matching
method to verify the false-alarm rate of our algorithm. In this section, we associate the
star extraction results from adjacent frames. After removing new stars that have entered
and exited, if a certain star does not have a mapping relationship between adjacent frames,
the detection result is regarded as a false alarm. The mapping criteria between two stars
are designed as follows. Their centroid error is less than 1 pixel, the size error is less than
20%, and the brightness error is less than 20%. The statistical method for the false-alarm
rate is not entirely reliable and is only for reference. Table 1 shows the detection results
of stars with different SNRs. To demonstrate the superiority of the proposed method, we
used the median projection method (MP) and the inter-frame multiplication method (IFM)
to detect stars within the same region. The detection results of stars with different SNRs
are recorded in Tables 2 and 3. Indicators include recognition rate, false-alarm rate, and the
average target number extracted from sequence stellar images.

Table 1. The results of star detection using our method.

SNR Average Number Recognition Rate False-Alarm Rate

1.5 853 97.8% 5.09%
2 655 97.2% 4.66%
3 445 96.5% 3.97%
4 329 94.2% 3.14%

Table 2. The results of star detection using MP.

SNR Average Number Recognition Rate False-Alarm Rate

1.5 5010 98.1% 74.3%
2 1476 96.8% 50.1%
3 714 92.6% 44.2%
4 496 88.5% 36.7%

Table 3. The results of star detection using IFM.

SNR Average Number Recognition Rate False-Alarm Rate

1.5 2673 97.9% 74.8%
2 854 97.2% 51.4%
3 538 87.8% 42.5%
4 378 37.0% 39.9%
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Our method not only has a lower false-alarm rate and higher recognition rate com-
pared to existing algorithms, but also has advantages in star brightness extraction and size
extraction. The stars detected by MP have different brightness levels from the actual stars,
which means that stars cannot effectively be removed from the original image. When the
star brightness changes, the stars detected by IFM are prone to deformation, which will
cause significant errors in centroid positioning.

4. Conclusions

In this article, we proposed a star detection algorithm based on small-field telescopes,
which can achieve the real-time detection of stars with an SNR of 1.5 or higher, and its
performance meets the requirements of space surveillance systems. With improvements
in the detection ability of optical systems, the number of background stars in the image
increases exponentially. When space debris and stars are both imaged as point targets,
it is difficult to distinguish between them. Therefore, high-precision star detection is a
prerequisite for space debris recognition.

The following conclusions can be summarized in this article. Our proposed back-
ground correction algorithm can maintain target energy while removing stray light. The
multi-frame enhancement algorithm can increase the target SNR to no less than that ob-
tained from long-exposure imaging. The multi-frame projection algorithm can compress
multi-frame information and extract motion trajectories. The iterative adaptive threshold
algorithm can accurately estimate background parameters. The adaptive filtering algo-
rithm we proposed can remove noise while preserving the target trajectory, and has high
robustness to trajectory breakage and overlap. After the adaptive morphological algorithm
connects trajectories, the adaptive median filtering algorithm can filter out false trajectories.
Finally, releasing the projection operation can accurately locate stars in a single image.

The actual starry image processing result showed that the proposed method can
overcome the difficulties of star extraction in complex backgrounds with small fields, and
has a high detection rate and low false-alarm rate. Compared to wide-field long-exposure
imaging, it has the advantages of high real-time performance and strong detection ability.
The method proposed in this article has important reference significance for the real-time
detection of weak stars in space-based synchronous orbits, spacecraft navigation, high-
precision cataloging of space debris, and so on.
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