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Abstract: Brain–body interactions (BBIs) have been the focus of intense scrutiny since the inception
of the scientific method, playing a foundational role in the earliest debates over the philosophy of
science. Contemporary investigations of BBIs to elucidate the neural principles of motor control
have benefited from advances in neuroimaging, device engineering, and signal processing. However,
these studies generally suffer from two major limitations. First, they rely on interpretations of ‘brain’
activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they
employ methodological approaches that are inconsistent with a dynamical systems approach to
neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for
answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus,
this review is written as a tutorial to address both limitations for those interested in studying BBIs
through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting,
and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement.
Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical
systems. Third, we provide worked examples from both canonical model systems and from empirical
EEG and kinematic data collected from two subjects during an overground walking task.

Keywords: dynamical systems; sample entropy; recurrence quantification analysis; electroencephalography;
neuromotor control; oscillatory activity; biophysical models

1. Introduction

Dynamic, coordinated movements require complex signaling between the central
nervous system and effectors (i.e., skeletal muscles, joints, and limbs). These brain–body
interactions (BBIs) are studied using tools at the interface of engineering and neuroscience
to address impactful questions that cut across disciplines, from uncovering the origins
of consciousness to the development of brain–computer interfaces for rehabilitation and
human performance. In the most general sense, studies of BBIs fall into one of three
categories based on their treatment of each variable: (i) studies manipulating movement to
characterize changes in the brain; (ii) studies manipulating brain circuits to characterize
changes in movement; (iii) studies directly characterizing the nature of BBIs by quantifying
relationships between brain and body signals. The goal of this review is to serve as a primer
for scientists interested in the third perspective, quantifying BBI as temporal dependencies
between systems. First, we explicate on the methodological and theoretical challenges
associated with measuring and interpreting scalp-measured neural oscillatory activity
(using electroencephalography) during dynamic movement. Second, we motivate and
showcase two solutions for modeling interactions between ‘brain’ and ‘body’ systems that
are yet unexplored in this growing field.
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2. EEG Signal Acquisition and Preprocessing

A primary consideration for jointly studying BBIs must be the means by which signals
from these systems are acquired. For example, a major challenge for studies of BBIs is that
movement itself is a serious confound for practically all brain imaging techniques, including
functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), the
two techniques that are most often used to study BBIs. Compared to fMRI, devices that
collect scalp-measured EEG readings are more cost-effective, carry a significantly smaller
footprint, and sample data at a much higher resolution (>250 Hz), all factors contributing to
their widespread use in studies of BBIs. Although the use of EEG readings is increasingly
ubiquitous, there are few standards concerning the pre-processing or ‘cleaning’ of EEG
data collected during dynamic movements. While the possibilities for processing scalp-
measured EEG readings are practically infinite, they can be broadly classified based on the
ultimate analytic goal. On one hand, the signal can be analyzed as a series of time-locked
positive and negative deviations around events of interest (e.g., a heel strike or movement
initiation), which are commonly referred to as ‘event related potentials’ (ERPs). Gwin and
colleagues [1] published some of the earliest recommendations for improving the veracity of
ERPs acquired during treadmill walking and running. They demonstrated that regressing
out artifactual components from EEG data acquired using a high-density (248-channel)
array revealed ERPs during running that were identical to ERPs in response to a visual
oddball discrimination task acquired while standing at rest. Indeed, this general approach
is still widely used, even though BBI studies are increasingly using limited montages
(64 channels or fewer), which limits the number of artifacts that can be identified. BBI
studies have also increasingly taken a different analytic approach, treating EEG data as a
continuous amalgam of oscillatory activity representing dynamic brain circuit interactions
rather than discrete, event-locked perturbations. New analytic tools for this task are
published often, which can be overwhelming to novice investigators and non-experts. In
the following sections, we outline two of the most frequently employed pre-processing
steps (re-referencing and artifact removal) and highlight existing recommendations for
their use in studies that use scalp-measured EEG readings to study BBIs.

2.1. Re-Referencing

The poor spatial resolution of EEG signals can be attributed in large part to volume
conduction—the attenuation of current flow by heterogeneous tissues between the source
and recording electrode. This also contributes to the small amplitude of scalp EEG signals
(~100–200 µV), since the signals are spread from their source indiscriminately across the
entire scalp and are thus ‘canceled’ by use of the common reference. It is possible to
improve two-dimensional spatial resolution—or confidence that sensor-level signals are
generated by proximal sources—by performing a re-referencing step, typically offline
during preprocessing. One common method is to perform a surface Laplacian (i.e., current
scalp density) transform, which is essentially a high-pass spatial filter that is generally
considered to be reference- and assumption-free [2]. By filtering out signal content from
distal sources, superficial, cortical sources are isolated (in µv/mm2). At the same time, the
resulting current density maps are preferential to dipoles oriented perpendicular to the
scalp, from the gyri, and less sensitive to dipoles oriented tangential to the scalp, from the
sulci, which may be detrimental to the study of movement [3]. Importantly, for the filter
to perform optimally, electrodes should be evenly spaced over the scalp. This is common
for research-grade EEG devices, but it is not standard for consumer-grade devices, such as
those often used in BBI studies, which typically contain fewer electrodes arranged unevenly
over smaller portions of the scalp (e.g., the forehead or over the top of the head).

A popular alternative to the surface Laplacian is to set all channels relative to a
common average reference. This is based on the theory that common potentials sampled
over a volume containing all current sources will be fully canceled out [4]. A benefit is
that the units of the signal are not transformed and remain intuitive (µV). However, there
is some evidence that the limited montages most commonly used in the study of BBI
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(i.e., those with ≤32 electrodes) are not sufficiently dense to accurately sample the spatial
distribution of ‘whole-volume’ potentials, thus violating the basic assumption underlying
this approach [5]. If data cannot be re-referenced, then it is challenging to make inferences
about the underlying brain circuits that give rise to those signals with any spatial certainty,
and grand averaging over all electrodes may be preferred. Following suit with a recent set
of recommendations for so-called ‘mobile brain–body imaging’ [6]—which at the time of
this publication remains on a preprint server and has been cited by three different published
empirical studies—we would advise that when EEG data are recorded using ≥32 channels
that are evenly distributed (e.g., in a 10–10 or 10–20 configuration), investigators should
tend toward average referencing their data. If fewer channels are used, then the surface
Laplacian can be used. If fewer channels in a non-uniform montage are used, then grand
averaging to obtain a single EEG timeseries is warranted.

2.2. Artifact Removal

Although some EEG experts recommend minimal signal processing for studies of
ERPs [7], there is strong evidence that EEG signals are universally contaminated by non-
brain artifacts, including electrical activity from proximal muscles and mechanical interfer-
ence from electrode and cable movement [8,9]. Removing and imputing particularly noisy
EEG channels is a widely accepted practice for improving global signal-to-noise. Although
it is typically easy to identify and remove bad channels manually due to their small ampli-
tudes (~100–200 uV), artifacts induced during dynamic movement make this task more
challenging. One alternative is to determine channel quality by the correlation between a
channel and its robust estimate based on other channels, and this approach is built into the
clean_rawdata function implemented in the popular EEGLAB toolbox. Although a threshold
for the correlation between a channel and its prediction of r < 0.8 is the default, this is
likely too high if a high proportion of channels contain noise. In experiments with high
degrees of contamination, this method loses its utility, as the channel prediction is itself in-
accurate. The use of dry, active electrodes—a popular tool for BBI experiments—for which
impedances cannot be quantified and therefore signal quality cannot be ensured during
acquisition represents another possible use case where this approach may not perform well.
Furthermore, if limited montages (e.g., <32 electrodes) are being used, then removing a few
channels may significantly reduce scalp coverage.

On the other hand, blind source separation methods allow for the removal of artifac-
tual components of a signal while potentially preserving channels. Independent component
analysis (ICA) is the most commonly used method for statistically disentangling mixed
components of neural and non-neural origin. One recent implementation, adaptive mixture
independent component analysis (AMICA), has proven particularly well-suited for EEG
signals collected during dynamic movements, outperforming a more traditional implemen-
tation (i.e., InfoMax) [10]. Regardless of the algorithm, the number of components returned
by an ICA are restricted by the rank of the data, meaning that EEG signals recorded from
more (clean) channels provide for greater degrees of freedom. Notwithstanding, AMICA
appears to perform sufficiently with 35 channels, but suffers when the number of channels
is reduced to 25 [11]. Once components are identified, they can be removed through manual
classification by expert reviewers, or subject to automated algorithms such as ICLabel [12],
which recovers components comparably between mobile and stationary data collection,
particularly for montages containing 64 or more channels [13].

Artifact subspace reconstruction (ASR), a PCA-based method for artifact removal [14]
(also built into the clean_rawdata function in EEGLAB), is a different flavor of blind source
separation that is gaining popularity. Although ASR seemingly struggles to remove reg-
ularly occurring artifacts, such as eye blinks, it may complement ICA-based approaches
that are better suited for that task [15,16]. However, ASR requires a ‘clean’ reference period
to be recorded and there is no clear agreement in the proper method for selecting cut-off
values.
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Ultimately, both a channel-wise removal step and a blind-source separation step are
practically requirements for BBI-EEG studies. If speed is a factor or if the EEG data have
been acquired using ≤25 channels, then the InfoMax algorithm is probably sufficient.
Otherwise, AMICA is well-suited for ‘noise’ structures that are inherent in EEG signals
collected during dynamic movement. Further, to maintain appropriate rank of the data,
channel interpolation (of removed channels) should only be performed after the second
blind-source separation step. The use of ASR in conjunction with an ICA-based algorithm
is warranted, but users should note that it is common for the algorithm to identify windows
(‘bursts’) that cannot be corrected. In epoch-based analyses, it is possible to trim or ignore
these, but such non-continuous data streams pose a particular problem for the study of
dynamical systems (as defined in this manuscript); therefore, ASR should be employed
judiciously depending on the ultimate goal of the analytic pipeline.

3. Interpretation of EEG-Measured Oscillatory Activity

It is generally accepted that scalp-measured EEG rhythms represent dynamic post-
synaptic membrane potentials that create dipoles, which are spatially distinct areas of
positive charge (i.e., in the cell body) and negative charge (i.e., in the dendrites) [17]. Scalp-
measured oscillatory activity is typically quantified and described based on oscillatory
activity in different canonical frequency bands: slow (1–7 Hz), alpha (8–14 Hz), beta
(15–30 Hz), and low gamma (30–50 Hz) rhythms. Since the first spontaneous EEG recording
by Hans Berger in the 1920′s, clinical and scientific pursuits have been dominated by
attempts to relate cortical rhythms in these bands to complex behaviors. These bands
are not specific to motor or sensory processes, meaning that their interpretation relies on
the circuits from which they emerge: (i) orientation of those circuits with respect to the
scalp and other circuits, (ii) proximity with respect to the scalp and other circuits, and (iii)
(a) synchronous firing of neuronal populations that is, in turn, coordinated by complex
intracortical and thalamic projections [18]. When viewed through this lens, the ‘generators’
of these rhythms are not particular cells or areas (e.g., anterior cingulate cortex, thalamus),
but changes in (i) membrane properties of neurons, (ii) synaptic processes between neurons,
(iii) dynamic short- and long-range connectivity between discrete elements of neuronal
networks, (iv) neuromodulation of any of these features by neurotransmitter systems [19].

These basic tenets led to the widely cited concept of event-related (de)synchronization
(ERD/ERS), which states that decreases and increases in spectral power after onset of a
stimulus are due to the desynchronization and synchronization, respectively, of some or
all these mechanisms [20]. However, there are two issues that preclude the use of this
framework in the study of BBI. First, a ‘baseline’ or ‘stimulus-free’ state is necessary for
proper interpretation of ERD/ERS, yet this state is difficult to define if the goal is to model
BBIs. Second, and highly related to the themes of this review, it is increasingly understood
(i) that the pre-stimulus state of neuronal networks influences (or moderates) their response
to tasks and (ii) that the event-related interactions between these circuits are neither purely
linear nor purely periodic [21,22]. For the most part, in BBI studies using scalp-measured
EEG data, a priori feature selection is based on prior findings from the BBI literature (e.g., a
focus on slow-rhythm oscillations during walking without consideration for faster rhythms)
and on the response of those features to cognitive demands (e.g., alpha rhythms during
an attentional task). Instead of considering the psychological correlates of scalp-measured
neural oscillatory activity, we take the perspective that these rhythms contain information
that can be interpreted in terms of the circuits (and circuit interactions) that generated
them. This biologically grounded perspective is likely superior if the ultimate goal of
understanding BBIs is to develop better diagnostic or prognostic tools or inform more
effective interventions for movement and psychiatric disorders alike. In the following
sections, we aim to distill data from biophysical models that elucidate more precisely the
circuit interactions that give rise to these rhythms.
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3.1. Brain Dynamics: From Spiking to Scalp-Measured Oscillations

A core challenge for interpreting EEG signals, given the movement- and non-
movement-related sources of interference described above, is interpreting the neu-
robiological mechanisms of scalp-measured, neuroelectric oscillations. Historically,
neuroscientists believed that neuron spiking behaviors, representing action potentials
of that single neuron, were the base code for communication in the brain [23]. It is now
widely accepted that (de)synchronization of those neurons, as can be recorded from
oscillations in the local field potential (LFP; recorded from populations of neurons),
are inherently important to understanding dynamic brain states and thus communica-
tion [24,25]. These oscillations contain rich information about synaptic and dendritic
signaling mechanisms [26]. LFPs are not merely epiphenomena, and the global prop-
agation of these oscillations across the brain appear to alter distant local activity in
meaningful ways [27].

While there is long-standing evidence that surface EEG monitoring (i.e., multichan-
nel arrays embedded directly in the cortex) may contain LFP-like information [28], the
same biophysical properties of the cortex, dura, cerebrospinal fluid, and skull that give
rise to volume conduction (and the poor spatial resolution of scalp-measured EEG) also
challenge the notion that scalp-measured EEG data contain anything LFP-like. An EEG
electrode on the scalp does not record spiking or even LFPs directly, but instead captures
differences in electrical potential caused by current flow induced by many synchronized
post-synaptic potentials [29]. This, of course, is not a mechanism; it explains the existence
of the scalp-measured oscillatory activity in which we are ultimately interested; however,
the relationship between LFPs and scalp-measured EEG signals remains poorly under-
stood [30]. Ground-breaking work is being performed in this space by relating primate
EEG and microelectrode recordings (i.e., to capture single-unit, multi-unit, and LFP signals).
One recent novel study reported patterns of visual processing in macaque EEG signals that
contained similar information to concomitant microelectrode recordings and also looked
similar to human MEG signals during a similar task [31]. However, whether spiking or
LFP activity recorded from primates during movement can be teased out from concomitant
scalp-based EEG data remains unknown.

Indeed, much of the cited literature that follows—to decompose the circuit interactions
giving rise to scalp-measured oscillatory activity by frequency band—does not include
dynamic movement, with most of the movement being restricted to finger tapping or
similar. It is possible that this is inconsequential, as movement intentions are coded and
programmed in similar ways (e.g., population coding), in similar places (e.g., primary
and premotor cortex), and maintained/terminated by similar circuitry (e.g., basal ganglia,
cerebellum), at least in terms of the spatial resolution of scalp-measured EEG signals. On
the other hand, this may also be viewed as a critical limitation of the literature and therefore,
a call-to-action for scientists to tease out the differences between BBIs during tasks with
different motor demands. If true, then the summary of literature that follows should serve
as an important benchmark to begin testing whether and to what degree the interactions
giving rise to these rhythms are different during dynamic, full-body movements, such as
walking, and the tools introduced in the second half of this tutorial review may be useful
for these efforts.

3.2. Delta/Theta (1–7 Hz)

The EEG spectrogram is dominated by oscillatory activity in these low frequencies, per-
haps unsurprising given that they are generally conceptualized as cortex-specific rhythms
originating from interactions between cortical (layer V) pyramidal neurons [32]. Thus,
these slow cortical oscillations plausibly orchestrate long-range cortical interactions, en-
training and modulating the amplitude of faster rhythms that regulate short-range, local
circuits [33,34]. Because these frequencies are substantially slower than neuronal firing
rates, they likely originate from synaptic interactions and represent cellular processes such
as short-term depression/potentiation and spike-time-dependent plasticity, making them
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of great interest to those studying learning and memory [35]. Slow cortical oscillations
occur on a timescale that more closely approximates cognition, such as attention and
motor planning, and have been most commonly observed in transmodal brain regions—
particularly the prefrontal cortex—that are understood to be especially important for these
processes [36,37].

Rodent studies of ‘active sensing’ suggest that during ambulation and exploration of
novel environments, these rhythms represent selective tuning of cortical receptive fields
that, in turn, integrate sensory information and govern movement planning [38]. Support-
ing this conceptualization, Sipp and colleagues [39] used high-density EEG signals and
source localization to reveal greater slow rhythm (4–7 Hz) spectral power in dorsolateral-
prefrontal and anterior cingulate regions during balance beam walking compared to tread-
mill walking, with even greater increases observed during periods of instability on the
balance beam. These findings represent some of the strongest support for the interpretation
of scalp-measured slow rhythms as representing sensorimotor integration processes, such
as error detection. However, interpreting these rhythms as representing something ‘brain’-
specific may not be so straightforward. It has been suggested that EEG signals within
15 harmonics of the fundamental stepping frequency (~1 Hz) are contaminated during
dynamic movement, meaning that the preprocessing recommendations summarized above
are particularly salient for analyses seeking to quantify BBIs using slow cortical rhythms [8].
Notwithstanding, one study compared intracranial brain signals from six epileptic patients
during different phases of a ‘center-out’ motor task—a paradigm that obviates the stepping
frequency issue—and demonstrated pronounced increases in slow rhythm (2–4 Hz) spectral
power during the movement planning phase, but not during movement itself [40].

3.3. Alpha (8–14 Hz)

Alpha rhythms were the first to be identified by visual inspection of EEG signals and
remain the most well-studied rhythms. One of the most prominent features in the awake
EEG is the increased amplitude of alpha power over the occipital lobe (visual cortex) during
eyes-closed resting conditions, which led to the widespread notion of a posterior alpha
‘generator’ and the theory that these rhythms represent brain idling [41]. However, both
concepts are increasingly contested, as alpha rhythms have been observed over practically
the entire scalp [42], sometimes even increasing in response to task demands [43]. This
encourages a viewpoint introduced by Grey Walter, an early EEG pioneer, that scalp-
measured alpha rhythms represent a spatial average of an impossibly large number of
circuit interactions (‘generators’) [44] and thus, the strength of alpha in an EEG recording is
dependent on the synchronous activity of many generators over a large distance. In the
context of BBIs and the challenges associated with volume conduction, this lends toward a
‘global’ approach to alpha band spectral power.

On the other hand, in considering a more local source, oscillatory activity in this range
that is measured over the central sulcus (‘rolandic area’) is commonly specified as a ‘mu’
rhythm. When measured directly from the cortex itself (using electrocorticography) mu
appears to originate in extragranular cortical layers (Layers I–III) and represent a regional
flow of information, from higher-order associative regions to the sensorimotor cortex, that
collectively represent cortico-thalamocortical feedback loops [45]. Thus, changes in mu
rhythms can be interpreted to represent net changes in activity along these loops, either in
the whole brain volume or in local circuits, depending on the re-referencing approach used.
Likewise, in the context of complex and dynamic movement, it has been proposed that
mu rhythms may serve as a biomarker of predictive coding: a process of matching motor
planning schemas against sensory and proprioceptive information [46,47]. Reductions
in mu power with increasing gait speed and a concomitant shift toward slow cortical
oscillations may represent greater cortical involvement and a priming of the sensorimotor
cortex to receive and respond to sensory feedback, supporting this conceptualization of
alpha/mu [48]. Supporting patterns have been observed across the gait cycle, with mu
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power increasing as the contralateral foot pushes off the ground and decreasing during the
contralateral foot’s swing phase [48,49].

3.4. Beta (15–30 Hz)

Changes in beta rhythms during movement are widely reported in the mobile imaging
literature and beta rhythms have consistently been localized to the sensorimotor cor-
tex [50,51]. Alpha/mu and beta are both suppressed during volitional movement [52,53]
and enhanced after movement termination [54]. These patterns have supported an inter-
pretation of beta as a biomarker of cortical ‘idling’, similar to alpha/mu [41]. A broader
interpretation is that beta rhythms represent delayed information transmission across corti-
cal circuits and thus, movement suppression [55]. One of the most rigorous biophysical
models of transient cortical beta rhythms to date suggests they arise from ‘bottom-up’
thalamo-cortical projections in a proximal pathway carrying sensory information to granu-
lar/infragranular layers (layers IV and V) [56]. The authors speculate that beta-mediated
delays in transmission could be due to either enhanced inhibition or excessive excitation in
supragranual layers, preventing top-down information flow (i.e., in alpha/mu rhythms).
That same model suggests an additional distal pathway that dampens excitability of a
broader cortical area via synapses in upper, supragranular layers. Thus, it is possible to
conclude that beta rhythms in layers I–III are driven by thalamic bursts which would in
turn suppress top-down information flow as represented by reduced alpha/mu. This
conceptualization of a ‘beta lock’ on information flow is supported by the faster recovery
of beta rhythms and slower recovery of alpha rhythms after movement termination [54].

3.5. Low Gamma (30–50 Hz)

The power-law scaling of the EEG power spectra means that gamma rhythms
(30–90 Hz) exhibit the smallest amplitudes, making them somewhat difficult to discern
in scalp-based EEG readings. EEG signals are also contaminated by ‘power line’ noise
at 50 or 60 Hz due to the cycle rate of alternating current powering all the devices
and lighting in the vicinity of measurement. Therefore, it is common to restrict anal-
yses to this lower end of the gamma range. Gamma rhythms have been a target of
intense scrutiny because of their alignment with spiking patterns from local cell ensem-
bles [57,58] that are, in turn, governed by interactions between inhibitory (GABA) and
excitatory (Glutamatergic) synapses. Although the balance between these inhibitory and
excitatory neurons is important, it is indeed the GABA-ergic input to these circuits which
are most important for maintaining a balanced state of excitability or criticality [59].
Scalp-measured gamma rhythms are believed to arise from either (i) a clock-like mecha-
nism in inhibitory-inhibitory circuits or (ii) reciprocally connected inhibitory-excitatory
circuits [58]. These circuits exist uniformly over the entire cortex; thus, methods for re-
solving the EEG signal in space, either through re-referencing or source localization, are
critical for the meaningful interpretation of BBI using these rhythms. A few studies have
reported gait-related modulation of low gamma [60–63], even though it is commonly
observed that EMG-measured muscle activity demonstrates oscillatory activity in the
same range, suggesting that the scalp-measured changes in low-gamma during dynamic
movement may be artifactual.

4. A Dynamical Systems Approach to Brain–Body Interactions

Studies of BBI to date have relied on statistical dependencies between brain and
body signals [64]. While these efforts have revealed novel and interesting patterns of
(a)synchrony, they generally lack grounding in established theories of motor control. For
example, the well-recognized generalized motor program theory states that motor control is
a function of motor programs that are embedded within the central nervous system [65] and
variability in task execution is considered skill/performance error. In contrast, dynamical
systems theory states that motor control is regulated by nonlinear interactions between
biological subsystems [66]. From a mathematical sense, dynamical systems theory examines
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how systems evolve over time, defining the state of the system by some set of variables,
and the behavior of that system by a set of rules. Thus, in the context of human locomotion,
dynamical systems theory implies that motor output is dependent on internal and external
conditions and variability in the system represents stability/instability in the system.
Traditional correlational approaches to quantifying BBIs are insufficient for capturing these
complexities.

The differences between these approaches are not merely mathematical; they represent
divergent ways of thinking about motor behavior. For example, in the classical sense,
movement is believed to arise from a pattern generator or collection of controllers. This
leads to an interpretation of movement variability (e.g., stride time variability during over
ground walking, reaction time variability in response to a cognitive task) as representing
error arising from maladaptive organization of the underlying cognitive or anatomical
structures (controllers). On the other hand, a dynamical systems approach leads to an
interpretation that some degree of variability is ‘normal’, representing adaptive system or-
ganization [67,68]. The differences become even more nontrivial when considering how to
relate measures of each system (e.g., EEG-measured oscillatory activity and accelerometer-
measured movement kinematics). Movement patterns are not governed strictly by output
from the nervous system, but by information, which is, in turn, generated from a recurrent
network engaging sensory and motor anatomical networks and cognitive processes. The in-
teractions between systems are inherently nonlinear and are characterized by metastability,
representing flexibility of the system around an attractor state, which cannot be captured
using the traditional linear (‘effect = structure’) approach [69]. This acknowledgement led to
growth in the fractal physiology field [70,71], which adopts a dynamical systems approach
to examine changes within and between systems. Therefore, the focus and foundation of
thought presented herein is grounded in dynamical systems theory.

If the goal is to understand control between the brain and body, then a multitude
of time- and response-scales must be considered, with an eye toward methodological
considerations to match theory, measurement, and interpretation. The behavior of dynam-
ical systems can be described by the motion towards/around an attractor, or, a location
within the state space that a system evolves over time. More specifically, a point attractor
is a value that describes a single point of stability, a limit cycle is a set of points that a
system is attracted to within the state space, and a strange attractor is an attractor with
sensitivity to initial conditions [72–74]. Dynamical systems are deterministic and chaotic if
their behavior is sensitive to initial conditions. A dynamical system with noise becomes a
stochastic process, meaning that the system itself follows a random probability distribution.
Previously, dynamical systems theory has described and characterized biological systems,
including the brain [75,76] and body [68,77,78]. More specifically, limit cycles and strange
attractors have been used to model and describe human locomotion [76,78]. For a more
comprehensive overview of dynamical systems, readers are directed elsewhere [72–74].

Within the study of BBI, there may be specific and identifiable linkages that define the
coupling between any two (or more) systems. Within the context of dynamical systems
theory, coupled oscillators refer to two (or more) oscillators that work in a manner in which
they can transfer energy/information between them. Synchronization of these coupled
oscillators occurs when these two systems become interlocked in frequency or phase [79].
Oscillations are found throughout biological systems [80] and the synchronization of
oscillators has also been examined [81].

It is worth noting that the goal to model interpretable linkages between systems may
seem obvious to some readers but contrasts against the goal of studies attempting to develop
models merely for predictive purposes, as is common in the brain–computer interface (BCI)
literature. For example, one seminal BCI study reported that artifact-free event-related
oscillatory components (akin to combining the ‘event-related’ and ‘continuous’ approaches
introduced earlier) during a walking task could serve as inputs into a recurrent neural
network that would accurately recreate movement kinematics [82]. Assuming that the
components were indeed artifact-free, this is an intriguing finding that (as the authors note)
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aligns with what is known about neuromotor control, given that the components were
roughly centered over the motor cortex. However, these approaches do not necessarily
give insight into the nature of the interactions between systems because of the inherent
‘black-box’ nature of connections in deep learning networks.

4.1. Modeling Brain–Body Interactions

A model is any representation of reality and can be presented in visual/symbolic,
qualitative, or quantitative forms. While each of these are applicable to BBI, we will focus
on quantitative models. These quantitative models can be further subdivided into a variety
of categories, including modeling of the data and modeling the system. Modeling the data
provides a method of characterizing the dynamics of BBI, with the objective of providing a
concise description of the underlying patterns within two systems. Modeling the system
refers to an analytical approach that aims to characterize and examine the dynamics of a
system, or systems, based on a priori knowledge. These models may be static or dynamic,
deterministic or stochastic, time-invariant or time-variant, linear or nonlinear, continuous
or discrete, among others. There is little doubt that these models have a place within the
study of BBI, but our focus within this review will remain strictly around modeling the
data to provide a quantitative assessment of the system(s).

In addition to the necessary processing steps required for each independent signal,
several additional considerations must be made. Throughout the study of brain–body
interactions, a mixing of deterministic and stochastic signals is inevitable. For instance,
EEG data contain a fractal structure with power-law scaling [83–85] and limit cycles have
been used to characterize joint angles throughout varying tasks [86,87]. Within the field of
biomechanics, and specifically those interested in gait, measure of stride time, width, and
length have also been used to describe the dynamics of human locomotion [88–90]. These
measures, similar to that of EEG, are not deterministic but do contain fractal structure.

The state space reconstruction of any single signal that contains complex and nonlin-
ear structure can be performed by choosing the appropriate time delay and embedding
dimension. The embedding dimension, m, is the number of embeddings to retain and
the time delay, τ, is the distance in time that each of these embeddings should be sepa-
rated. However, any two systems, or the measures being taken from any two systems,
may function on two completely scales of response. From a modeling perspective, these
asymmetries pose specific challenges, however, these nonlinearities are the focus of interest.
If the response scale between two measures of interest is asymmetric, rescaling these data
is essential to subsequent analyses.

4.2. Dynamics of a Single System

The state space reconstruction of a single system is a foundational component of many
analytical techniques used to describe the behaviors of dynamical systems. Recreation
of the state space with a single time series can be performed using Takens’ theorem [91].
This process requires a determination of the time delay, τ, and embedding dimension, m.
The time delay is often chosen using either the autocorrelation function (ACF) or average
mutual information (AMI) of the time-delayed time series. The ACF has the advantage of
a simpler calculation; however, AMI does not rely on linear correlations, which makes it
the recommended choice for chaotic systems [92,93]. Regardless of the method chosen, the
time delay should be close enough in time that it loosely approximates a derivative but far
enough in time that they are not repetitive [94].

Calculation of the embedding dimension, m, is a nontrivial task that can signifi-
cantly impact the state space reconstruction of the system. The false nearest neighbors
algorithm [95] and Cao’s algorithm [96] are two methods of estimating the embedding
dimension. Within the subsequent sections, we utilize the false nearest neighbors algorithm
to inform the choice of m. However, we acknowledge that the false nearest neighbors
algorithm is impacted by both noise [95,97] and data length [98]. With implementation
on stochastic signals, the calculation of false nearest neighbors will often not reach 0%,
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requiring interpretation by the researcher. With τ and m, the state space reconstruction
through Takens’ theorem can be performed and visualized.

Surrogate data are often used to confirm the nonlinear and dynamic structure of the
original time series [99]. Surrogate processes include a variety of techniques, including
random shuffle, Gaussian number generation, and phase randomization.

Approximate entropy provides a measure of system complexity, including both de-
terministic and stochastic processes [100]. Sample entropy is similar to the approximate
entropy statistic but offers a few important advantages [101]. Firstly, the sample entropy
statistic addresses an issue of self-matching inherent to the approximate entropy calcula-
tion. Secondly, the sample entropy statistic is less sensitive to data length [102]. Similar to
approximate entropy, a lower value indicates more self-similarity, or a more deterministic
signal, compared to a time series with a higher value.

Recurrence plots [103] and recurrence quantification analysis [104] provide a means of
reducing higher dimensional attractors to two dimensions, analogous to the way that graph
theory can be used to reduce multidimensional network interactions to more manageable
scalar values. Recurrence quantification plots can provide visualizations of the dynamics
of the system, including aspects of nonstationarity as well as periodicities and determinism
within a signal. Further, these plots, and the quantitative analysis of these plots, provide
robust analysis of deterministic and stochastic signals. The generation of a recurrence
plot requires the reconstruction of the attractor (i.e., trajectory matrix) through time delay
methods (i.e., autocorrelation function or average mutual information). A tolerance, r,
value is also required to determine a specified minimum number of neighbors, enhancing
the visualization of the system and the quantification of the plot space.

4.3. Coupling between Two Systems

Quantifying the coupling, or interdependence, between systems has an obvious level
of importance across many areas of medicine and the biological sciences. Examining the
topological mappings of two systems within the reconstructed state space can provide a
good visual of interdependence, represented by continued and close proximity between
the two systems in time and space. Although we will not cover these concepts in depth,
mutual or cross-predictions made from one system to the other, visualized within the state
space, can indicate interdependence between the systems.

Extensions of the approximate entropy, sample entropy, and recurrence quantification
analyses that include crossed time series also exist. Similar to the univariate case, cross-
approximate entropy and cross-sample entropy are regularity statistics that provide indices
of coupling between two time series [100,101,105]. When reconstructing the state space of
a single system, it is necessary to determine the optimal parameters of L and m, however
it becomes necessary to determine mutually agreeable values for these parameters when
examining coupled systems. In this case, the cross autocorrelation function and mutual
false nearest neighbors algorithms are commonly used.

Because of the nature of both cross-ApEn and cross-SampEn from an m and r perspec-
tive, it is essential that both are calculated on the standardized time series. Standardization
of the time series, in the simplest case, can refer to subtracting the mean and dividing by
the standard deviation. However, other transforms may be applied to one or both of the
time series.

Cross recurrence analysis (Cross RQA) is an extension of the univariate case, allowing
for the examination of the dynamic relations between two signals [104,106]. One advan-
tage of cross RQA, particularly in example cases such as the examination of brain–body
interactions, is that it does not require equal sample lengths. Thus, in cases where data are
collected at different sampling frequencies, cross recurrence analysis provides a means of
examining the dynamics of the two systems before any resampling techniques might be
performed to create time-matched data.
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5. Worked Examples

To make the concepts discussed above more concrete and approachable, we provide
examples of coupling between (i) ‘known’ systems of predetermined dynamics and (ii)
empirical data collected from EEG and inertial measurement units (IMUs) during an
overground walking task.

5.1. Known Systems: Van Der Pol Oscillators

This section is separated into two key parts. The first section includes a progression
of simulated data, beginning with a simple harmonic oscillator, building to the use of a
limit cycle with nonlinear damping, and concluding with a mathematical example of the
synchronization of two coupled systems.

Within the first example (Figure 1), we utilize sine and cosine functions with vary-
ing amplitudes and imposed drift. The state space reconstructions of these systems are
provided in the leftmost column, with the system responses across time provided in the
middle column, and the recurrence plots in the rightmost column. As a baseline, two sine
waves are shown concurrently within the top row of figures, followed by an adjustment
to the amplitude of one of the signals in the second row. An adjustment to the amplitude
of one of the functions results in an obvious difference in the state space reconstruction,
which subsequently removes any recurrences from the cross-recurrence plot (using the
same radius). Similarly, shifting the mean upwards of the amplitude-adjusted system
(i.e., third row) similarly impacts the cross-recurrence quantification. These two examples
highlight the importance of considering the scale of the systems being considered. Further,
drift in a signal was simulated in the fourth row. This drift (fourth row, middle column)
provides a similar response to issues related to data acquisition or baseline changes in the
responses of a system. The result, or consequences, of this drift on the cross-recurrence plot
further highlights the importance of the acquisition and processing steps.

Building on the first example, the second example utilizes the Van der Pol system. The
Van der Pol system has been commonly used to model biological systems such as cardiac dy-
namics but has also been used within the gait literature to simulate stride intervals [107,108]
and neuronal firing patterns [109]. The second set of examples (Figure 2) include the state
space reconstructions of the systems in the leftmost columns with the system response
across time in the middle column and cross-recurrence plots in the rightmost column. Build-
ing on the first set of examples, we included two Van der Pol systems’ with two different
damping parameters. The non-dampened system (blue, solid line) provides a comparison
to the examples provided in Figure 1. The second and third sets of examples (second row)
utilize the same damping coefficients, however, one of the systems shown in the third
set of examples (third row) inverts one of the the systems to provide a visual example of
how such a modification will impact the state space reconstruction and cross-recurrence
plot. These modifications driven by the damping coefficients are included to illustrate how
changes to one’s internal dynamics (e.g., nerve conduction rate, motor plan selection) may
alter the dynamic patterns exhibited at the behavioral (movement) level, and thus, the
shared dynamics between the two observed systems.
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5.2. Empirical Data: EEG and Center of Mass Acceleration during Walking

To provide an example of the processing methods associated with a dynamical systems
approach to quantifying BBIs we include data from two sample subjects (H05, H07). These
data are provided as a means to demonstrate real-world BBIs measured using EEG and
IMUs and modeled according to the above theoretical framework, but without any intention
to derive statistically supported or clinically relevant conclusions. All protocols were
approved by the University of Utah Institutional Review Board.
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5.3. Data Acquisition

EEG data were collected from a 32-channel ActiCap with sintered Ag/AgCl sen-
sors and a wireless LiveAmp (Brain Products, Gliching, Germany) amplifier. Baseline
impedances were ≤25 kOhm and data were recorded at 250 Hz (BrainVision Recorder,
Brain Products) during 170 s of walking at a preferred pace back and forth between two
lines (7 m apart) in a well-lit biomechanics laboratory (12 m× 7 m). Approximated center of
mass (COM) motion was collected via inertial measurement units (IMU) (Opal, v2, APDM
Inc., Portland, OR, USA) that were secured over the lumbar spine with an elastic waist belt
and recorded a sampling rate of 128 Hz. Data were synchronized at the beginning of each
recording using a TTL pulse delivered from the IMUs, using Moveo Explorer (APDM Inc.),
to the LiveAmp via a 2.5 mm jack trigger port. This synchronization required tethering
the LiveAmp to the external sync box of the IMUs; but the systems were untethered (i.e.,
wireless) after the sync was delivered and before walking began.

5.3.1. EEG Data Processing

EEG data were processed offline in Matlab (2022a, Mathworks, Natick, MD, USA)
with tools implemented in EEGLAB [110] and Fieldtrip [111] toolboxes. Briefly, data
were imported (pop_loadbv) and filtered (pop_eegfiltnew) to 1–50 Hz. Adaptive mixture
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independent component analysis (AMICA) was used (runamica15) in conjunction with an
automatic classifier (ICLabel) to remove components that were classified as non-brain (i.e.,
ocular, EMG, EKG, channel noise, line noise, or ‘other’). Noisy channels were removed
if they were poorly correlated with their estimate, as reconstructed from neighboring
channels. Because this step was performed after an initial ICA step (thereby removing
similar parts of the signal across channels), and because dynamic movement is known to
induce inhomogenous noise across scalp electrodes, we selected a threshold of r ≤ 0.6 for
this step, which is more liberal than the default threshold of r ≤ 0.85. Removed channels
were subsequently interpolated using a spherical spline and the data were subjected to a
second AMICA to again remove all non-brain components, after rank adjustment for the
interpolated channels.

EEG data were re-referenced to the average scalp potential to account for the effects
of volume conduction. To match the resolution of COM data, continuous EEG data were
upsampled to 256 Hz (ft_resampledata) and epoched by creating a sliding window of
512 samples (2 s) long with 99.6% overlap to achieve a functional resolution of 128 Hz.
Time-varying spectral power density was quantified (ft_freqanalysis) for each epoch using
a multi-taper method based on discrete prolate Slepian sequences [112] from 1–50 Hz with a
smoothing factor of 3 Hz. Time series data were extracted from six channels approximating
the left somatomotor cortex (FC5, C3, CP5) and right somatomotor cortex (FC6, C4, CP6)
to represent oscillatory activity in alpha (8–13.5 Hz), beta (14–29.5 Hz), and low gamma
(30–50 Hz) bands. The power spectra across these steps is depicted in Figure 3. The power
spectra (mean +/−95%CI) for each subject across all channels and windows is displayed in
Figure 4.
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Figure 4. Electroencephalogram (EEG) and center of mass (COM) data from a single subject (H05)
EEG data include alpha, beta, gamma, and combined theta/delta (SCO) bands. Black lines represent
averages across three intrahemispheric channels. COM data include anteroposterior (AP), mediolat-
eral (ML), vertical (VT), and resultant (RES) accelerations. Data from the additional subject (H07) is
provided in the Supplementary Materials.

5.3.2. COM Data Processing

Approximate center of mass data were obtained in sensor-fixed coordinate systems
and rotated into a body-fixed reference frame that was initially aligned with the global
reference frame. The resulting kinematics yielded body-fixed linear accelerations in the
anteroposterior (AP), mediolateral (ML), and vertical (VT) directions. Accelerations were
filtered using a fourth-order Butterworth filter with an 8 Hz cutoff frequency. A resultant
was calculated using AP, ML, and VT to examine the coupling between total acceleration
and the EEG readings. All analyses related to the dynamics of these systems and the
coupling between them were performed in Python [113] (v3.10.9). Specific modules include
NumPy [114], pandas [115], SciPy [116], PyRqa [117], and EntropyHub [118]. Time series
data from EEG and COM are provided in Figure 5. In addition to the channel-wise data,
averages for the left and right hemispheres were calculated for each band (i.e., SCO, alpha,
beta, and gamma) (Figure 4, first and second columns). An example of the center of mass
data from the anteroposterior (AP), mediolateral (ML), vertical (VL), and resultant (RES)
accelerations are provided in Figure 4 (third column).
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Figure 5. Autocorrelation and average mutual information functions for electroencephalogram (EEG)
data from a single subject. EEG data include alpha, beta, gamma, and combined theta/delta (SCO)
bands. Black lines represent averages across three intrahemispheric channels.

Descriptive plots of EEG data (Figures 3 and 4) are rarely reported in BBI literature,
with most authors depicting only statistical results (e.g., changes in time-locked spectral
perturbations across group-averaged gait cycles). Given the lack of standards in processing
EEG data, such reporting could improve transparency about (i) initial signal quality and (ii)
the effect (if any) of preprocessing on the power spectra. It is clear from Figure 3 that the
pre-processing steps (filtering and blind source separation (ICA)) had the greatest effect
on slow-cortical oscillations (SCOs), which is to be expected given the overlap with the
frequency of a typical gate cycle. Although none of the channels-of-interest were identified
as being of poor quality, we justified the selection of a more liberal threshold for bad-
channel detection than is typically employed. Thus, the fast gamma ‘spiking’ observed
in all channels (Figure 4) may be due to movement and thus, may be an indicator of poor
signal quality. One solution proposed by Nordin and colleagues (2018) is to collect data
concomitantly from externally facing ‘noise’ electrodes. These signals may be particularly
effective at cleaning the types of artifacts we observed here, yet this equipment is not
universally available. Moreover, automatic subspace reconstruction (ASR), a popular
artifact removal technique, was not applied to these data since acquisition in the current
study only included 3 s of standing ‘rest’, which is generally considered to be insufficient
to serve as ‘calibration’ data (e.g., ~1 min of data acquired at rest).

5.3.3. Parameter Selection

Proper determination of the time delay, τ, and embedding dimension, m, are essential
components of assessing the dynamics of a time series. For thoroughness, we provide the
autocorrelation and average mutual information of the time series in Figure 5 (additional
examples are provided in SM3 and SM4). Considering the data from both subjects, we
have chosen a time delay of τ = 16 to coincide with a plateau in the AMI plots and the
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interpretability of this value relative to the 128 Hz sampling rate. An embedding, m = 3, was
chosen for the state space reconstruction based on the limited reduction in the percentage
of false nearest neighbors at higher embeddings (Figure 6). The state space reconstruction
of EEG and COM data for each subject is provided in Figure 7, having used m = 3 and
τ = 16.
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Figure 6. Percent false nearest neighbors estimations for electroencephalogram (EEG) and center
of mass (COM) data from each subject (columns). EEG data include alpha, beta, gamma, and
combined theta/delta (SCO) bands averaged across three intrahemispheric channels. COM data
include anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES) accelerations.
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Figure 7. State space reconstruction for electroencephalogram (EEG) and center of mass (COM) data
from each subject (columns). EEG data include alpha, beta, gamma, and combined theta/delta (SCO)
bands. COM data include anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES)
accelerations. {m = 3, τ = 16}.

The distinct patterns observed in COM data are expected from this type of task. The
attractor pattern in AP, ML, and VT accelerations can be attributed to more or less con-
sistent movements in those planes from step-to-step, with deviations attributed to the
natural perturbations in the gait cycle. Patterns in the EEG data are less intuitive. There
are clear perturbations in the system that appear to differ by band. On one hand, the
patterns are similar between hemispheres, which would be expected during a complex,
bipedal task such as overground walking. On the other hand, the systems appear to
exhibit a random state-space trajectories. This is consistent with early efforts revealing
that EEG rhythm dynamics cannot be distinguished from filtered noise (modeled using
surrogate/shuffled data) [119]. However, despite their random appearance, state-space
reconstructions can distinguish seizure EEGs from resting state EEGs [120] and are believed
to represent system multistability, a property defined by having multiple stable states
(attractors). This would be expected from brain motor circuits that must constantly adapt to
maintain coordination across multiple systems to maintain a behavior as complex as over-
ground walking [121]. Taken together, the randomness embedded in these reconstructions
supports that scalp-measured EEG activity represents complex interactions between many
interacting generators (rather than a single generator), while the dynamic and deterministic
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aspects may allow for valuable insights into the nature of those interactions important for
neuromotor control.

Although deviations from attractor patterns (i.e., large distances between cycles)
may be meaningful, it is also noteworthy that the most prominent deviations are seen in
reconstructions of SCOs (subject H05) and reconstructions of gamma band activity (both
subjects). It was previously noted in this review that activity in these bands may suffer the
most from movement-related artifacts. Therefore, it may be possible to interpret these plots
as containing valuable information about signal quality. We recommend future work to
explore the use of state space reconstructions as part of an iterative denoising pipeline to
remove parts of the signal that lead to implausible state-space trajectories.

5.3.4. Sample Entropy and Recurrence Quantification Analysis

The regularity and dynamics of the univariate time series were examined with sample
entropy and recurrence quantification analysis. Sample entropy was calculated on the
EEG and COM data across a range of embedding dimensions, m = [{2, 3, 4, 5}, and radii,
r = {0.1, 0.15, . . . 0.4} with a fixed time lag, τ = 16 (Figures 8 and 9). For a given template
length, sample entropy typically falls as the tolerance, r, is increased. This behavior can be
observed in both subjects when m = {2, 3, 4} and r > 0.15. However, we highlight the rise
in sample entropy for r = {0.1, 0.15} for H07 (e.g., SCO, alpha, and beta). This response is
likely a function of walking frequency and the combined choice of τ = 16 and m = {4, 5}.
A similar, more exacerbated, response can be observed in the COM data (Figure 9) where
templates m > 2 follow the same behavior. Comparisons for EEG and COM data across both
subjects are provided in Figure 10. In addition to the sample entropy measures for the EEG
and COM data, we provide the percent recurrence from RQA to further accentuate how
the behaviors of these systems can be observed through a variety of techniques. Sample
entropy and recurrence quantification analysis are different techniques that necessitate
different steps and considerations; however, the concurrent use of these tools can provide
several benefits to overall interpretation—especially in subsequent steps where the shared
dynamics of these systems are considered.

Based on the patterns observed in Figures 8 and 9, specifically the instability of the
sample entropy measure at higher template lengths and lower radii, templates of m = 3
and m = 2 were chosen to quantify the regularity of EEG and COM data, respectively
(with r = 0.2 and τ = 16 in all cases). To aid with visualization, we scale sample entropy to
the peak sample entropy value at the subject level, providing a relative reference to peak
irregularities between EEG and COM data for each subject.

Because different template lengths were selected to assess signal regularity, and sample
entropy values were scaled for each subject and each system (EEG, COM), we cannot
directly compare sample entropy between subjects. However, the relative patterns of
complexity and dynamics of the COM data (Figure 10) appear similar: The ML accelerations
exhibited the greatest complexity while AP accelerations exhibit the greatest stability. As
expected, this indicates a more repetitive structure of movement in the AP (and VT)
directions and less structured movement in the ML direction. The high degree of recurrence
in VT accelerations makes intuitive sense given that the vertical trajectory is highly stable
in overground walking. Likewise, both subjects exhibited greater complexity in slower
rhythms (SCO and alpha bands) and greater stability in gamma rhythms.
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Figure 8. Sample entropy for electroencephalogram (EEG) data from each subject (columns). EEG
data include alpha, beta, gamma, and combined theta/delta (SCO) bands averaged across three
intrahemispheric channels.

The patterns for SampEn and REC are largely complementary in that SCOs exhib-
ited the lowest REC/greatest SampEn and gamma band activity exhibited the greatest
REC/lowest SampEn in both participants. Beyond the possibility that this pattern indicates
movement-based artifact, this pattern is consistent with prior reports of coupling between
high-gamma activity across an error-detection network (i.e., anterior cingulate, posterior
parietal cortex, and sensorimotor cortex) and the gait cycle [49]. Considering the biophysi-
cal interpretations discussed in the first part of this review, these patterns are suggestive
of flexible long-range interactions between the motor cortex and the rest of the brain that
constrains locally coordinated activity.
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Figure 9. Sample entropy for center of mass (COM) data from each subject (columns). COM data
include anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES) accelerations.
{m = (2, 3, . . . 5), r = (0.1, 0.15, . . . 0.40), τ = 16}.
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bands. COM data include anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES) 
accelerations. Sample Entropy: {EEG: m = 3, r = 0.2, 𝜏 = 16; COM: m = 2, r = 0.2, 𝜏 = 16}. RQA: {EEG: m 
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observed across subjects; darker shades represent higher sample entropy and recurrence rates from 
RQA. 

Figure 10. Sample entropy and percent recurrence (RQA) for electroencephalogram (EEG) data from
each subject (columns). EEG data include alpha, beta, gamma, and combined theta/delta (SCO)
bands. COM data include anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES)
accelerations. Sample Entropy: {EEG: m = 3, r = 0.2, τ = 16; COM: m = 2, r = 0.2, τ = 16}. RQA: {EEG:
m = 3, r = 0.3, τ = 16; COM: m = 3, r = 0.75, τ = 16}. Data were scaled relative to the highest value
observed across subjects; darker shades represent higher sample entropy and recurrence rates from
RQA.
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5.3.5. Coupling between Brain and Body Systems

With a better understanding of the dynamics and regularity of the univariate EEG and
COM data, we shift our focus to the coupling between these two systems with cross-sample
entropy and cross-recurrence quantification analysis. As was performed in the univariate
case, cross-sample entropy for left and right hemispheres were calculated across a range of
template lengths, m = {2, 3, 4, 5}, and radii, r = {0.1, 0.15, . . . , 0.4}, and τ = 16 (Figure 11).
Notably, the behavior of the cross-sample entropy statistic follows more closely to the
expected behavior when changing m and r. Based on these data, a comparison of cross
sample entropy between subjects (m = 3, r = 0.2, τ = 16) is provided in Figure 12.
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posterior (AP), mediolateral (ML), vertical (VT), and resultant (RES) accelerations. Solid lines denote 
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Figure 11. Cross-sample entropy for electroencephalogram (EEG) data from a single subject. EEG
data include alpha, beta, gamma, and combined theta/delta (SCO) bands. COM data include
anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES) accelerations. Solid
lines denote the left hemisphere; dashed lines denote the right hemisphere. {m = (2, 3, . . . 5),
r = (0.1, 0., . . . 0.40), τ = 16}. Plots for the additional subject (H05) can be found in the Supplementary
Materials.
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and resultant (RES) accelerations. {m = 3, r = 0.2, 𝜏 = 16}. Data were scaled relative to the highest 
value observed across subjects; darker shades represent a higher cross-sample entropy (i.e., more 
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The cross-recurrence plots for combinations of EEG (i.e., alpha, beta, gamma, SCO) 
and COM (i.e., AP, ML, VT, RES) data from a single subject are provided in Figure 13 (two 
additional subjects provided in SM7 and SM8). Unlike the cross-sample entropy approach, 
cross-recurrence plots can be analyzed by a bevy of different, complementary metrics. De-
terminism (DET)—the percent of the plot comprised of diagonal lines—and recurrence 
rate (REC)—the percent of the plot that contains an intersection of the systems—are the 
most common and intuitive values reported in the cross-recurrence literature. In other 
words, REC and DET represent the number of recurrences and the duration of those re-
currences, both interpreted as stability in coupling between two systems. We provide a 
visual comparison between hemispheres and across subjects for both the percent deter-
minism and recurrence in Figure 14. 

Figure 12. Heatmaps for the cross-sample entropy for electroencephalogram (EEG) and center of
mass (COM) data from each subject (columns). EEG data include alpha, beta, gamma, and combined
theta/delta (SCO) bands. COM data include anteroposterior (AP), mediolateral (ML), vertical (VT),
and resultant (RES) accelerations. {m = 3, r = 0.2, τ = 16}. Data were scaled relative to the highest
value observed across subjects; darker shades represent a higher cross-sample entropy (i.e., more
asynchronous patterns between EEG and COM data).

The cross-recurrence plots for combinations of EEG (i.e., alpha, beta, gamma, SCO)
and COM (i.e., AP, ML, VT, RES) data from a single subject are provided in Figure 13
(two additional subjects provided in SM7 and SM8). Unlike the cross-sample entropy
approach, cross-recurrence plots can be analyzed by a bevy of different, complementary
metrics. Determinism (DET)—the percent of the plot comprised of diagonal lines—and
recurrence rate (REC)—the percent of the plot that contains an intersection of the
systems—are the most common and intuitive values reported in the cross-recurrence
literature. In other words, REC and DET represent the number of recurrences and the
duration of those recurrences, both interpreted as stability in coupling between two
systems. We provide a visual comparison between hemispheres and across subjects for
both the percent determinism and recurrence in Figure 14.
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Figure 13. Cross-recurrence quantification (cRQA) for electroencephalogram (EEG) and center of 
mass (COM) data from a single subject. EEG data include alpha, beta, gamma, and combined 
theta/delta (SCO) bands. COM data include anteroposterior (AP), mediolateral (ML), vertical (VT), 
and resultant (RES) accelerations. {m = 3, r = 0.2, 𝜏 = 16, tw = 1}. Plots for the additional subject (H05) 
can be found in the Supplementary Materials. 

Figure 13. Cross-recurrence quantification (cRQA) for electroencephalogram (EEG) and center of
mass (COM) data from a single subject. EEG data include alpha, beta, gamma, and combined
theta/delta (SCO) bands. COM data include anteroposterior (AP), mediolateral (ML), vertical (VT),
and resultant (RES) accelerations. {m = 3, r = 0.2, τ = 16, tw = 1}. Plots for the additional subject (H05)
can be found in the Supplementary Materials.

Visual inspection of the cross-sample entropy plots (Figure 12) reveals clear differences
in the coupling between EEG and COM accelerations across participants that are unique
to each participant, unlike the more similar between-subject patterns revealed from the
EEG-only and COM-only plots discussed to this point. Perhaps most notable is the lesser
regularity (greater cross-SampEn) and shorter periods of regularity (lesser DET) between
broadband EEG complexity and ML acceleration complexity. The lack of distinct EEG
band-specific patterns of synchrony may represent an artifact of combining signals across
different channels (three in each hemisphere), whereas explicit modeling of interactions
between channel-wise signals may reveal interesting patterns [122]. Of course, following
the biophysical origins reviewed earlier, it is reasonable to expect that information flows
across all microcircuits—across laminar divisions, in both a top-down and a bottom-up
fashion, and between thalamus and cortex—to support and regulate a behavior as complex
as overground walking. On the other hand, this pattern may represent the functional
relevance of broadband power or the ‘offset’ in these combined channels during volitional
movement. There is a growing interest in two so-called ‘aperiodic’ properties of the EEG
spectrogram, the offset and the aperiodic exponent, as the rate of decay that follows the 1/f
scaling of the power spectra [21]. It is not uncommon to correct for broadband activity by
scaling spectral power by the offset, yet this offset appears to be directly related to cortical
activity [123,124]. Future studies employing these methods on larger samples may consider
exploring this possibility by quantifying coupling between dynamic aperiodic activity and
kinematics.
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relative to the highest value observed across these subjects; darker shades represent higher deter-
minism and recurrence, respectively. 

Visual inspection of the cross-sample entropy plots (Figure 12) reveals clear differences 
in the coupling between EEG and COM accelerations across participants that are unique 

Figure 14. Heatmaps of percent determinism (det) and percent recurrence (rec) from cross-recurrence
quantification for electroencephalogram (EEG) and center of mass (COM) data from each subject
(rows). EEG data include alpha, beta, gamma, and combined theta/delta (SCO) bands averaged
across three intrahemispheric channels. COM data include anteroposterior (AP), mediolateral (ML),
vertical (VT), and resultant (RES) accelerations. {m = 3, r = 0.2, τ = 16, tw = 1}. Data were scaled relative
to the highest value observed across these subjects; darker shades represent higher determinism and
recurrence, respectively.

Notwithstanding, a subtle deviation from these broadband patterns is observed be-
tween the complexity of VT accelerations and greater stability (REC, cross-SampEn) and
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longer duration of stability (DET) in coupling with faster rhythms (beta, gamma) than with
slower rhythms (SCOs, alpha). It is possible that this represents a step-by-step braking
mechanism, such that the motor cortex is being primed to adapt to new sensory information
with each step. Given that this mechanism appears to deteriorate with age [125], comparing
these patterns between young and old groups is warranted.

6. Future Directions

There is increasing interest to study the brain during dynamic movement and to
quantify BBIs, yet most of this work has defined those interactions through statistical, linear
dependencies between the constituent signals themselves. These approaches have revealed
interesting and replicable patterns, yet the biological basis for those patterns and their
interpretation in the context of a dynamical systems approach to human movement is
unclear. In this review, we sought to (i) synthesize what is known about the biophysical
interpretation of scalp-measured rhythms from EEG, (ii) advise on best practices for ‘clean-
ing’ those data, and (iii) introduce the reader to the proper use of two tools—cross-sample
entropy and recurrence quantification analysis—that may be useful for future BBI studies.
To the authors’ knowledge, the worked example included with this review represents a
novel approach to modeling BBIs through a dynamical systems lens. Through this example,
we revealed patterns of coupling that were common across two participants, but the extent
to which they represent healthy or disordered neuromotor control remains an open topic
worthy of further exploration. Moreover, although this review focused on BBIs along a
relatively short time scale in a laboratory environment, biological signals operate across
a variety of scales and frequencies, including infradian rhythms lasting longer than 24 h.
Thus, BBIs in these longer time scales measured in unconstrained, free-living environments
warrant further investigation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23146296/s1, Figure S1. Electroencephalogram (EEG) and
center of mass (COM) data from a single subject. EEG data includes alpha, beta, gamma, and
combined theta/delta (SCO) bands. COM data includes anteroposterior (AP), mediolateral (ML),
vertical (VT), and resultant (RES) accelerations. Figure S2. Autocorrelation and average mutual
information functions for electroencephalogram (EEG) and center of mass (COM) data from a
single subject. EEG data includes alpha, beta, gamma, and combined theta/delta (SCO) bands.
COM data includes anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES)
accelerations. Figure S3. Cross-sample entropy for electroencephalogram (EEG) data from a single
subject. EEG data includes alpha, beta, gamma, and combined theta/delta (SCO) bands. COM data
includes anteroposterior (AP), mediolateral (ML), vertical (VT), and resultant (RES) accelerations.
{m = (2, 3, . . . 5), r = (0.1, 0.15, . . . 0.40), τ = 16}. Figure S4. Cross-recurrence quantification (cRQA) for
electroencephalogram (EEG) and center of mass (COM) data from a single subject. EEG data includes
alpha, beta, gamma, and combined theta/delta (SCO) bands. COM data includes anteroposterior
(AP), mediolateral (ML), vertical (VT), and resultant (RES) accelerations. {m = 3, r = 0.2, τ = 16, tw = 1}.
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