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Abstract: Metal-organic frameworks are of great interest to scientists from various fields. This
group also includes organic–inorganic hybrids with a perovskite structure. Recently their structural,
phonon, and luminescent properties have been paid much attention. However, a new way of
characterization of these materials has become luminescence thermometry. Herein, we report the
structure, luminescence, and temperature detection ability of formate organic–inorganic perovskite
[C(NH2)3]M(HCOO)3 (Mg2+, Mn2+, Zn2+) doped with Cr3+ ions. Crystal field strength (Dq/B) and
Racah parameters were determined based on diffuse reflectance spectra. It was shown that Cr3+ ions
are positioned in the intermediate crystal field or close to it with a Dq/B range of 2.29–2.41. The
co-existence of the spin-forbidden and spin-allowed transitions of Cr3+ ions enable the proposal of an
approach for remote readout of the temperature. The relative sensitivity (Sr) can be easily modified by
sample composition and Cr3+ ions concentration. The luminescent thermometer based on the 2E/4T2g

transitions has the relative sensitivity Sr of 2.08%K−1 at 90 K for [C(NH2)3]Mg(HCOO)3: 1% Cr3+

and decrease to 1.20%K−1 at 100 K and 1.08%K−1 at 90 K for Mn2+ and Zn2+ analogs, respectively.

Keywords: MOF; hybrid perovskite; luminescence; thermometry; chromium(III) ions; temperature sensing

1. Introduction

The noticeable development of hybrid organic–inorganic perovskites (HOIPs) has
been observed in recent years. The materials with the general formula ABX3, where A is an
inorganic or organic cation (e.g., NH4

+, (CH3)2NH+), B is a divalent metal ion (e.g., Pb2+,
Zn2+), and X a monovalent anion (e.g., Cl−, HCOO−) have attracted increasing attention
due to their extraordinary properties [1–3]. Hybrid materials, e.g., CH3NH3PbCl3, have
been particularly implemented in state-of-the-art photovoltaic devices [4–6]. However,
their potential usefulness is significantly greater due to their characteristics, including
ferroelectricity [7,8], magnetic [9], optoelectronic [4], and luminescent properties [10–13].
The characteristics of investigated materials can be widely tuned by the replacement of A,
B, and X linkers [10,14].

Among various materials, the perovskite-like metal-organic frameworks (MOFs) con-
taining formate anions (HCOO−) exhibit unique features, such as ferroelectricity, mul-
tiferroicity, and luminescence [1,10,15]. Particularly, the group of Cr-based materials
shows strong luminescence and weak concentration quenching [2,10,15]. Nevertheless,
temperature-dependent luminescence is one of the most outstanding phenomena. The
temperature change induces the change in energy level populations, which makes formate-
based compounds containing Cr3+ ions sufficient materials for non-contact temperature
sensing [10].

The optical properties of the transition metals (TM), including chromium trivalent ions,
can be affected by the crystal field (CF) strength [13,14,16]. The change in the CF strength
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leads to the change in the dominant transition type [17]. The Cr3+ ions luminescence
may contain two particular emission bands: narrow spin-forbidden 2Eg → 4A2g (around
700 nm) and broad spin-allowed 4T2g → 4A2g (around 750 nm). In low temperatures, the
narrow 2Eg→ 4A2g emission is dominant. The increase in temperature induces the thermal
population of the 4T2g level and, consequently, promotes the broad 4T2g → 4A2g emission.
The narrow emission takes place in a strong CF environment. The spin-allowed emission,
in turn, occurs in a weak crystal field strength. The coexistence of both types of emission
indicates the intermediate CF strength. The progressive increase in temperature leads
to luminescence quenching. The significant influence of temperature on spectroscopic
characteristics of Cr3+-based materials has become the basis of the thermometric model
development [10,13].

Luminescence temperature sensing has attracted increasing attention recently [10,18–22].
Non-contact thermometry has great potential for application in scientific, industrial, and biomed-
ical areas [23,24]. Among various advantages, the high accuracy and single measurement speed
are noteworthy. The possibility of the plunge measurements going beyond typical thermal
imaging limitations makes this approach a promising tool for industrial process monitoring [10].

Temperature sensing is mainly based on the detectable change in the luminescent
properties induced by the change in the temperature. A thermometric model can be
developed by monitoring changes in lifetime, peak position, as well as the insensitivities
of specific peaks [20,25]. The comparison of the intensities of two temperature-dependent
emission bands allows us to determine a thermometric parameter called fluorescence
intensity ratio (FIR or ∆). Such an approach is called the ratiometric method and has been
the most frequently reported application recently [18]. The methods relying on FIR analysis
provide high sensitivity and make it possible to implement the independent sensing ranges,
which leaves room for model optimization [13,26].

The vast majority of reported thermometric compounds are based on inorganic host
materials with rare-earth (RE) elements as dopants [11,25,27,28]. However, the materials
containing transition metal ions exhibit promising thermometric characteristics comparable
to the solutions based on RE ions [29,30]. The highly sensitive thermometric properties
have been reported, inter alia, for the perovskite materials containing ethylammonium
cation and Cr3+ ions [10]. The development of luminescent thermometers based solely on
chromium trivalent ions is a noteworthy approach enabling to deviate from the RE-based
materials. Another notable strategy for the development of the ratiometric thermometer,
presented in this work, is not only considering the luminescence of Cr3+ ions but also using
the luminescence of the amine group, such as guanidinium cation ([C(NH2)3]+ denoted as
GA+). The multicomponent thermometric model may be a promising approach toward
higher sensitivity.

Herein, we report the synthesis as well as the structural and spectroscopic properties
of the first metal–organic framework luminescent thermometers based on both GA+ and
Cr3+ ion luminescence. Investigated series of [GA]M1−xCrx(HCOO)3, where M = Mg2+,
Mn2+, Zn2+, and x = 0, 0.01, 0.03, 0.05, have been synthesized and investigated as promising
thermometric materials. The selection of three distinct cations was motivated by the fact
that Mn2+ ions are the only ones that are optically active, and Zn2+ and Mg2+ ions create
structures with different properties compared to transition metal ions such as Mn2+. All
series exhibit outstanding temperature-dependent emission, which has become the basis
of the thermometric analysis. This work is an attempt to describe the effect of the mate-
rial composition on the luminescent properties with particular emphasis on luminescent
thermometry. The optimization of the sensing range estimation is particularly considered.

2. Materials and Methods

The starting materials include formic acid HCOOH (POCH, ≥98%), ethanol C2H5OH
(POCH, 96%), guanidine carbonate salt [GA] [C(NH2)3]2CO3, (Sigma Aldrich, 99%) (Sigma
Aldrich, Saint Louis, MI, USA), zinc(II) chloride ZnCl2 (Sigma Aldrich, 99.999%) (Sigma
Aldrich, Saint Louis, USA), manganese(II) perchlorate hydrate Mn(ClO4)2·6H2O (Sigma



Sensors 2023, 23, 6259 3 of 14

Aldrich, ≥99%) (Sigma Aldrich, Saint Louis, USA), magnesium(II) chloride anhydrous
MgCl2 (Sigma Aldrich, 99.9%), and chromium(III) chloride CrCl3 (Sigma Aldrich, 99%).
All precursors were commercially available and were used for the synthesis without any
further purification. In this study, a series of [GA]M1−xCrx(HCOO)3 where M = Mn, Mg,
Zn, and x = 0, 1%, 3%, 5%, were obtained by using the low-diffusion synthesis method. To
grow [GA]M1−xCrx(HCOO)3 crystals, at first formic acid (8.7 mmol) and GA (4.2 mmol)
was dissolved in distilled water (20 mL). This solution was added by an aqueous solution
(10 mL) containing 1.0 mmol of Mn(ClO4)2·6H2O/ZnCl2/MgCl2 for the pure samples. The
amount of Cr3+ ions was calculated based on the molarity of the M2+ ions (see Tables S1–S3).
The resulting mixed solution was kept undisturbed and allowed to evaporate slowly. After
two weeks, the crystals were harvested, washed with ethanol, and dried in the air. The
color of the crystals was light pink for Mn or white for Mg and Zn. It also varied from
green to dark green depending on the concentration of Cr3+ ions.

The powder X-ray diffraction (XRD) patterns were obtained on an X’Pert Pro X-ray
diffraction system (Malvern Panalytical, Malvern, UK) equipped with a PIXcel detector
(Malvern Panalytical, Malvern, UK) and using CuKα radiation (λ = 1.54056 Å). The Raman
spectra were measured using a Bruker FT 110/S (Billerica, MA, USA) spectrometer operating
at 1064 nm (Nd:YAG). The spectra were collected in a spectral range of 75–3200 cm−1 and with
a spectral resolution of 2 cm−1. The diffuse reflectance spectra were obtained using a Varian
Cary 5E UV–VIS–NIR spectrometer (Varian, Palo Alto, CA, USA). The temperature-dependent
emission spectra were obtained with a Hamamatsu PMA-12 (Hamamatsu Photonics, Iwata,
Japan) photonic multichannel analyzer combined with a BT-CCD sensor. As an excitation
source, a 405 nm laser diode was used. The temperature was controlled by a Linkam THMS600
stage (Linkam, Tadworth, UK).

3. Results and Discussion
3.1. Structural Properties

The phase purity of all samples was confirmed by the XRD patterns with a simulation
of the single-crystal structural data of [GA]Mn1−xCrx(HCOO)3 (Figure 1). The samples with
Mn2+ and Zn2+ crystallized in the orthorhombic Pnna crystal structure [31], and the details
of the crystal structure of analogs with Mg2+ remain unknown. In general, the formate
in-connected MnO6 framework crates cavities occupied by GA+ cations (see Figure 2). The
right-shifting of the diffraction lines was observed due to the partial replacement of Mn2+

(CR = 81 Å), Mg2+ (CR = 86 Å), and Zn2+ ions (CR = 88 Å) by Cr3+ ions (CR = 75.5 Å). The
crystal radius (CR) was obtained from Shannon [32]. No additional phases were detected,
which indicates that the Cr3+ ions were substituted by the cation M.

The Raman spectra of the [GA]M1−xCrx(HCOO)3 series, where M = Mg2+, Mn2+,
Zn2+, and x = 0, 0.01, 0.03, 0.05, are marked in Figure 3a as GAMg, GAMn, and GAZn,
respectively. All spectra are very similar and are consistent with the reported orthorhom-
bic Pnna symmetry of all crystals [31,33–35]. However, some differences can be seen
in the band shifts and the number of components, which are due to the different sizes,
masses, and electronegativity of the metal cations that build the crystals. All these param-
eters affect the sizes of unit cells, causing Raman bands for [GA]M(HCOO)3 (M = Mg2+,
Mn2+, Zn2+) to be shifted relative to each other (Figure 3b,c and Table S4). Regarding
[GA]Zn(HCOO)3, the upshifts observed for [GA]Mg(HCOO)3 are most pronounced for
lattice modes observed below 300 cm−1 since they are very sensitive to the long-range order
in the crystal. In addition, strong shifts towards higher wavenumbers, up to 12.3 cm−1 for
[GA]Mg(HCOO)3 and 10.3 cm−1 for [GA]Mg(HCOO)3, are also observed for NH stretching
vibrations above 2850 cm−1 (Figure 3d), which further indicate the weakest hydrogen
bonds in the [GA]Mg(HCOO)3 crystal and stronger for [GA]Zn(HCOO)3. The upshift of
7.1 cm−1 when Zn2+ ions are replaced by Mg2+ was evidenced by bands associated with
vibrations of oxygen atoms directly coordinated by metal ions, i.e., ν2 + ν5 that have been
assigned to symmetric C–O stretching vibrations coinciding with C–H in-plane bending
modes, respectively (Figure 3b) [36]. A much weaker upshift is observed for the stretching
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C–N modes, reaching 3.1 cm−1 for [GA]Mg(HCOO)3 and 3.2 cm−1 for [GA]Mn(HCOO)3
related to [GA]Zn(HCOO)3 (Figure 3a). This finding indicates very similar confinement of
GA+ cations and similar dynamics in the perovskite void for M = Mg2+ and Mn2+.
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Figure 3. The Raman spectra of the [GA]M1−xCrx(HCOO)3 series, where M = Mg2+, Mn2+, Zn2+, and
x = 0, 0.01, 0.03, and 0.05 (a) and the enlarged areas with bands corresponding to stretching C–N (b),
symmetric C–O stretching and C–H in-plane bending (ν2 + ν5) (c), and stretching N–H modes (d).

The introduction of Cr3+ ions into the crystal structure of [GA]M(HCOO)3 (M = Mg2+,
Mn2+, Zn2+) at such low concentrations causes very subtle effects on the spectra, not
exceeding 1 cm−1. This confirms that aliovalent doping up to 5 mol% does not cause
significant structural changes in the orthorhombic Pnna structure.

3.2. Optical Properties and Temperature Detection

The diffuse reflectance spectra (DRS) of representative samples [GA]M1−xCrx(HCOO)3,
where M = Mg2+, Mn2+, Zn2+, and x = 0.05, are shown in Figure 4. The intensity of the DRS
spectrum is influenced by many factors, such as the size and position of crystallites [10].
Therefore, the DRS is used only for characterizing the localization of the energy levels
of Cr3+ ions in each compound and the effect of the concentration of Cr3+ ions on the
spectrum’s shape. Two primary broad bands localized around 16,828 cm−1 (594 nm) and
22,522 cm−1 (444 nm) for Zn-samples, 17,130 cm−1 (583.8 nm) and 23,162 cm−1 (431.7 nm)
for Mg-samples, 17,050 cm−1 (586.5 nm) and 23,162 cm−1 (431.7 nm) for Mn-samples can
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be distinguished in Figure 3. These two bands are assigned to the spin-allowed transitions
4A2g → 4T1g and 4A2g → 4T2g of Cr3+ ions. In addition, a very weak and sharp peak
centered at approximately 14,550 cm−1 (687.3 nm) is associated with the spin-forbidden
transition from the 4A2g ground state to the 2E excited level. It was found that when
the concentration of Cr3+ increases, the position of the 4A2g → 2E lines slightly changes
(Figures S1 and S2). However, for the Zn-compounds, the 4A2g → 2E absorption peak is
invisible (Figure S3).
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Figure 4. Diffuse reflectance spectra of representative samples [GA]M1−xCrx(HCOO)3 (M = Mg2+,
Zn2+, Mn2+ and x = 0.05) measured at 300 K.

Noticeably, in the spectrum of Mn-samples, very weak and sharp peaks appeared at
29,240 cm−1 (342 nm) and 24,570 cm−1 (407 nm), which are attributed to the absorption of
Mn2+ ions from 6A1 ground state to 4E, 4T2, and 4A1, 4E excited levels, respectively. The
intensity of these bands decreases as the content of Cr3+ increases (Figures S1–S3).

In addition, the intense band located at around 46,729 cm−1 (214 nm) can be assigned
to host absorption, and it moved to 44,643 cm−1 (224 nm) for the Mn-based sample. What
is more, the bad is much broader because of overlapping with the Mn-O charge transfer
band (CTB) (Figure S4).

The crystal field Dq, Racah, B, and C parameters were calculated for Cr3+-doped
samples (see Table 1) by using the same methodology as presented in reference [10]. Crystal
field strength (CFS) Dq/B parameter is in the range of 2.29–2.39 for GAMn and 2.23–2.41
for GAMg samples. These results mean that Cr3+ ions are located in the intermediate ligand
field, and energy separation between 2E and 4T2g excited levels is not significant. The Dq/B
parameter is slightly higher, around 2.41–2.43 for CAZn analogs. The calculated values of
Dq/B are similar to those reported recently for DMANaCr (2.29) [15]. However, for some
EA and DMA analogs (EANaCr 2.18 [7], EANaAlCr 2.21 [7], DMAKCr 2.21 [37], EAKCr
2.21 [37]) reported Dq/B values are much lower than for the investigated perovskites. On
the other hand, the formate perovskites with AM+ cation comprising Cr3+ ions exhibit a
strong crystal field (AMNaCr 2.743 [38], AMNaAlCr 2.55 [38]).

The emission spectra of investigated hybrid organic–inorganic formates [GA]M1−xCrx
(HCOO)3 (M = Mg2+, Mn2+, Zn2+, and x = 0.01, 0.03, 0.05) recorded at 80 K consists of the
intense and narrow emission lines of Cr3+ ions located at 686 nm and 698 nm attributed
to the spin-forbidden 2E→ 4A2g transitions (Figure 5). The broad emission band, which
spans from 700 nm to 1000 nm, assigned to the spin-allowed transition from the 4T2g

excited level to the 4A2g ground state is also observed [11,13,16,39]. As can be seen in
Figures 5b,d and S5–S7, the emission intensity of GAMg and GAMn samples increased



Sensors 2023, 23, 6259 7 of 14

with the concentration of dopant ions, while the intensity of 1% Cr3+ and 5% Cr3+ in the
GAZn analog are comparable. The samples with 3% of Cr3+ are out of the trend. However,
the nature of this behavior is unspecified. The collation of the representative samples
[GA]M1−xCrx(HCOO)3 (M = Mg2+, Mn2+, Zn2+, and x = 0.05) showed that the most intense
luminescence exhibits a sample comprising Mg2+ ions. The emission intensity of Mn2+

and Zn2+ samples is significantly less. The substitution of different metal M2+ ions in
the crystal structure of guanidine formate have an impact on the intensity relationships
between spin-forbidden and spin-allowed transition of Cr3+ ions. Only for the GAMg
compound 2E→ 4A2g is emission more intense than spin-allowed transition; for GAMn
and GAZn analogs, 4T2g → 4A2g transition dominates. It is worth noting that no emission
of Mn2+ ions was detected, probably due to energy reabsorption by chromium ions.

Table 1. The collation of crystal field parameters and energies of electron transitions of the investi-
gated series of [GA]M1−xCrx(HCOO)3 (M = Mg2+, Mn2+, Zn2+, and x = 0.01, 0.03, 0.05).

Parameters
GAMn: GAMg: GAZn:

1%Cr3+ 3%Cr3+ 5%Cr3+ 1%Cr3+ 3%Cr3+ 5%Cr3+ 1%Cr3+ 3%Cr3+ 5%Cr3+

4A2g–2E (cm−1) 14,535 14,536 14,537 14,552 14,552 14,547 14,540 14,539 14,540
4A2g–4T2g

(cm−1)
15,545 15,959 15,735 15,828 15,917 16,259 15,640 15,544 15,500

4A2g–4T1g

(cm−1)
21,972 22,156 22,439 22,703 22,682 22,952 22,062 21,901 21,869

Dq (cm−1) 1555 1555 1574 1583 1592 1626 1564 1554 1550

B (cm−1) 650 675 686 709 692 676 648 641 643

Dq/B 2.39 2.30 2.29 2.23 2.30 2.41 2.41 2.43 2.41

C (cm−1) 3242 3190 3166 3122 3157 3184 3247 3264 3259

C/B 4.13 4.25 4.62 4.40 4.57 4.71 5.01 5.09 5.07
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Figure 5. Emission spectra of [GA]M1−xCrx(HCOO)3 (M = Mg2+, Mn2+, Zn2+, and x = 0.05) at 80 K (a)
and influence of Cr3+ ions concentration of emission intensity (b–d) of the investigated samples.

The emission spectra in the function of temperature were recorded within the range
of 80–300 K with 10 K steps. As can be seen in Figures 6 and S8, the main component
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of the photoluminescence spectra belongs to the spin-allowed transitions of Cr3+ ions.
Only for the GAMg sample containing 1% dopant, the 2E emission is much more intense
than the band located at 795 nm. Generally, 2E→ 4A2g emission quenches significantly
with increasing temperature, while the 4T2g → 4A2g emission of Cr3+ is more stable. It is
due to the thermally stimulated energy transfer from 2E to 4T2g energy level. Obtained
results confirmed the occurrence of the intermediate ligand field in the nearest environ-
ment of Cr3+ ions. The mechanism of Cr3+ luminescence quenching is a well-known phe-
nomenon in the literature and assumes crossing the 4T2g excited state parabola with the 4A2g
one [11,13,16,39].
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(c) representative samples, respectively.

The significant dependence of photoluminescence intensity on temperature may be
an interesting behavior that can be exploited for non-contact temperature readout based
on luminescence. Figure 7 demonstrates a schematic representation of the approach to
temperature determination. In this model, the Fluorescence Intensity Ratio (FIR) parameter
can be defined as a ratio of the 2E → 4A2g (spectral range 670–710 nm marked as I1)
to the 4T2g → 4A2g (spectral range 750–1050 nm represented as I2) transition of Cr3+

ions, respectively.
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The proposed model was tested on the investigated [GA]M1−xCrx(HCOO)3 (M = Mg2+,
Mn2+, Zn2+, and x = 0.01, 0.03, 0.05) hybrid organic–inorganic perovskites. It is clear that
the increase in temperature causes decreasing in FIR (Figure 8), and the highest value of
FIR was obtained for the GAMg: 1% Cr3+ sample. To further comparison of the observed
changes in thermometric parameters and to compare their features, the absolute (Sa) and
relative (Sr) sensitivities were calculated as follows:

Sa =

∣∣∣∣dFIR
dT

∣∣∣∣ (1)

and

Sr =
1

FIR

∣∣∣∣dFIR
dT

∣∣∣∣ (2)

where dFIR represents the change of fluorescence intensity ratio at temperature change ∆T.
The collation of Sa and Sr changes of the investigated hybrid organic–inorganic perovskites
are presented in Figures 9 and S9. Generally, the Sa and Sr values are the highest at the
80–120 K range and decrease with increasing temperature. However, the sensitivity changes
with sample composition and concentration of Cr3+ ions. For GAMg: Cr3+ compounds, the
significant relative sensitivity exhibits sample with the lowest concentration of dopant ions
and equals 2.08%K−1 at 90 K. With increasing Cr3+ ions concentration, the Sr decreased to
around 1%K−1. Substitution of Mg2+ by Mn2+ caused a decrease of sensitivity to 1.20%K−1,
but the optimal Cr3+ ions concentration was determined to be 3%. Similar trends are
observed for GAZn: for Cr3+ analogs, however, the changes of Sr with chromium ions
concentration are negligible, and the highest Sr is 1.08%K−1 at 90 K for GAZn: 1% Cr3+.
Additionally, the repeatability of the thermal sensing performance of representative samples
was verified by the circling heat/cool process (Figure S10). It can be seen that only a small
variation from the initial value was observed, and the temperature parameter ∆ is reversed
and repeated overheating/cooling cycles.
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In fact, only one optical thermometer based on hybrid organic–inorganic formate
perovskites [EA]2NaCr0.21Al0.79(HCOO)6 with a sensitivity Sr of 2.84%K−1 at 160 K is
known [10]. Obtained values of relative sensitivities were compared with the Sr values of
other inorganic and hybrid organic–inorganic luminescent thermometers (Table 2). The
results show that investigated [GA]M1−xCrx(HCOO)3 (M = Mg2+, Mn2+, Zn2+, and x = 0.01,
0.03, 0.05) has the potential to be applied as a low-temperature luminescent thermometer.

Table 2. Collation of exemplary luminescent thermometers with their highest relative sensitivity (Sr)
at working temperature (T) 1.

Compound Sr (%K−1) T (K) Reference

[GA]Mg(HCOO)3: 1% Cr3+ 2.08 90 This work

[GA]Zn(HCOO)3: 1% Cr3+ 1.08 90 This work

[GA]Mn(HCOO)3: 3% Cr3+ 1.20 100 This work

[EA]2NaCr0.21Al0.79(HCOO)6 2.84 160 [10]

(Me2NH2)3[Eu3(FDC)4(NO3)4]·4H2O 2.7 170 [40]

Sr(HCOO)2:Eu2+/Eu3+ 3.8 293 [41]

Ln-cpda (Ln = Eu, Tb) 16 300 [42]

TbMOF@3%Eu-tfac 2.59 225 [43]

[Eu2(qptca)(NO3)2(DMF)4](CH3CH2OH)3perylene 1.28 293 [44]

Bi2Ga4O9:Cr3+ 0.7 290 [45]

Bi2Al4O9:Cr3+ 1.24 290 [46]
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Table 2. Cont.

Compound Sr (%K−1) T (K) Reference

Sr2MgAl22O36:Cr3+ 1.7 310 [47]

ZnGa2O4:Cr3+ 2.8 310 [48]

SrAl12O19:Mn4+ 0.27 393 [49]

LaPO4:Nd3+ 7.19 303 [50]

MgTiO3:Mn4+ 1.2 93 [51]

La2MgTiO6: Cr3+, V4+ 1.96 165 [11]
1 GA—guanidine, EA—ethylammonium, H2FDC—9-fluorenone-2,7-dicarboxylic acid, H3cpda—5-(4-
carboxyphenyl)-2,6-pyridinedicarboxylic acid, TbMOF—[Tb2(bpydc)3(H2O)3]·nDMF, H2bpydc—2,2-bipyridine-
5,5′-dicarboxylic acid, tfac—trifluoroacetylacetonate, H4qptca—1,1′:4′,1′ ′:4′ ′,1′ ′ ′-quaterphenyl-3,3′ ′ ′,5,5′ ′ ′-
tetracarboxylic acid, DMF—dimethylformamide.

4. Conclusions

Three series of samples [C(NH2)3]M(HCOO)3 (Mg2+, Mn2+, Zn2+) doped with 1%, 3%,
and 5% of Cr3+ ions were synthesized using the low-diffusion synthesis method. Their
structural, phonon, and luminescent properties were investigated in detail. It was shown
that the incorporation of Cr3+ ions into the crystal structure of investigated hybrid organic–
inorganic perovskites does not affect the phase purity of the samples. Based on diffuse
reflectance spectra, crystal field strength (Dq/B) and Racah parameters were determined.
It was found that Cr3+ ions are located in the intermediate crystal field or close to it with a
Dq/B range of 2.29–2.41. The investigation of sample composition showed that the highest
emission intensity exhibits GAMg: 5% Cr3+ sample, while the lowest one GAZn: 5% Cr3+.
The presence of both the spin-forbidden and spin-allowed transitions of Cr3+ ions at a
broad temperature range enables the characterization of these materials as luminescence
thermometers. It turned out that the relative sensitivity of Sr depends on the sample
composition and concentration of Cr3+ ions. The highest relative sensitivity Sr = 2.08%K−1

at 90 K has [GA]Mg(HCOO)3: 1% Cr3+. Replacement of Mg2+ by Mn2+ or Zn2+ reduced
the sensitivity to 1.20%K−1 at 100 K and 1.08%K−1 at 90 K for [GA]Mn(HCOO)3: 3% Cr3+

and [GA]Zn(HCOO)3: 1% Cr3+, respectively.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23146259/s1, Figure S1. Diffuse reflectance spectra of
a series of [GA]Mn1−xCrx(HCOO)3 (x = 0, 0.01, 0.03, 0.05) measured at 300 K.; Figure S2. Dif-
fuse reflectance spectra of a series of [GA]Mg1−xCrx(HCOO)3 (x = 0, 0.01, 0.03, 0.05) measured
at 300 K.; Figure S3. Diffuse reflectance spectra of a series of [GA]Zn1−xCrx(HCOO)3 (x = 0,
0.01, 0.03, 0.05) measured at 300 K.; Figure S4. Deconvolution of the absorption spectrum of
[GA]Mn1−xCrx(HCOO)3 (x = 0.05) measured at 300 K.; Figure S5. Low-temperature emission spectra
of [GA]Mg1−xCrx(HCOO)3 (x = 0.01, 0.03, 0.05).; Figure S6. Low-temperature emission spectra of
[GA]Mn1−xCrx(HCOO)3 (x = 0.01, 0.03, 0.05).; Figure S7. Low-temperature emission spectra of
[GA]Zn1−xCrx(HCOO)3 (x = 0.01, 0.03, 0.05).; Figure S8. Temperature-dependent emission spectra of
[GA]Mn1−xCrx(HCOO)3 x = 0.01 (a), [GA]Mn1−xCrx(HCOO)3 x = 0.03 (b), [GA]Mg1−xCrx(HCOO)3
x = 0.01 (c), [GA]Mg1−xCrx(HCOO)3 x = 0.03 (d), [GA]Zn1−xCrx(HCOO)3 x = 0.01 (e), and [GA]Zn1−x
Crx(HCOO)3 x = 0.03 (f) samples.; Figure S9. Influence of Cr3+ ions concentration on absolute
sensitivity (Sa) (a–c) of [GA]M1−xCrx(HCOO)3 (M = Mg2+, Mn2+, Zn2+, and x = 0.01, 0.03, 0.05)
hybrid perovskites.; Figure S10. Repeatability of ∆ temperature parameter of I1/I2 emission eval-
uated at 80 K and 100 K during 10 heating/cooling cycles of (a) [GA]Mg1−xCrx(HCOO)3 x = 0.01,
(b) [GA]Mn1−xCrx(HCOO)3 x = 0.03, and (c) [GA]Zn1−xCrx(HCOO)3 x = 0.01.; Table S1. Quantities
of precursors used for the syntheses of the series of [GA]Mn1−xCrx(HCOO)3.; Table S2. Quantities
of precursors used for the syntheses of the series of [GA]Mg1−xCrx(HCOO)3.; Table S3. Quantities
of precursors used for the syntheses of the series of [GA]Zn1-xCrx(HCOO)3.; Table S4. Lattice
parameters and calculated factors (doct, average MII–O bond length; Voct, MIIO6 octahedral volume;
σ2, bond angle variance; ∆, distortion index) [10.1107/S0021889811038970] for [GA]Mn(HCOO)3 and

https://www.mdpi.com/article/10.3390/s23146259/s1
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[GA]Zn(HCOO)3 based on the crystal data published in [10.1002/chem.200901605].; Determination
of δT. References [25,52,53] are cited in Supplementary Materials.
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11. Stefańska, D.; Bondzior, B.; Vu, T.H.Q.; Grodzicki, M.; Dereń, P.J. Temperature Sensitivity Modulation through Changing the
Vanadium Concentration in a La2MgTiO6:V5+,Cr3+ double Perovskite Optical Thermometer. Dalt. Trans. 2021, 50, 9851–9857.
[CrossRef]

12. Wu, Y.; Fan, W.; Gao, Z.; Tang, Z.; Lei, L.; Sun, X.; Li, Y.; Cai, H.L.; Wu, X. New Photoluminescence Hybrid Perovskites with
Ultrahigh Photoluminescence Quantum Yield and Ultrahigh Thermostability Temperature up to 600 K. Nano Energy 2020,
77, 105170. [CrossRef]
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14. Ptak, M.; Dziuk, B.; Stefańska, D.; Hermanowicz, K. The Structural, Phonon and Optical Properties of [CH3NH3]M0.5Cr:XAl0.5-x
(HCOO)3 (M = Na, K.; X = 0, 0.025, 0.5) Metal-Organic Framework Perovskites for Luminescence Thermometry. Phys. Chem.
Chem. Phys. 2019, 21, 7965–7972. [CrossRef]

https://doi.org/10.1016/j.ccr.2021.214180
https://doi.org/10.1039/C8DT04246B
https://www.ncbi.nlm.nih.gov/pubmed/30516206
https://doi.org/10.1039/D3TC00401E
https://doi.org/10.1039/C5TA04904K
https://doi.org/10.1007/s10311-021-01306-8
https://doi.org/10.1021/acs.chemrev.0c00107
https://www.ncbi.nlm.nih.gov/pubmed/32786671
https://doi.org/10.1039/C6CP05151K
https://doi.org/10.1093/nsr/nwaa232
https://doi.org/10.1002/adma.202005755
https://doi.org/10.1021/acsami.2c19957
https://doi.org/10.1039/D1DT00911G
https://doi.org/10.1016/j.nanoen.2020.105170
https://doi.org/10.1016/j.jallcom.2022.168653
https://doi.org/10.1039/C9CP01043B


Sensors 2023, 23, 6259 13 of 14
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