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Abstract: This paper aims to provide a metaheuristic approach to drone array optimization applied
to coverage area maximization of wireless communication systems, with unmanned aerial vehicle
(UAV) base stations, in the context of suburban, lightly to densely wooded environments present in
cities of the Amazon region. For this purpose, a low-power wireless area network (LPWAN) was
analyzed and applied. LPWAN are systems designed to work with low data rates but keep, or even
enhance, the extensive area coverage provided by high-powered networks. The type of LPWAN
chosen is LoRa, which operates at an unlicensed spectrum of 915 MHz and requires users to connect
to gateways in order to relay information to a central server; in this case, each drone in the array
has a LoRa module installed to serve as a non-fixated gateway. In order to classify and optimize the
best positioning for the UAVs in the array, three concomitant bioinspired computing (BIC) methods
were chosen: cuckoo search (CS), flower pollination algorithm (FPA), and genetic algorithm (GA).
Positioning optimization results are then simulated and presented via MATLAB for a high-range
IoT-LoRa network. An empirically adjusted propagation model with measurements carried out on
a university campus was developed to obtain a propagation model in forested environments for
LoRa spreading factors (SF) of 8, 9, 10, and 11. Finally, a comparison was drawn between drone
positioning simulation results for a theoretical propagation model for UAVs and the model found by
the measurements.

Keywords: wireless sensor networks; IoFT; LoRa; coverage optimization; channel modeling;
bioinspired computing

1. Introduction

Wireless communications have an intricate relationship with the technologies of the
Internet of Things (IoT), a fairly new concept made for uniting and connecting all sorts
of devices, services, and commodities in the contemporary world. Many of such wireless
data-transmitting protocols associated with IoT are high-speed networks to favor the heavy
data usage of mobile users, such as wide-area networks (WAN) and 4G-LTE or 5G systems.
However, it is not always that these high-power, high-data-rate services are needed. Often,
devices with low battery consumption cannot bear to operate at such power-consuming
paces, which characterizes a need for another kind of network: the low-power wide-area
networks (LPWAN).

LPWAN are systems designed to work with low data rates but still keep the extensive
area coverage provided by high-powered networks. Thus, a private and secure network
for the connection of low-power devices can be established, keeping financial costs and
battery consumption at a minimum. For instance, wireless sensor networks, or WSNs, are
known to function effectively with models of different types of LPWAN, as seen in [1]. One
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of such types is long-range, also known as LoRa, which is currently extensively studied
and the most readily available.

In [2], the authors discourse over the functioning of LoRa, its benefits, and its chal-
lenges. Given that it is a bidirectional manner of sending data between users and transmit-
ters, a LoRaWAN can easily export information such as geolocation, signal-interference-
plus-noise ratio (SINR), and received signal strength indicators (RSSI). This kind of flex-
ibility and inherent monitoring of the network makes the integration between receiving
sensors and transmitting drones a promising implementation.

As LoRa modules are lightweight and generally have their own separate battery, they
can easily be attached to UAVs without interfering with their flight capabilities or power
consumption. Given that the battery life of drones is generally low due to their high-power
flight demands, LoRa is an economic alternative to make drone-array networks work.

For this paper, the focus is set on how to optimize an array of UAVs for a LoRaWAN
network, to give the best coverage area possible, in which all network users/sensors are
satisfactorily connected. In order to accomplish this coverage area maximization, some
metaheuristic optimization techniques are to be used to minimize the outage probability
of sensors. These will also determine which details each sensor will use to connect to
the drone gateways so that they can obtain maximum coverage and maximum data rate.
Therefore, a simulation was constructed in MATLAB software, simulating a forested,
suburban environment, with the purpose of giving results that shall be applicable to the
region in which the measured data were collected.

The major contribution that the work herein aims to achieve is the analysis between
simulated and measured signal propagation results in light-to-medium forested envi-
ronments via UAVs, using the campus of the Federal University of Pará (or UFPA) as a
reference within the Amazon rainforest area. The optimization technique is then applied to
position these UAVs in order to better attend to the needs of users and maximize coverage
inside of this context.

The structure of this text is divided into said categories: Section 3 explains the method-
ology utilized in our studies, divided into three subsections: LoRa Propagation Models,
Bioinspired Computing Algorithms, and Drone Positioning Simulations; Section 3 displays
results of the simulations for both theoretical and measured propagation models. Section 4
discourses on the meaning and relevance of said results. Finally, Section 5 sums up the
paper as its conclusion, as well as providing future study alternatives.

2. Related Works

In the literature, there are related works that deal with the objectives proposed herein
separately, but it is difficult to find any that tie them all together in a single study. For
instance, there are many articles that implement a LoRaWAN with the use of UAVs, as well
as numerous ones that propose drone-array optimization via metaheuristics, and some
select few that address a propagation model for UAVs in forested areas. Therefore, some
studies that have inspired the study presented in this paper are to be explained below.

In [3], a model for a LoRa system of data collecting for precision agriculture is proposed.
The aim of this study is to perceive how close must the drone in this type of setting fly
by the sensors in order to collect data within a given quality threshold. It considers the
pathing of only one drone in a plantation grid that has various sensors separated from
each other by a certain distance k. Some metrics are considered in the study for both small
and large plantation fields, such as the minimum autonomy time for the drone, the packet
transmission times for different SF, and the maximum number of sensors that a drone can
attend for different SF.

The authors of [4] present a rich survey about the usage of UAVs in real-time LoRa
applications. Not only does it contain much of the technical and theoretical information
about its bit rate, spreading factor, transmission power, coding rate, bandwidth, and carrier
frequencies around the world, but a plethora of papers showing UAV-based modules and
UAV-based gateways are also evident within the survey. Some of the most interesting
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are [5], which focuses on the detection of gas leakages with air and humidity sensors,
with a camera feed enhanced via machine learning; [6] in which a wireless sensor net-
work is proposed for marine environmental monitoring, with compelling real-life results;
and [7], a study on adaptable usage between LoRa and Wi-Fi for high-data management in
agricultural applications.

Many articles are available in the literature about the employment of metaheuristic
computation and machine learning in order to coordinate or facilitate the control, pathing,
and positioning of drone arrays. One of such is found in [8], whence optimization methods
such as the genetic algorithm (GA) and simulated annealing (SA) with the intent of better
positioning UAV base stations (UAV-BS) propagating in the 5G spectrum. The results of the
simulation are then analyzed for an area of 80 square kilometers, and the objective function
to be minimized is the difference between the total area and the integration of areas covered
by each of the UAVs.

In [9], however, a heuristic algorithm was proposed to function on the optimization of
drone positioning in a 3D environment in order to supply a good area of coverage and data
rates for densely populated user regions. The chosen optimization method in this paper
is particle swarm optimization (PSO), and due to its inherent velocity, the results are very
promising. The algorithm can also determine whether the number of drones is satisfactory
or redundant, as well as the maximum data rate of users which can be served by a UAV.

It seems that many of the works found in the literature for drone-array coordination
and positioning are, in fact, based on PSO and its variants. For instance, in [10], PSO is
utilized to perform a simpler task of finding an optimal position in a 3D space for UAVs
in emergency network situations. Similar results are attested in [11], in which UAVs are
deployed for disaster management situations. However, in [12], a cooperative search
algorithm (based on PSO) optimizes the density and distance between micro-UAVs in a
swarm-based micro-drone system. The objective of the study is to prevent UAV clustering
in heavily occupied areas, thus distributing some of the drones to underpopulated areas
within the search space, potentially avoiding local optima and widening the system’s
coverage area.

Some surveys on the usage of machine learning for UAV positioning and signal
propagation, which are interesting to denote, are contained in [13,14]. The former contains
a plethora of pertinent information about utilizing UAV arrays in communication systems
in general, but also draws attention to many articles that deal with trajectory optimization,
cellular network planning, and channel modeling via machine learning solutions. The
latter, thus, exposes papers that prefer to use a swarm-based learning approach. It also
contains studies that analyze drone applications in IoT and that aim to optimize the area of
coverage of signals, which are both related to the work made in this paper.

Contributions

Given all the information provided above on works related to the studies contained
in this paper, our contributions can be compared to the rest of the literature. No papers
were found on the propagation of LoRa, or LPWANs in general, in forested environments.
Additionally, no study has conciliated the usage of UAV arrays and their positioning
optimizations with channel modeling in forested environments. Finally, there are not
many studies on the usage of UAVs for signal propagation in Amazon rainforest regions,
let alone on drone positioning and coverage optimization. This paper aims to fill these
necessities and to enrich the literature about LoRa propagation and wireless sensor network
optimization in forested areas.

Table 1 denotes the contributions of this work compared to others cited throughout
this section.
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Table 1. Contributions of this study in relation to other relevant works.

Work Multiple
UAVs? LoRa-Related? Channel

Modeling? Environment Optimization
Method

[3] – X – Rural –

[5] – X – Rural,
Suburban

Machine
Learning

[6] – X – Coastal –

[7] – X – Rural –

[8] X – – Urban GA, SA

[9] X – – Urban PSO

[10] X – – Urban PSO

[11] X – – Urban PSO

[12] X – – Urban PSO, Bayesian

[13] (Survey) X – X Several Several

[14] (Survey) X – – Several Several

This Study X X X Suburban,
Forested CS, FPA, GA

3. Methodology

To better expose the methods applied to our studies, it is important to divide them
into three subsections. The first part shall deal with the propagation models that were
used as a basis for the simulation of UAV positioning. The second part is about the three
bioinspired computing algorithms that were chosen to perform the optimizations. The last
part, therefore, explains how the drone-array positioning simulations are generated and
conducted via MATLAB and the coding behind them.

3.1. Classical Propagation Model for UAV Base Stations

Herein lie the mathematical equations of propagation modeling of wireless signals
utilized in the algorithms. A strong theoretical basis for these is of great importance, as it
signifies, in the optimization process, the capacity of the algorithms to perceive a user as
connected or not, and to which drone should it connect, based on the measurements of
received power (Pr, as is most referred to in the text) and signal-to-interference-plus-noise
ratio (SINR).

The trigonometric equations on the positioning of drones are found below in (1) and (2).
Figure 1 is used to represent the trigonometric variables visually. These equations are found
in the work of [15], which is, overall, one of the most utilized propagation models for UAV
systems in the literature, as well as in other articles by the same author [16–20].

d =
√

R2 + h2 (1)

θ = arctan
h
R

(2)

In which R is the distance from the projection of the drone on the user plane to the
user itself, h is the UAV height in relation to the user plane, d is the actual distance from
user to UAV, and θ is the elevation angle of the UAV in relation to the user.

So, a theoretical model for drone signal propagation is described below, again inspired
by the works in [15]:

The model conveys both line-of-sight (LoS) and non-line-of-sight (NLoS) losses and is
represented in Equations (3) and (4), and the probability of having a LoS connection for an
elevation angle of θ is given by (5).
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PLLoS(dB) = 20 log (
4π f d

c
) + ζLoS, (3)

PLNLoS(dB) = 20 log (
4π f d

c
) + ζNLoS, (4)

PLOS =
1
Z

, Z = 1 + α exp(−β[
180
π

θ]− α) (5)

Figure 1. Drone positioning trigonometric variables and schematic.

In which f is the propagated frequency, and ζLoS and ζNLoS are loss constants related
to LoS and NLoS propagations. Furthermore, α and β are environmental constants that
are necessary to adapt this model to urban, suburban, or rural ambiences, and PNLOS =
1− PLoS. Values of d and θ are thus according to (1) and (2).

Hence, the average path loss between LoS and NLoS situations is described as:

PLavg(R,h) = PLoS × PLLoS + PNLoS × PLNLoS, (6)

which is then, by applying Equations (3)–(6), transformed into:

PLavg = 20 log (
4π f d

c
) +

(ζLoS + ZζNLoS)

(1 + Z)
(7)
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So, considering transmitting and receiving antenna gain, (8) denotes the received
power of the user based on the path loss:

Pr(dB) = Pt + Gt + Gr − PLavg (8)

It is important to denote this is a value unique for each user connected to each drone.
In light of this, received power between drones in an array system might cause UAV-to-
UAV interference and, as such, has to be considered in the model. In that manner, the SINR
metric comes into activity, which determines how many users are connected to the UAV
array and the quality of its signal. As said previously, SINR is crucial for the algorithm to
decide which UAV should connect to which user, and its implementation is given by:

SINRi,j =
Pri,j

q + ∑NUAV
k=1,k 6=j Pri,j

, (9)

where received power values for the j-th drone and the i-th user are then transformed
into SINR by dividing it for the noise floor level q added to the average of the sum of the
received powers of the other drones (that is, the UAV-to-UAV interference). The formula
was derived in accordance with SINR information in [20,21]. To calculate this formula more
easily, SINR and Pr values should be expressed linearly.

The value of the noise floor q, in our calculations, is the sensitivity value of the chosen
spreading factor (SF) of 10, which results in q(SF10) = −132 dBm [22].

In theory, higher SF values provide a greater coverage area and robustness to noise
but lower bit rates, and lower values enhance the bit rate of the signal but sacrifice some
areas of operation.

Table 2 refers to the signal sensitivity range and its respective SF values for a bandwidth
of 125 KHz and a carrier frequency of 915 MHz, which are the recommended LoRa operation
values for Europe and Brazil. The FSK mode (short for frequency shift-keying) specified
here is another type of modulation that is also present in LoRa gateways as an alternative
to CSS, albeit generally less effective, and it is only listed as means of comparison.

Table 2. SF reference values of LoRa for f = 915 MHz and BW = 125 kHz. Source: [22,23].

Mode Bit Rate (kbps) Sensitivity (dBm) ∆ (dB) Estimated Value

FSK 1.2 −122 – N/A
SF 12 0.293 −137 +15 10–12 km
SF 11 0.537 −134.5 +12.5 10 km
SF 10 0.976 −132 +10 8 km
SF 9 1.757 −129 +7 6 km
SF 8 3.125 −126 +4 4 km
SF 7 5.468 −123 +1 2 km
SF 6 9.375 −118 −3 N/A

3.1.1. Empirical Propagation Models for LoRa in Forested Environments

Measured data to better represent medium to densely forested environments were
acquired at the Federal University of Pará (UFPA) in a series of measurement campaigns
conducted by the staff of LCT-UFPA (in Portuguese: Laboratório de Computação e Teleco-
municações).

An 8-user LoRa gateway module configured by an Arduino UNO was used, as well as
2 compact omnidirectional antennas with a maximum transmitting power sensitivity of
around 10 dBm and 1 drone, to which we attached the gateway, to realize measurements at
different heights.

The drone was kept at a fixed place, thus emulating its usage as an LPWAN gateway
transmitting data (Tx), as it transmitted down to the receiver antenna (Rx), which varied its
position. The Rx was attached to a car, and thus further distancing away from the UAV in
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order to measure the variation of RSSI and SINR values according to distance and to the
LoRa mode in which the gateway was configured.

Figure 2 displays the path taken by the car for all measurement campaigns. The
journey encompassed a traveling distance of around 2.9 km, sprawling from the UFPA bus
garage (in red) all the way to CEAMAZON (in green). The path chosen is painted in blue,
and the position of the drone, fixed in all campaigns, is represented as a purple circle in the
picture. Often, measurements would be halted exactly halfway in order to exchange the
drone’s battery packs and then resume normally. A photo showing the Rx antenna attached
to the car and the utilized drone in mid-air is represented in Figure 3. Notice that there is a
blue 3D-printed module on the back of the drone, made to attach it to the LoRa gateway.

Figure 2. Path taken in all measurement campaigns at UFPA.

Figure 3. Setup showing the receiving antenna and drone with LoRa gateway.
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SF values of 8, 9, 10, and 11 were selected, as well as heights of 6 m, 24 m, 42 m, and
60 m above ground. This amounts for a total of 16 measurement journeys and a total of
2824 points measured.

For the path loss models based on the measured data obtained, the log-distance path
loss and close-in free space model were selected (abbreviated to LDPL and CI, respectively),
which are widely used as generic models that are able to adapt parameters to an environ-
ment of interest [24]. In the work in [25], the authors used some of the different path loss
models to compare which would best fit their measured results, the log-distance one being
a part of them. Additionally, in the works of [26], the LDPL was used effectively to predict
path loss in a densely forested environment. As for CI, there are examples of its usage in
LoRa propagation in the works of [27,28].

The equations, thus, were derived from both measured data and the classic LDPL and
CI models. The general equations are as follows:

PLLPDL,CI = PL0 + 10nlog(
d
d0

) + X, (10)

PrLPDL,CI = Pt + Gt + Gr − PL, (11)

PL0 = 20log(
d0

103 ) + 20log( f ) + 32.5, (12)

in which d0 is the reference distance (1 m for CI, 10 m for LDPL), PL0 is the path loss in the
reference distance, n is the path loss exponent (PLE), d is the distance or length of the path,
PrLPDL,CI is an estimate of the received power with zero antenna gains, and X is a normal
random variable with mean equaling to zero, which is supposed to emulate the shadowing
effects of signal loss. In Equation (12), the distance is given in meters, and the frequency is
given in MHz.

From [20], values for signal amplitude and, therefore, inference of the proper path loss
model used to approximate modeled results to measured ones are then transcribed into
(13) and (14):

A = 10log
d
do

, (13)

n = A\(Pt − RSSI(measured) + L0), (14)

in which A is a distance to reference distance ratio for log-distance and free space models
that is to be inputted into the path loss equation. Given that these calculations need to be
input in vector or matrix form in MATLAB, there is in (14) a matrix left division symbol,
which is necessary to yield the correct results. Furthermore, RSSI(measured) is the vector of
received power values, or RSSI, featured in the measured data, and Pt is the transmitted
power. Hence, the path loss exponent is estimated.

Next, for the calculation of the standard deviation σ to be utilized in random variable
X, the mean square error between measured results and calculated ones must be employed.
So, the equation is as follows

MSE =
∑Ndata

n=1 (Pt− RSSI(measured) − p)2

Ndata
; , σ =

√
MSE (15)

where p is the calculated result of RSSI and Pt as in (11) but without the random variable
included. Since MSE is a variance that is considered to be unbiased, it is enough to take its
square root to discover the standard deviation.

Since there are different RSSI and distance values than expected in the theoretical
calculation, in every set of SF values, path loss exponents may differ for every SF mode, as
well as each height. This is because LDPL and CI may vary when taking into consideration
the variation of modulation, environment, or Tx/Rx height. Thus, Figure 4a,b represent the
LDPL and CI models proposed in specific SF and UAV height conditions. As for Figure 4a,
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it represents the model for only values in SF 10 and with the drone set at 60 m above the
ground as an example of the curve fitting of measured data, whereas Figure 4b displays
a calculation over data from SF 11 at a height of 24 m. Values in red asterisks represent
the measured data, whilst black asterisks show the LDPL-calculated data with shadowing
included. The blue, magenta, and green colors are, respectively, the fittings of the LDPL, CI,
and theoretical (Mozaffari) models.

(a) (b)

Figure 4. Path loss models, expressed in RSSI, for (a) SF 10 at h = 60 m and (b) F 11 at h = 24 m.

In Tables 3 and 4, values of path loss exponent, standard deviation, reference loss,
and distance found for each SF and height are discoursed. Reference values were set to a
distance of 10 m, upon which the reference loss is calculated. A total of 16 different values
are then derived for each case of SF and height variation, according to the parameters
of path loss exponent (PLE) and the standard deviation of data (σ). The reference loss
at d = 10 m is equal to PLo = 51.73, and d = 1 m is PLCI = 31.73 in accordance with
Equation (12).

Table 3. Values for the LoRa-LDPL model.

Mode PLE (n) σ

SF 11 (h = 6 m) 4.93 9.43
SF 11 (h = 24 m) 4.15 7.95
SF 11 (h = 42 m) 3.92 7.24
SF 11 (h = 60 m) 3.89 6.74

SF 10 (h = 6 m) 4.92 9.93
SF 10 (h = 24 m) 4.29 7.89
SF 10 (h = 42 m) 3.97 7.06
SF 10 (h = 60 m) 3.89 6.47

SF 9 (h = 6 m) 4.98 9.26
SF 9 (h = 24 m) 4.30 6.64
SF 9 (h = 42 m) 4.04 7.15
SF 9 (h = 60 m) 3.92 5.82

SF 8 (h = 6 m) 4.85 9.05
SF 8 (h = 24 m) 4.06 8.61
SF 8 (h = 42 m) 3.85 7.58
SF 8 (h = 60 m) 3.62 6.72
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Table 4. Values for the LoRa-CI model.

Mode PLE (n) σ

SF 11 (h = 6 m) 3.17 9.34
SF 11 (h = 24 m) 2.76 9.43
SF 11 (h = 42 m) 2.63 7.89
SF 11 (h = 60 m) 2.61 7.35

SF 10 (h = 6 m) 3.15 10.12
SF 10 (h = 24 m) 2.82 8.53
SF 10 (h = 42 m) 2.66 7.72
SF 10 (h = 60 m) 2.63 7.41

SF 9 (h = 6 m) 3.17 9.21
SF 9 (h = 24 m) 2.82 6.91
SF 9 (h = 42 m) 2.68 7.14
SF 9 (h = 60 m) 2.61 6.20

SF 8 (h = 6 m) 3.07 9.03
SF 8 (h = 24 m) 2.69 8.68
SF 8 (h = 42 m) 2.59 8.03
SF 8 (h = 60 m) 2.43 7.06

The curve fitting with the values of Table 3 achieves satisfactory results in relation to
measured data in each case. It can be denoted that values representing a height of 6 m have
greater path loss exponents and a greater dispersion, and this may indicate that the UAV
is flying too low to provide good signal coverage. Inside each SF, it is evident in the table
that greater heights produce lower path loss, as it also decreases the PLE, at least in the
observable interval.

Lastly, since the SINR is an equation that is independent of any path loss model, (9) is
still applied in this case.

3.2. Bioinspired Computing Algorithms

Bioinspired computational techniques are based on natural selection and are valid
optimization methods for mathematical and engineering applications, where metaheuristics
(trial and error) can be deployed to simplify the calculation of complex problems [29].

In the study herein, three of those methods were chosen, which are the cuckoo search
(CS), the flower pollination algorithm (FPA), and a tournament-based genetic algorithm
(GA). Due to their greater facility in dealing with non-linear, multi-variable problems [30],
CS and FPA are utilized here as alternatives to GA, and all techniques are to be compared
to observe which one provides the best solutions.

CS and FPA were designed by Xin-She Yang, with CS being the first to be released
in 2009, followed by FPA in 2012. However, genetic algorithms span a greater period of
existence, research, and usage. It is denoted that the first formulations of this technique are
as old as 1972, with a boom in usage around 20 years later in 1992 [31].

3.2.1. Cuckoo Search

The cuckoo search optimization (CS) algorithm, introduced by Yang and Deb in 2009,
has demonstrated its effectiveness as a metaheuristic algorithm for various applications in
mathematics, industry, and engineering [32]. Inspired by the parasitic behavior of cuckoo
birds, which lay their eggs in the nests of other bird species, CS simulates this natural
phenomenon as a computational model. Host birds often do not recognize the foreign
egg, either ignoring it or abandoning the nest altogether, allowing the cuckoo egg to hatch
and grow much faster than the host’s eggs, resulting in the cuckoo chick expelling the
other eggs from the nest and gaining access to more food [33]. This behavior serves as
the primary inspiration for the CS algorithm, where the cuckoo eggs represent candidate
solutions, and the host bird nests are scattered around the search space [32].
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According to [33,34], the synthesis of the cuckoo search algorithm can be summarized
in three fundamental rules:

1. Each cuckoo lays one egg at a time, to be deposited in a random nest. Every egg is to
be considered a unique solution to the problem;

2. The best solutions (eggs) will be carried over through the next iterations, in accordance
with the parasitic and survivalist nature of the cuckoo chicks;

3. The number of available nests per iteration is fixed by the developer of the code. The
probability of a cuckoo egg being discovered by the host bird is defined as Pa ∈ [0, 1).
Then, a discard probability will define if the host bird will get rid of a cuckoo nest or
let it hatch.

In CS, cuckoo birds move using Lévy flights, which are random flight paths that each
cuckoo (in a group of i cuckoo birds) takes to find nests [33]. To implement these flights,
Equation (16) represents the mathematical expression for Lévy flight, and Equation (17)
represents the mathematical expression for the Lévy distribution [33]. These equations can
be translated into code for practical use in the CS algorithm.

Xt+1
i = Xt

i + α⊕ Levy(β) (16)

Levy(β) ∼= u = t−(β+1); (1 < β ≤ 3) (17)

In which t is the current iteration, and i is the maximum number of cuckoo birds in
the current generation. The step size, represented by the constant α, is adjustable according
to the developer’s needs, but must always be greater than zero. In this study, the value of α
is set to 1 [33].

In Equation (16), the Lévy flight is associated with the Lévy distribution using the en-
trywise multiplication product⊕, which allows for better utilization of the search space [33].
This is akin to the approach of that used in the particle swarm optimization (PSO) algorithm,
which utilizes a similar product.

Equation (17) pertains to the Lévy distribution, which has infinite variance and average
values. The variable β represents the random step length necessary to provide variable
magnitudes to the random walk in the Lévy Flight method [33].

A pseudocode of the CS algorithm can be found in the article in which it was proposed
by Yang and Deb [33].

3.2.2. Flower Pollination Algorithm

The flower pollination algorithm (FPA) optimization method is inspired by the polli-
nation behavior of natural flowers and incorporates the Lévy flight approach for optimal
space search, similar to the cuckoo search algorithm. Empirical evaluations have confirmed
that the FPA optimization method may be more efficient than genetic and particle swarm
optimizations in both single- and multi-objective applications [35].

For the FPA, the authors cite four guiding rules [35]:

1. Both biotic and cross-pollination are considered a global pollination process, and are
performed by pollinators carrying pollen and executing Lévy flights;

2. In contrast, abiotic and self-pollination are considered as local pollination;
3. Flower constancy is then taken as a measure of the probability of reproduction,

which is directly proportional to the similarity between two flowers involved in the
pollination process;

4. To control both local and global pollination activities, a switch probability p with
values from 0 to 1 is utilized. Local pollination can make up a significant fraction p in
the overall pollination process due to physical proximity and other environmental
factors such as wind.

Two types of pollination are considered: global and local pollination. This prevents
the algorithm from getting trapped in local solutions, and instead orients it to discover
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global solutions to the objective function. To simplify the implementation of the algorithm,
it assumes that each plant has only one flower and can pollinate one other flower at a time,
whereas in reality, plants may have multiple flowers and millions of pollinating gametes.
This simplification allows the plant, flower, and pollinating gamete to be treated as a single
solution unit in the FPA optimization method.

The first rule (global pollination) and third rule (flower constancy) of FPA are resumed
in mathematical form at (18):

Xt+1
i = Xt

i + L(Xt
i − g∗) (18)

where Xt
i is the solution vector Xi at iteration t, representing the pollen of number i, and g*

is the best solution of the current iteration.
Lévy flights are also used in this optimization method, and are regulated by the

pollination strength L, whereby the step size of each flight is determined. In this algorithm,
the flights represent the paths taken by insects and pollinator animals within the global
search space of the optimization. However, the equation utilized in the FPA algorithm
differs from the one employed in the cuckoo search, as it relies on the Mantegna algorithm
instead. Essentially, this technique generates pseudo-random step sizes by utilizing normal
distributions to ensure optimal performance while conforming to the requirements of the
Lévy distribution. Pollination strength L is thus defined as in (19):

L ≈ λΓ(λ) sin(πλ/2)
πs1+λ

, (19)

in which Γ(λ) is the standard, classic gamma function found in Lévy flights and other
probabilistic and complex number applications.

The Mantegna step size algorithm is shown in (20):

s =
U

|V| 1
λ

, (20)

in which s is the step size, U represents a Gaussian distribution of variance σ2, and V also
represents a Gaussian distribution but with unitary variance, as can be verified in [36].
In most cases, the lambda can be treated as a constant value between λ ∈ [0.5, 1.5]. The
variance when λ = 1 also equals 1, simplifying the calculation of this formula.

To implement Rule 2, which involves local pollination, the flower pollination lgo-
rithm (FPA) simulates flower constancy by limiting pollination to a small neighborhood
surrounding the reproductive flower’s location. This process can be expressed as:

Xt+1
i = Xt

i + ε(Xt
j − Xt

k), (21)

In the above equation, Xt
j and Xt

k denote the pollens from different flowers of the same
plant species, and ε is a scalar factor that controls the step size of the pollination process.

The fourth rule is a probabilistic mechanism that switches between global and local
pollination. By adjusting the probability parameter p parametrically, the optimization
performance can be improved to better suit the requirements of the objective function.

All stages of the algorithm are represented in pseudocode form by the recommen-
dations in [35]. Some details previously discussed can be noticed, such as an if/else
switch for global and local pollination, which are found in Lévy flights and random
selection, respectively.

3.2.3. Genetic Algorithm

Genetic algorithms (GAs) are a type of computational method inspired by the process
of natural selection and genetics. They are used to optimize complex problems in various
fields, including engineering, economics, and biology. GAs employ a population-based
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approach to problem-solving, where a set of possible solutions, called individuals, are
evolved over several generations using selection, crossover, and mutation operators. It is
known they are employed in many IoT applications in the literature [37–39].

The basic principle of GAs is based on Darwin’s theory of natural selection, which
states that the fittest individuals are more likely to survive and reproduce. GAs simulate
this process by generating a population of candidate solutions, evaluating them based on a
fitness function, and selecting the best individuals for further processing. The individuals
that are selected undergo genetic operations, such as crossover and mutation, to produce
offspring that inherit the characteristics of their parents. The process is repeated over
several generations until a satisfactory solution is found.

One of the advantages of GAs is that they can find optimal or near-optimal solutions
in a relatively short amount of time, even for problems with a large number of variables or
complex constraints. Additionally, GAs can handle noisy or incomplete data, making them
useful in real-world applications where data is often imperfect.

There are a few different methods of conducting the selection to perform the crossover
operation, such as roulette, Boltzmann, rank, or tournament selection [40]. In this study,
a tournament-based selection with single-point crossover was chosen. In summary, tour-
nament selection is a widely used selection method that has shown promising results
in various optimization problems. Its ability to control selection pressure and reduce
premature convergence makes it a popular choice among researchers and practitioners.
However, the performance of tournament selection is dependent on several factors, such as
the tournament size and the selection method used within the tournament.

The pseudocode for the tournament-based genetic algorithm used in this can be found
in [41]. It is a compact, but not less effective, form of GA with simple computation and fast
running time.

3.3. Drone Positioning Simulations and Optimization Metrics

In this section, further details are given about the algorithms used for simulating a
space search of users and the positioning of drones in order to reach maximum network
coverage. Please notice that there are three versions of the simulation, each for all three of
the bioinspired algorithms.

Since the utilized LoRa gateway of the measurement campaigns only supports eight
concomitant users, then user equipment (UE) association to UAVs is built upon the avail-
ability of eight channels per drone. Then, the association process gives priority to sensors
that possess the best received power (Pr) and are closest to the current position of a drone.
If the UAV station that the sensor is trying to connect is already at maximum capacity, then
another association calculation is performed to find the next best vacant drone.

The next step is to calculate the SINR of said UE, which is achieved by employing
Equation (9). It is known in the literature that a tolerable value for SINR in LoRa networks
is around −20 dBm [42,43]. Therefore, if the UE has an SINR below this value, considering
all other interfering UAVs and the noise floor, then it will not count as being associated with
the network. Along its iterations, the BIC methods are able to identify these non-associated
sensors and thus provide better drone positioning optimization.

Another metric that is vital to the optimization process is the outage probability, which
is the probability that a given UE might become out of service taking into consideration its
received power and the sensitivity of the receiver and should thus be minimized. Adapted
from Rappaport [44] and Goldsmith [20], it is calculated as shown in (22):

Pout[Pr(i,j) ≤ PSF] = Q
(Pt − PL(i,j) − PSF

σSF

)
, (22)

in which PSF is the sensitivity of the respective chosen SF as in Table 2, Pt is the transmitted
power, PL(i,j) is the path loss (with shadowing considered) for a UE of index i connected
to a UAV of index j, and σ is the standard deviation of measured data, according to each
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SF. The function Q is the tail probability of a Gaussian distribution, which can be simply
calculated in MATLAB with the command qfunc.

Other metrics that are not taken into account in the objective function but are analyzed
after the results of the simulation are the spectral efficiency (SE) of the sensors and the
cell radius (CR) of the UAV gateways due to their importance to network analysis in the
literature on sensor networks, e.g., [45,46]. In this paper, the SE is calculated as an average
of all UEs in the simulation, and is given by (23):

SE(avg) = ηDc log2 (1 + SINR), (23)

where η is the channel efficiency, Dc is the duty cycle of the LoRa network, and the SINR
in this formula should be calculated in linear values. The values η = 0.7 and Dc = 1%
were chosen for the simulations, following their usage in [43,45]. Additionally, the cell
radius is calculated as the distance in which an outage of 1% is found, in meters. Following
Equation (22) for Pout = 1%, CR formulas are deducted for the theoretical path loss of
Mozaffari et al. (6) and for our empirical LDPL and CI path loss models (10) in order to
compare the coverage given by both. Those are displayed below in Equations (24) and (25),
respectively.

CRclassical =
c

4π f
· 10

Pt−PSF−2.325σ
20 −

(
ζLoS+ZζNLoS

20(1+Z)

)
(24)

CRempirical = d0 · 10
(

Pt−2.325σ−PSF−PL0
10n

)
(25)

So, the objective function for all optimizers is given in (26). It considers two different
objectives: average outage probability and UAV requirements. The former is the mean
value of the outage defined in (22) for all UE (in %), and the latter is a measurement of
the minimum number of UAVs necessary to meet user association requirements, defined
in (27).

Z = 0.9 · Pout(avg) + 0.1 ·UAVreq (26)

UAVreq = (UAV − 1) + NUsers − NAssociated, (27)

in which UAV is the optimal quantity of UAVs given as input by the optimizers, NUsers is
the total number of UEs in the simulation, and NAssociated is the number of UEs considered
to be covered by the network and not experiencing an outage. The variable NAssociated also
implies that these associated users already have a greater SINR than the minimum required
(which is -20 dB, as explained previously), so it serves as an indirect manner to insert the
SINR capacity metric into the objective function.

Hence, the objective function is set so that an optimal result should minimize it to
zero. Please notice that a weight of 90% to 10% was given in favor of Pout(avg), as the greater
interest of this study is still to find solutions with maximum coverage probability. This
weighting also assures that the number of UAVs suggested by the optimizers must be
enough to provide a minimum quantity to associate all users, but also to give in to a greater
quantity in order to achieve better outage probabilities if needed.

However, in order to obtain the values for the objective function, we must compute
the raw input variables of the positioning of drones until we can obtain SINR, outage, and
spectral efficiency values through them. The input variable quantity is the number of maxi-
mum drones (NUAV) permitted in the simulation multiplied by three, plus an additional
number of UAVs suggested by the iteration to solve the problem. Each population iteration
will present solutions for drone position data, just as in (28):

Popvector = [UAV, xUAV1, yUAV1, hUAV1, xUAV2, yUAV2, hUAV2, . . . , xUAVn, yUAVn, hUAVn], (28)

where [x, y, h] are the values of each drone in the simulated environment space, and UAV is
the number of UAVs that the optimizer has suggested for that iteration. That is, the greater
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amount of UAVs in the array there are, the greater is the number of inputs, which increases
computational cost and time.

Even if the BIC methods do not need the full number of maximum UAVs, the popula-
tion vector is still kept to the same size since they do not support a dynamic population
size along several iterations. So, for instance, if the individual suggests a number of five
UAVs, then only those will be considered, and the extra population cells will not be taken
into account in the calculations.

Some general equations applied to all algorithms are adaptations to the trigonometrical
properties d (distance from user to drone) and θ (elevation angle between user and drone).
In order to intertwine the propagation models with the optimization algorithms, values
of every population vector are then used to calculate adaptive values of R, d, and θ. This
relation is given by Equations (29)–(31):

R(i,j) =
√
(xUAVj − xi)2 + (yUAVj − yi)2, (29)

θ(i,j) = arctan
hUAVj

Ri,j
, (30)

d(i,j) =
√

R2
i,j + h2

UAVj, (31)

which all imply that for all j-th drones and i-th users, the difference in their positioning is
what creates the variables of distance in the xy-plane (R), total tridimensional distance (d),
and elevation angle (θ). So, inside the simulation, an (i by j) matrix of these variables is
created in relation to every user (index i) and every UAV (index j).

A flowchart of the simulation and optimization processes is displayed in Figure 5.

  

Define the objective 
function, user distribution 

and search space 
bounds

Define the number of 
drones NUAV as an integer

Execute the desired 
optimization method

(CS / FPA / BA)

Begin association of users to 
drones, based on which has 

the greatest SINR for 
connection

If a user tries to connect to a 
gateway already full, attempt 
connection to 2nd best drone

Calculate the objective function 
and verify its fitness values

Has the 
tolerance 

value been 
reached?

Post-process and 
visualize the results 
(fitness and SINR)

Reiterate the 
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algorithm No

Yes
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users to drones, 
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Power 
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If user tries to connect to 

Maximum 
Iterations 
Reached?

Postprocess and 
display results
(fitness, SINR, 
SE, Pout, CR)

Figure 5. Flowchart of the simulation and optimization processes as made in MATLAB.

4. Results

The objective function for all algorithms can be defined as in (26), where the closer
to zero it is, the better the positioning of UAVs will be. It is characterized as a biobjective
system, with two variables to be considered.

Inputs for the positioning of drones behave just as explained in Equations (31) and (30).
They are obligatory for the calculation of distance and elevation angle, which in turn are
used to obtain the received power and path loss.
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It is worth noticing that all simulations consider only the drones within the array as
mobile. Users are kept to fixed locations since the number of users is considerably high
and would creased complexity for both simulation coding and results analysis.

There are 24 solutions to be analyzed, considering 3 different optimization techniques
(CS, FPA, and GA), 4 different LoRa SF (8, 9, 10, and 11), and 3 distinct path loss models
(herein called classical, LDPL, and CI models, respectively).

The lower and upper bounds of the search space were set as a plane of 64 km2 (that is,
8 × 8 km). This is a considerable coverage area, but it is necessary to evaluate how real-life
calculations of the LoRa cell range may differ from values provided in [22], present also in
Table 2. Additionally, 50 users in this area were generated randomly by normal distribution.
This number guarantees that there are users all over the search space whilst still keeping
the number of UAVs necessary to provide coverage as not so high. The maximum number
of UAVs permitted in all simulations is capped at 10. It must be remembered that there is a
limitation of eight users at a time per drone.

In Table 5, a list of relevant variables and constants that define the optimizations for
the simulations of LoRaWAN are found. Note that calculations for the empirical models
utilize values that are present in Tables 3 and 4.

Table 5. Variables and constants of the optimizations.

Parameters Values

Lower bounds (x, y and h) [0; 0] m
Upper bounds (x, y and h) [8000; 8000] m

Height bounds (h) [6, 24, 42, 60] m
Lower and Upper bounds (UAV) 1 to 10 UAVs

Number of iterations (All BIC) 2000
Solutions per iterations (All BIC) 25

Nusers 50
NUAV 10

Nest Discard Probability (CS) 0.25
Switch Probability (FPA) 0.3

Crossover Rate (GA) 0.6
Mutation Rate (GA) 0.1

Elitism Rate (GA) 0.1
Transmitted Frequency 915 MHz

Bandwidth 125 kHz
α 9.6
β 0.28

ζLOS 1 dB
ζNLOS 20 dB

Gt and Gr 0 dB
Transmitted Power (all UAVs) 14 dBm

Drone height boundaries were set to between 6 and 60 m in order to correlate with data
measured at the measurement campaigns (with set heights of [6; 24; 42; 60] m). Therefore,
all drones in the simulation can only assume these four values. This makes it easier to
compare both path loss models and cell radius capacities.

The transmitted power was kept to around 14 dBm, as many LoRa gateways can
support this output to Tx antennas, and works present in the literature have used this value
as a reference [42,43]. Additionally, it was the value used in the measurement campaigns.
As a matter of reference, [47,48] are a LoRa transceiver and a LoRa gateway, respectively,
that can generate up to 22 dBm of Tx output.

All simulations were held in MATLAB© R2021a, on a computer with 16 GB RAM and
an AMD Ryzen© 5, 3.6 GHz CPU. Through trial and error to obtain the best results whilst
still maintaining a short computational time, 1000 iterations with 25 solutions per iteration
were chosen for both LoRa path loss applications. Locking optimizers in a constant iteration
cap makes drawing comparisons between them easier.
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This section is further divided in the following manner: first, the fitness results and
outage probability given by each optimizer will be commented upon for both path loss
models. Then, an analysis of the spectral efficiency and cell radius parameters shall be
conducted. Lastly, SINR curve plots based on the best UAV positioning values shall be
displayed for SF 8 and SF 11.

4.1. Fitness and Outage Probability

Table 6 denotes the best fitness values for every algorithm and all simulations made.
It also denotes the amount of UAVs that each optimizer has provided as the best, as well as
their running time in seconds.

Table 6. Best fitness outputs.

SF Algorithm Best Fitness UAVs Run Time (s)

SF = 8 CS (Classical) 0.6046 7 185
SF = 9 CS (Classical) 0.6000 7 201

SF = 10 CS (Classical) 0.5586 7 203
SF = 11 CS (Classical) 0.5501 7 197

SF = 8 FPA (Classical) 0.6049 7 110
SF = 9 FPA (Classical) 0.5544 7 91

SF = 10 FPA (Classical) 0.5558 7 94
SF = 11 FPA (Classical) 0.5538 7 96

SF = 8 GA (Classical) 0.7896 8 28
SF = 9 GA (Classical) 0.9001 9 30

SF = 10 GA (Classical) 0.7004 8 29
SF = 11 GA (Classical) 0.8000 9 27

SF = 8 CS (LDPL) 1.7823 10 145
SF = 9 CS (LDPL) 2.4969 10 144

SF = 10 CS (LDPL) 1.5741 10 145
SF = 11 CS (LDPL) 1.2437 10 168

SF = 8 FPA (LDPL) 1.8464 10 60
SF = 9 FPA (LDPL) 3.1950 10 88

SF = 10 FPA (LDPL) 1.9204 10 81
SF = 11 FPA (LDPL) 1.2815 10 84

SF = 8 GA (LDPL) 4.4031 10 27
SF = 9 GA (LDPL) 6.4865 10 29

SF = 10 GA (LDPL) 4.0611 10 27
SF = 11 GA (LDPL) 2.4539 10 26

SF = 8 CS (CI) 0.6002 7 159
SF = 9 CS (CI) 0.6002 7 163

SF = 10 CS (CI) 0.5534 7 167
SF = 11 CS (CI) 0.5504 7 164

SF = 8 FPA (CI) 0.5649 7 75
SF = 9 FPA (CI) 0.5553 7 68

SF = 10 FPA (CI) 0.5766 7 72
SF = 11 FPA (CI) 0.5555 7 71

SF = 8 GA (CI) 0.8966 10 28
SF = 9 GA (CI) 0.5758 7 27

SF = 10 GA (CI) 0.9011 10 26
SF = 11 GA (CI) 0.7567 9 29

Overall, the cuckoo search presents the best results fitness-wise, but at the cost of
a longer running time. Roughly estimating, CS results take twice longer than FPA and
around seven times longer than GA. Furthermore, CS and FPA tend to provide lower UAV
values to solve the outage problem, which tends to lower fitness. FPA has a satisfactory
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balance between fitness results and running algorithmic time. GA tends to converge slower
towards better solutions iteration-wise, but provides quicker results.

Given that the classical path loss model presents a more “optimistic” approach than
realistic measurements, it also provides considerably lower fitness and UAV values. For all
LDPL model simulations, the maximum number of 10 UAVs was reached, proving that
the channel model based on measured data on suburban Amazon environments actually
foresees that coverage area may be considerably lower in real-life scenarios.

On the other hand, the CI model may be an accurate predictor for signal loss behavior
next to the UAV station, but it falls short when at larger distances (see Figure 4). So, it also
possesses a rather optimistic estimation of range.

It is worth denoting as well that CS and FPA for the classical model application are all
capped at seven drones at all simulations, as they recognize that this is the minimum of
drones required to associate all users to the network.

The average outage probability of sensors in the simulations is displayed in Figure 6.
Results are grouped by BIC method and then separated by SF. Mean outage is given
in percentages in the plots, thus keeping results much lower than 1% and successfully
achieving optimization across all simulation situations. It is worth denoting that SF 8 tends
to show greater outage values due to its lower cell range and sensitivity, while the opposite
is true for SF 11.

(a) (b)

(c)

Figure 6. Average outage probability for all simulations: (a) classical path loss model; (b) LDPL
model; (c) CI model.
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Results for SF 11 in both path loss models denoted the best outage across all spreading
factors, and FPA is, according to Figure 6, the best technique to optimize for lower outage.
Fitness values are lower for CS, however, and this may be explained by its lower UAV
requirements (both needing fewer drones to optimize and a greater number of users
associated). It is also worthy to denote that outage in this range is, approximately, six times
greater in the LDPL database compared to the classical one.

4.2. Spectral Efficiency and Cell Radius

In Figure 7, the average spectral efficiency for each UE according to the best results
of the simulations is shown below. Data are plotted for all simulations, also containing
information of the standard error of the mean, which is considerable for this set but has
shown to be derisory for outage data.

(a) (b)

(c)

Figure 7. Average spectral efficiency for all simulations (a) classical path loss model; (b) LDPL model;
(c) CI model.

Between all models, average SEs display no significant difference, only showing slight
variations in SF as well. In LDPL data, FPA tends to give lower SE results, while GA and
CS are virtually tied for the best SE results. This may indicate that GA should be a viable
and swift alternative if the objective is to maximize some kind of spectral efficiency.
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Lastly, cell radius estimates for the maximum height (h = 60 m) are given in Figure 8.
It can be seen that estimates given by (25) are far below the values given by Semtech,
present in Table 2, but for (24), values are much more proximate. According to [45], cell
radius estimates should not include shadowing variables, and yet, values for the range of
LoRa ells in measured data are significantly lower than the ideal values. Maximum cell
radius for the LDPL model ranges between 914 m (SF 8) and around 1220 m (SF 11) only.
Notice that differences tend to become greater as the SF increases.

Figure 8. Cell radius estimates for all path loss models.

4.3. Sine Contour Plots

Two-dimensional contour plots were compiled for the best results, given by CS, for
simulation results of SINR in SF 8 and SF 11. These were chosen because they are both
extremes in the measured data. This plot only considers the UAV-to-UAV interference
between LoRa gateways, without being tied to a specific channel.

Figures 9 and 10 represent, respectively, the SINR colormap plots of SF 8 and SF 11
(in dB). The white circles denote the position of UEs in the search space, whilst the red
dots represent the exact position of UAVs. There is a notable difference in the scale of
SINR between the path loss models, where the plot of the classical and CI models tends
to undervalue SINR values, while the LDPL may overvalue SINR in shorter distances.
However, for both cases, there is a great correlation between drone positioning and the
position of the UEs.

Additionally, in both Figures 9 and 10, the difference in coverage for having less or
more drones in the simulation can be seen, albeit slightly. There is greater UAV-to-UAV
interference when more drones are utilized but, fortunately, not as much to put sensors in
the boundaries of cells into outage situations.

Since the simulations shown in Figures 9b and 10b were performed with the same
optimizer, path loss model, and transmitted power, it can be attested that drone positioning
has only changed slightly between plots. So, the increased range of SF 11 in relation to
SF 8 was, in this case, of little difference. As demonstrated in Figure 8, measured data
in Amazon suburban environments have a tendency to shorten the expected cell radius
considerably, and this may explain the similarities between optimal positioning.
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(a)

(b)

(c)

Figure 9. Drone positioning based on SINR values (see color bar) for SF 8: (a) classical model;
(b) LDPL model; (c) CI model.
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(a)

(b)

(c)

Figure 10. Drone positioning based on SINR values (see color bar) for SF 11: (a) classical model;
(b) LDPL model; (c) CI model.
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5. Conclusions

In this paper, an extensive, simulation-heavy analysis and application of drone-array
optimization has taken place. This was made possible by much studying not only op-
timizations via bioinspired algorithms, but also propagation models for UAV wireless
communication systems. The proposal of a simulation environment to determine the opti-
mal positioning of drones in an array system in order to minimize outage probability in
MATLAB was accomplished.

The objective of producing fast and accurate responses to the simulation problems
proposed herein is achieved by the high computational speed of the bioinspired algo-
rithm techniques. The algorithms are swift, rapid forms of optimization that are meant
to be ported into a UAV micro-controller and used on the fly, or even by a remote control
station with greater computational power, for faster results. Additionally, the objective
of finding a way to relate measured data of LoRa for the slightly forested, suburban Ama-
zon environments into a calculated model has produced more satisfactory and life-like
results than purely theoretical, simulation data, as noticed between LoRa simulations in
this work.

Metrics such as SINR, spectral efficiency, outage, and cell radius were analyzed for
SF 8, 9, 10, and 11. This gives a solid foundation for future works in both suburban and
rainforest areas, especially ones with slight-to-medium wooded environments. For the
purposes and objectives of the study herein, a low outage was observed in optimizations,
despite the reduced range of LoRa cells. In order to compensate for outage, the optimizers
suggest a greater quantity of drones, which is one of the differences noted on the SINR plots.
Another feature to pay attention to in the SINR colormaps is that there is little concern
about outage in cell boundary conditions, as the algorithms seem to comprehend that they
should not produce such interference as to leave UEs out of service.

Around all simulations, the best optimized results favor the cuckoo Search algo-
rithm, with flower pollination being a close second, sometimes surpassing the fitness
provided by CS but being less taxing in computational cost. The genetic algorithm did
not produce the best results in this kind of problem; however, it is lightweight and
might be proven useful for cases in which it provides passable accuracy for much less
computational time.

However, there are prospects for improvement for future works. For instance, a way
to better automatize transmitted power values would be of interest to the literature. For
instance, if the code is adapted to minimize the necessary transmitted power for each,
which would mean more battery saving for UAVs, transmitters, transceivers, and gateways.
Energy efficiency to improve the air time of UAVs is an extensively studied topic throughout
the literature, and this could be a welcoming addition.

Author Contributions: Conceptualization, F.H.C.d.S.F., F.J.B.B. and J.P.L.d.A.; methodology,
F.H.C.d.S.F., F.J.B.B., M.C.d.A.N. and J.P.L.d.A.; software, F.H.C.d.S.F., M.C.d.A.N. and J.P.L.d.A.;
validation, F.H.C.d.S.F., F.J.B.B., M.C.d.A.N. and J.P.L.d.A.; formal analysis, F.H.C.d.S.F., F.J.B.B.,
M.C.d.A.N. and J.P.L.d.A.; investigation, F.H.C.d.S.F., F.J.B.B., M.C.d.A.N. and J.P.L.d.A.; resources,
F.H.C.d.S.F., F.J.B.B., M.C.d.A.N. and J.P.L.d.A.; data curation, F.H.C.d.S.F., F.J.B.B., M.C.d.A.N. and
J.P.L.d.A.; writing—original draft preparation, F.H.C.d.S.F. and J.P.L.d.A.; writing—review and
editing, F.H.C.d.S.F., M.C.d.A.N., F.J.B.B. and J.P.L.d.A.; visualization, F.H.C.d.S.F. and J.P.L.d.A.; su-
pervision, F.J.B.B., M.C.d.A.N. and J.P.L.d.A.; project administration, F.J.B.B. and M.C.d.A.N.; funding
acquisition, F.J.B.B. and M.C.d.A.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Coordination for the Improvement of Higher Education
Personnel — APES, the National Council for Scientific and Technological Development — CNPq, and
the Support Program for Qualified Production — PROPESP/UFPA (PAPQ). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Sensors 2023, 23, 6231 24 of 25

Data Availability Statement: Data on the inputs and outputs of this study, as well as the codes that
generated them, are available at https://drive.google.com/drive/folders/1ORq-5LkzXcIiqqeorFSi1
Djj6z58Gu7C?usp=share_link. Last access: 29 June 2023.

Acknowledgments: We would like to thank our colleagues at the Telecommunications and Compu-
tation Laboratory (LCT-UFPA) for their help in the measurement campaigns and revision of the code
of the BIC techniques.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Borges, L.M.; Velez, F.J.; Lebres, A.S. Survey on the characterization and classification of wireless sensor network applications.

IEEE Commun. Surv. Tutor. 2014, 16, 1860–1890. [CrossRef]
2. Lavric, A.; Popa, V. Internet of things and LoRa™ low-power wide-area networks: A survey. In Proceedings of the 2017

International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 13–14 July 2017; pp. 1–5.
3. Caruso, A.; Chessa, S.; Escolar, S.; Barba, J.; López, J.C. Collection of Data with Drones in Precision Agriculture: Analytical Model

and LoRa Case Study. IEEE Internet Things J. 2021, 8, 16692–16704. [CrossRef]
4. Ghazali, M.H.M.; Teoh, K.; Rahiman, W. A Systematic Review of Real-Time Deployments of UAV-Based LoRa Communication

Network. IEEE Access 2021, 9, 124817–124830. [CrossRef]
5. Dave, M.; Patel, R.; Joshi, I.; Goradiya, B. Versatile Multipurpose Crashproof UAV: Machine Learning and IoT approach. In

Proceedings of the 2020 International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–7.
6. Trasviña-Moreno, C.A.; Blasco, R.; Marco, Á.; Casas, R.; Trasviña-Castro, A. Unmanned aerial vehicle based wireless sensor

network for marine-coastal environment monitoring. Sensors 2017, 17, 460. [CrossRef]
7. Zorbas, D.; O’Flynn, B. A network architecture for high volume data collection in agricultural applications. In Proceedings of the

2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019;
pp. 578–583.

8. Al-Turjman, F.; Lemayian, J.P.; Alturjman, S.; Mostarda, L. Enhanced deployment strategy for the 5G drone-BS using artificial
intelligence. IEEE Access 2019, 7, 75999–76008. [CrossRef]

9. Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the number and 3D placement of drone base stations in wireless cel-
lular networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada,
18–21 September 2016; pp. 1–6.

10. Yuheng, Z.; Liyan, Z.; Chunpeng, L. 3-d deployment optimization of uavs based on particle swarm algorithm. In Proceedings
of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019;
pp. 954–957.

11. Aggarwal, K.; Goyal, A. Particle Swarm Optimization based UAV for Disaster management. In Proceedings of the 2021
IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China,
12–14 March 2021; Volume 5, pp. 1235–1238.

12. Zhicai, R.; Jiang, B.; Hong, X. A Cooperative Search Algorithm Based on Improved Particle Swarm Optimization Decision for
UAV Swarm. In Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS),
Chengdu, China, 23–26 April 2021; pp. 140–145.

13. Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.H.; Debbah, M. A tutorial on UAVs for wireless networks: Applications, challenges,
and open problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [CrossRef]

14. Zhou, Y.; Rao, B.; Wang, W. UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access 2020, 8, 183856–183878.
[CrossRef]

15. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone small cells in the clouds: Design, deployment and performance analysis.
In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015;
pp. 1–6.

16. Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for
energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 2017, 6, 434–437. [CrossRef]

17. Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C.S. Caching in the sky: Proactive deployment of cache-enabled
unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 2017, 35, 1046–1061. [CrossRef]

18. Ruan, L.; Wang, J.; Chen, J.; Xu, Y.; Yang, Y.; Jiang, H.; Zhang, Y.; Xu, Y. Energy-efficient multi-UAV coverage deployment in UAV
networks: A game-theoretic framework. China Commun. 2018, 15, 194–209. [CrossRef]

19. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Wireless communication using unmanned aerial vehicles (UAVs): Optimal
transport theory for hover time optimization. IEEE Trans. Wirel. Commun. 2017, 16, 8052–8066. [CrossRef]

20. Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005.
21. Cardoso, E.H.S.; De Araújo, J.P.L.; De Carvalho, S.V.; Vijaykumar, N.; Francês, C.R.L. Novel multilayered cellular automata for

flying cells positioning on 5g cellular self-organising networks. IEEE Access 2020, 8, 227076–227099. [CrossRef]
22. Semtech. LoRa Modulation Basics; Report AN1200.22; Semtech Corporation: Camarillo, CA, USA, 2015.
23. Semtech. LoRa and LoRaWAN: A Technical Overview; Technical Report; Semtech Corporation: Camarillo, CA, USA, 2019.

https://drive.google.com/drive/folders/1ORq-5LkzXcIiqqeorFSi1Djj6z58Gu7C?usp=share_link
https://drive.google.com/drive/folders/1ORq-5LkzXcIiqqeorFSi1Djj6z58Gu7C?usp=share_link
http://doi.org/10.1109/COMST.2014.2320073
http://dx.doi.org/10.1109/JIOT.2021.3075561
http://dx.doi.org/10.1109/ACCESS.2021.3110872
http://dx.doi.org/10.3390/s17030460
http://dx.doi.org/10.1109/ACCESS.2019.2921729
http://dx.doi.org/10.1109/COMST.2019.2902862
http://dx.doi.org/10.1109/ACCESS.2020.3028865
http://dx.doi.org/10.1109/LWC.2017.2700840
http://dx.doi.org/10.1109/JSAC.2017.2680898
http://dx.doi.org/10.1109/CC.2018.8485481
http://dx.doi.org/10.1109/TWC.2017.2756644
http://dx.doi.org/10.1109/ACCESS.2020.3045663


Sensors 2023, 23, 6231 25 of 25

24. Andersen, J.B.; Rappaport, T.S.; Yoshida, S. Propagation measurements and models for wireless communications channels.
IEEE Commun. Mag. 1995, 33, 42–49. [CrossRef]

25. El Chall, R.; Lahoud, S.; El Helou, M. LoRaWAN network: Radio propagation models and performance evaluation in various
environments in Lebanon. IEEE Internet Things J. 2019, 6, 2366–2378. [CrossRef]

26. Alsayyari, A.; Kostanic, I.; Otero, C.E.; Aldosary, A. An empirical path loss model for wireless sensor network deployment
in a dense tree environment. In Proceedings of the 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, USA,
13–15 March 2017; pp. 1–6.

27. Robles-Enciso, R.; Morales-Aragón, I.P.; Serna-Sabater, A.; Martínez-Inglés, M.T.; Mateo-Aroca, A.; Molina-Garcia-Pardo, J.M.;
Juan-Llácer, L. LoRa, Zigbee and 5G Propagation and Transmission Performance in an Indoor Environment at 868 MHz. Sensors
2023, 23, 3283. [CrossRef]

28. Onykiienko, Y.; Popovych, P.; Yaroshenko, R.; Mitsukova, A.; Beldyagina, A.; Makarenko, Y. Using RSSI Data for LoRa Network
Path Loss Modeling. In Proceedings of the 2022 IEEE 41st International Conference on Electronics and Nanotechnology
(ELNANO), Kyiv, Ukraine, 10–14 October 2022; pp. 576–580.

29. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello, C.A.C.; Herrera, F.
Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]

30. Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [CrossRef]
31. Dao, S.D.; Abhary, K.; Marian, R. A bibliometric analysis of Genetic Algorithms throughout the history. Comput. Ind. Eng. 2017,

110, 395–403. [CrossRef]
32. Shehab, M.; Khader, A.T.; Al-Betar, M.A. A survey on applications and variants of the cuckoo search algorithm. Appl. Soft Comput.

2017, 61, 1041–1059. [CrossRef]
33. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.
34. Ferreira, F.H. Intelligent Positioning of Drones via Metaheuristic Optimization Algorithms for Maximizing Signal Coverage Area

in Forested Environments. Masters’ Thesis, Federal University of Pará (UFPA), Belém, Pará, Brazil, 2022.
35. Yang, X.S. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and

Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.
36. Yang, X.S.; Karamanoglu, M.; He, X. Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optim.

2014, 46, 1222–1237. [CrossRef]
37. Alam, T.; Qamar, S.; Dixit, A.; Benaida, M. Genetic algorithm: Reviews, implementations, and applications. arXiv 2020,

arXiv:2007.12673.
38. Khadir, K.; Guermouche, N.; Guittoum, A.; Monteil, T. A genetic algorithm-based approach for fluctuating QoS aware selection

of IoT services. IEEE Access 2022, 10, 17946–17965. [CrossRef]
39. Roy, S.K.; De, D. Genetic algorithm based internet of precision agricultural things (IoPAT) for agriculture 4.0. Internet Things 2022,

18, 100201. [CrossRef]
40. Mirjalili, S.; Song Dong, J.; Sadiq, A.S.; Faris, H. Genetic algorithm: Theory, literature review, and application in image

reconstruction. Nature-Inspired Optimizers: Theories, Literature Reviews and Applications; Springer: Berlin/Heidelberg, Germany,
2020; pp. 69–85.

41. Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3, 287–297. [CrossRef]
42. Lauridsen, M.; Nguyen, H.; Vejlgaard, B.; Kovács, I.Z.; Mogensen, P.; Sorensen, M. Coverage comparison of GPRS, NB-IoT, LoRa,

and SigFox in a 7800 km2 area. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney,
NSW, Australia, 4–7 June 2017; pp. 1–5.

43. Vejlgaard, B.; Lauridsen, M.; Nguyen, H.; Kovács, I.Z.; Mogensen, P.; Sorensen, M. Interference impact on coverage and capacity
for low power wide area IoT networks. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference
(WCNC), an Francisco, CA, USA, 19–22 March 2017; pp. 1–6.

44. Rappaport, T.S. Wireless Communications–Principles and Practice, (The Book End). Microw. J. 2002, 45, 128–129.
45. Wang, W.; Capitaneanu, S.L.; Marinca, D.; Lohan, E.S. Comparative analysis of channel models for industrial IoT wireless

communication. IEEE Access 2019, 7, 91627–91640. [CrossRef]
46. Tu, L.T.; Bradai, A.; Pousset, Y. Coverage Probability and Spectral Efficiency Analysis of Multi-Gateway Downlink LoRa Networks.

In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022;
pp. 1–6.

47. Semtech. SX1272/73—860 MHz to 1020 MHz Low Power Long Range Transceiver; Datasheet SX1272/73; Semtech Corporation:
Camarillo, CA, USA, 2019.

48. Semtech. LoRa Core™ PicoCell Gateway, SX1308, 915 MHz; Web Page SX1308; Semtech Corporation: Camarillo, CA, USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/35.339880
http://dx.doi.org/10.1109/JIOT.2019.2906838
http://dx.doi.org/10.3390/s23063283
http://dx.doi.org/10.1016/j.swevo.2019.04.008
http://dx.doi.org/10.1016/j.jocs.2020.101104
http://dx.doi.org/10.1016/j.cie.2017.06.009
http://dx.doi.org/10.1016/j.asoc.2017.02.034
http://dx.doi.org/10.1080/0305215X.2013.832237
http://dx.doi.org/10.1109/ACCESS.2022.3145853
http://dx.doi.org/10.1016/j.iot.2020.100201
http://dx.doi.org/10.1109/4235.797971
http://dx.doi.org/10.1109/ACCESS.2019.2927217

	Introduction
	Related Works
	Methodology
	Classical Propagation Model for UAV Base Stations
	Empirical Propagation Models for LoRa in Forested Environments

	Bioinspired Computing Algorithms
	Cuckoo Search
	Flower Pollination Algorithm
	Genetic Algorithm

	Drone Positioning Simulations and Optimization Metrics

	Results
	Fitness and Outage Probability
	Spectral Efficiency and Cell Radius
	Sine Contour Plots

	Conclusions
	References

