
Citation: de Alteriis, G.; Ruggiero, D.;

Del Prete, F.; Conte, C.; Caputo, E.;

Bottino, V.; Carone Fabiani, F.;

Accardo, D.; Schiano Lo Moriello, R.

The Use of Artificial Intelligence

Approaches for Performance

Improvement of Low-Cost Integrated

Navigation Systems. Sensors 2023, 23,

6127. https://doi.org/10.3390/

s23136127

Academic Editors: Andrzej Stateczny

and Pasquale Daponte

Received: 31 May 2023

Revised: 28 June 2023

Accepted: 30 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

The Use of Artificial Intelligence Approaches for Performance
Improvement of Low-Cost Integrated Navigation Systems
Giorgio de Alteriis 1,* , Davide Ruggiero 2 , Francesco Del Prete 2, Claudia Conte 1 , Enzo Caputo 1,
Verdiana Bottino 1, Filippo Carone Fabiani 3, Domenico Accardo 1 and Rosario Schiano Lo Moriello 1

1 Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80,
80125 Naples, Italy; claudia.conte2@unina.it (C.C.); enzo.caputo@unina.it (E.C.);
verdiana.bottino@unina.it (V.B.); domenico.accardo@unina.it (D.A.); rschiano@unina.it (R.S.L.M.)

2 STMicroelectronics, Analog, MEMS and Sensor Group R&D, 80022 Arzano, Italy;
davide.ruggiero@st.com (D.R.); francesco.delprete@st.com (F.D.P.)

3 Department of Economics, Management and Statistics, University Milano-Bicocca, 20126 Milano, Italy;
filippo.caronefabiani@unimib.it

* Correspondence: giorgio.dealteriis@unina.it

Abstract: In this paper, the authors investigate the possibility of applying artificial intelligence
algorithms to the outputs of a low-cost Kalman filter-based navigation solution in order to achieve
performance similar to that of high-end MEMS inertial sensors. To further improve the results of the
prototype and simultaneously lighten filter requirements, different AI models are compared in this
paper to determine their performance in terms of complexity and accuracy. By overcoming some
known limitations (e.g., sensitivity on the dimension of input data from inertial sensors) and starting
from Kalman filter applications (whose raw noise parameter estimates were obtained from a simple
analysis of sensor specifications), such a solution presents an intermediate behavior compared to the
current state of the art. It allows the exploitation of the power of AI models. Different Neural Network
models have been taken into account and compared in terms of measurement accuracy and a number
of model parameters; in particular, Dense, 1-Dimension Convolutional, and Long Short Term Memory
Neural networks. As can be excepted, the higher the NN complexity, the higher the measurement
accuracy; the models’ performance has been assessed by means of the root-mean-square error (RMSE)
between the target and predicted values of all the navigation parameters.

Keywords: artificial intelligence; neural network; MEMS; Kalman filter; redundant-IMU

1. Introduction

Accurate measurements of the state of motion of a vehicle or object turn out to be a
key aspect of several fields peculiar to the current industrial revolution [1]. These range
from autonomous navigation systems of air and ground vehicles for smart city applications,
to the autonomous and fast transportation of goods and products within warehouses,
and from the control of robotic arms to the positioning and monitoring of large building
structures [2–7]. For each of these applications, knowledge of kinetic parameters consisting
of position, velocity, and attitude is required in order to determine any maneuvers and/or
activities necessary to achieve the final task. Several solutions are available in the literature
and on the market, which differ in hardware costs, the complexity of processing procedures,
and quality of estimation—characteristics that are, as is often the case, antithetical to each
other [8].

Concerning hardware components, the main cost item is the inertial measurement
unit (IMU); in particular, their performance is classified according to the so-called degree
of operations [9–12]. Navigation grade systems guarantee the best performance based
on fiber-optic sensors, which are bulky and expensive, but their value of typical errors
(bias, drift, misalignment, and scale factor) is as low as to guarantee satisfactory inertial

Sensors 2023, 23, 6127. https://doi.org/10.3390/s23136127 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23136127
https://doi.org/10.3390/s23136127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4460-6640
https://orcid.org/0000-0001-9268-9420
https://orcid.org/0000-0001-9441-2927
https://orcid.org/0000-0001-8843-0109
https://orcid.org/0000-0003-4875-2845
https://doi.org/10.3390/s23136127
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23136127?type=check_update&version=2

Sensors 2023, 23, 6127 2 of 23

navigation, even without the need for further corrective work. The quality of IMU systems
then decreases until they reach the other end of the scale, the consumer-grade systems,
typically used for gaming or automotive applications [13–16]. Typically, these sensors are
made of MEMS technology, which achieves significant improvements in size, weight, and
cost [17].

Their geometric and physical characteristics make them ideal for applications involv-
ing small autonomous vehicles, to the detriment of worst metrological performance. Unlike
high-end solutions, the outputs of low-level MEMS sensors must be processed by appro-
priate numerical signal processing algorithms to enable them to be used in navigation
applications [18–20]. For this purpose, the information provided by other sensors (GNSS,
radar, optical sensors, odometers, etc.) is usually used to go in, estimate, and subsequently
compensate for the negative effects of bias and other sources of uncertainty. The resulting
system constitutes an Integrated Navigation System (INS) and typically exploits the Kalman
filter for integrating measurements from inertial sensors and external sensors [21,22].

Several versions of the Kalman filter have been proposed in the recent past in or-
der to improve the performance of the navigation system; in fact, in its original version,
the Kalman filter was proposed for state estimation of linear systems through a predic-
tion/correction type approach. Unfortunately, the equations describing the motion of
vehicles and objects turn out to be nonlinear and, as a result, make the direct application
of Kalman filters impossible or incorrect in the long run; solutions based on Extended
Kalman filters (EKF) or Unscented Kalman filters (UKF) have been proposed to overcome
this limitation [23,24].

The first approach is based on linearizing the nonlinear system by expanding the
model functions in truncated Taylor series to first order; the EKF and its subsequent
modifications are among the most commonly exploited solutions not only in navigation
but throughout engineering. Unfortunately, when the model equations have a very high
degree of nonlinearity, the quality of the EKF estimates becomes poor. The second approach
attempts to provide a solution to this problem by assuming that it is easier to approximate
a probability distribution than a nonlinear function. In this way, it is also possible to carry
higher-order terms within the filter computations, making the state estimates closer to their
true values [25–28].

Although capable of satisfactory results for traditional applications of estimating the
navigation and motion state of vehicles and objects, such solutions are sensitive to the value
provided to the noise matrices used in their implementations; any unsuitable choices of
such parameters lead to sub-optimal solutions that can be improved only through patient
tuning of the values of the matrices [21].

To overcome these limitations, several solutions have recently been proposed that
take advantage of modern artificial intelligence (AI) models to improve the performance
of inertial sensors; a very comprehensive and organized survey of several solutions is
presented in [29] in which advantages and shortcomings of such solutions are analyzed in
detail. In particular, such algorithms are applied to the outputs of inertial sensors to directly
obtain navigation state parameters. The main problems related to AI algorithms concern
the amount and the quality of the data for their training and assessment and, mostly, the
leak of grip on physical and geometric aspects of the real problem.

Aware of these limitations and supported by our previous study on a redundant
inertial sensor system, here we want to discuss the possibility of applying AI algorithms to
the outputs of an integrated navigation algorithm in such a way as to ensure performance
close to that of high-end MEMS inertial sensors (tactical grade costing about EUR 5000). In
particular, different AI models are compared in order to determine their performance in
terms of complexity and accuracy. Such a solution presents an intermediate behavior with
respect to state of the art summarized above, allowing the exploitation of the benefit of AI
models by overcoming their highlighted limitations (the inputs are quantities that have
already been processed by means of the geometric equations of motion) and starting from

Sensors 2023, 23, 6127 3 of 23

Kalman filter applications whose noise parameters were obtained from a simple analysis of
sensor specifications.

The paper is organized as follows; the authors’ past experience and state-of-the-art
are presented in Section 2, the proposed method and implementation of the AI-based
navigation solution are described in Section 3, while in Section 4, the obtained results
are presented as advantages introduced by the proposed AI approach and the overall
performance reached, before drawing the conclusions in Section 5.

2. Related Work

To better appreciate the improvement brought by the present paper, a brief literature
state-of-the-art is presented in the next section. In particular, Section 2.1 describes the hard-
ware and software architecture of an IMU prototype based on a redundant configuration of
cost-effective inertial sensors; the prototype has been presented in [30], and suitable results
have been achieved thanks to an accurate estimation of the noise parameter of the adopted
Kalman filter. On the contrary, the main proposals based on AI models are summarized in
Section 2.2, highlighting benefits and limitations.

2.1. Realized Prototype of a Redundant Inertial Measurement Unit

The well-known benefit of the adoption of low-cost MEMS sensors has led the author
to evaluate methods, both hardware and software, to adopt this category of sensors also
in application fields such as aerospace, where the performance requirements represent a
critical aspect. To this aim, a redundant configuration of six inertial sensors, both accelerom-
eters and gyroscopes, was developed. In fact, it was proved that the IMU bias uncertainty
could be reduced by exploiting a geometrical redundancy [30].

The realized prototype was composed of six IMU referred to as SensorTileTM from
STMicroelectronics (Geneva, Switzerland); each SensorTile includes 13.5 × 13.5 mm2, a
low-cost inertial sensor (iNEMO), eCompass module, barometric pressure sensor, digital
MEMS microphone and Bluetooth low energy module that are managed by a 32-bit ultra-
low-power Cortex-M4 80-MHz microcontroller. The sensor boards are then connected with
a microcontroller, called STM32F303K8 from STMicroelectronics, that acts as a concentrator,
i.e., collect the raw acceleration and angular velocity measurements from the IMUs by
means of the Serial Peripherical Interface (SPI) protocol, and can send the acquired data
through the UART protocol or can be stored in a micro-Sd card. The prototype was
configured in such a way that the inertial measurements are acquired with a frequency
of about 125 Hz, exploiting the SPI protocol communication speed capabilities where
the frequency was set to 10 MHz. Moreover, a GNSS module from STMicroelectronicsTM,
Geneva, Switzerland (X-Nucleo GNSS1A1) is placed on a SensorTile board that is connected
to the microcontroller by means of UART communication.

To verify the prototype performance, the results obtained from the prototype were
compared with a tactical-grade IMU, called STIM300 from Sensonor, that is selected as a
reference system. In fact, this compact IMU presents a tri-axial accelerometer and gyro-
scope with remarkable performance; in particular, the gyroscope angular Random Walk
(RW) and Bias Instability (BI) are equal to 0.15 deg/

√
h and 0.3 deg/h, respectively, while

the accelerometer velocity random walk and bias instability are equal to 0.07 m/s/
√

h
and 0.04 mg, respectively. These performance values allow the adoption of these sen-
sors in aerospace applications, but their cost is five orders of magnitude higher than the
commercial-grade mems.

As already introduced, the inertial sensors need the integration of an external source
that provides information about the position and velocity to integrate them with the inertial
measures by means of a data fusion algorithm. In fact, in this research, a loosely coupled
GNSS/INS Kalman Filter-based architecture has been presented. In particular, the same
GNSS module for the prototype and the reference system is selected, called Teseo-LIV3,
from STMicroelectronicsTM, Geneva, Switzerland.

Sensors 2023, 23, 6127 4 of 23

To better summarize the hardware architecture proposed, a full components and
realization scheme is proposed in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 23

same GNSS module for the prototype and the reference system is selected, called Teseo-
LIV3, from STMicroelectronicsTM, Geneva, Switzerland.

To better summarize the hardware architecture proposed, a full components and re-
alization scheme is proposed in Figure 1.

Figure 1. Hardware architecture composed of a redundant imu (in red), a GNSS module (in green),
a SPI-SDcard adapter (in orange), and the STIM300 (in blue).

On the other hand, a calibration procedure that resolves the relative alignment has
been evaluated to ensure comparable performance with the reference system and exploit
the redundant configuration benefits. In particular, by evaluating the gravity vector on
each IMU in six different orientations, it was possible to obtain the transformation matrix
for each reference frame; in such a way, the relative alignment of each IMU is referred to
as a single reference frame. This procedure resolves not only the different reference frames
but also the residual misalignment of each IMU. Once obtained the transformation matrix
as a one-time calibration procedure, the prototype errors, such as bias instability and ran-
dom walk, are evaluated according to the IEEE standard [31], which involves the acquisi-
tion of acceleration and angular velocity measurements for a time equal to 48 h at a con-
stant temperature. In fact, by means of the Allan variance, the error parameters could be
evaluated from the curve portion according to the IEEE standard. These parameters are
needed to configure the Kalman filter noise covariance matrix properly.

Finally, after the one-time prototype calibration and characterization, two Kalman
filter-based algorithms have been developed. The first one, called Zero-Velocity Update
(ZUPT) filter, is adopted to initialize the bias values used in the GNSS/INS navigation
filter; it consists of the position and attitude estimate in stationary conditions where the
residual estimated errors are evaluated as sensors bias. As evaluated in this research, the
bias initialization procedure achieves high performance in only 60 s. The second one is
applied to estimate the attitude and position in dynamic conditions. Actually, the state
vector is initialized with 15-state that are the attitude, position, velocity errors, and bias
values (along the three axes of the accelerometers and gyroscopes).

For the sake of clarity, the proposed method is shown in Figure 2, where the acceler-
ation (a) and angular velocity (w) measurements are collected from the six SensorTile (ST).
Successively, they are aligned according to the procedure described in [30], and the noise
parameters, i.e., RW and BI, are evaluated by means of the Allan Variance. In the naviga-
tion phase, preliminary initial bias estimations, that are, the accelerometer (ba) and gyro-
scope (bw) bias values, have been realized with a ZUPT filter, and then the position, veloc-
ity, and attitude values are estimated by means of an integrated navigation filter, i.e.,

Figure 1. Hardware architecture composed of a redundant imu (in red), a GNSS module (in green), a
SPI-SDcard adapter (in orange), and the STIM300 (in blue).

On the other hand, a calibration procedure that resolves the relative alignment has
been evaluated to ensure comparable performance with the reference system and exploit
the redundant configuration benefits. In particular, by evaluating the gravity vector on
each IMU in six different orientations, it was possible to obtain the transformation matrix
for each reference frame; in such a way, the relative alignment of each IMU is referred
to as a single reference frame. This procedure resolves not only the different reference
frames but also the residual misalignment of each IMU. Once obtained the transformation
matrix as a one-time calibration procedure, the prototype errors, such as bias instability
and random walk, are evaluated according to the IEEE standard [31], which involves the
acquisition of acceleration and angular velocity measurements for a time equal to 48 h at a
constant temperature. In fact, by means of the Allan variance, the error parameters could
be evaluated from the curve portion according to the IEEE standard. These parameters are
needed to configure the Kalman filter noise covariance matrix properly.

Finally, after the one-time prototype calibration and characterization, two Kalman
filter-based algorithms have been developed. The first one, called Zero-Velocity Update
(ZUPT) filter, is adopted to initialize the bias values used in the GNSS/INS navigation
filter; it consists of the position and attitude estimate in stationary conditions where the
residual estimated errors are evaluated as sensors bias. As evaluated in this research, the
bias initialization procedure achieves high performance in only 60 s. The second one is
applied to estimate the attitude and position in dynamic conditions. Actually, the state
vector is initialized with 15-state that are the attitude, position, velocity errors, and bias
values (along the three axes of the accelerometers and gyroscopes).

For the sake of clarity, the proposed method is shown in Figure 2, where the accel-
eration (a) and angular velocity (w) measurements are collected from the six SensorTile
(ST). Successively, they are aligned according to the procedure described in [30], and the
noise parameters, i.e., RW and BI, are evaluated by means of the Allan Variance. In the
navigation phase, preliminary initial bias estimations, that are, the accelerometer (ba) and
gyroscope (bw) bias values, have been realized with a ZUPT filter, and then the position,
velocity, and attitude values are estimated by means of an integrated navigation filter, i.e.,
loosely-coupled Error-State Kalman Filter that process the inertial measurements and the
GNSS data.

Sensors 2023, 23, 6127 5 of 23

Sensors 2023, 23, x FOR PEER REVIEW 5 of 23

loosely-coupled Error-State Kalman Filter that process the inertial measurements and the
GNSS data.

Figure 2. Proposed method for navigation parameter estimates.

2.2. Artificial Intelligence for Inertial Sensing
As for all the scientific and industrial fields and applications, also in inertial and in-

tegrated navigation, several papers have been presented in order to investigate the ad-
vantages brought by the exploitation of AI techniques [29]. In particular, Machine Learn-
ing (ML) has been adopted to enhance inertial sensor performances at different stages of
their typical application fields, from a fundamental hardware level (e.g., gyros lifecycle
estimation [32]) to calibration and error modeling (e.g., ANN for thermal drift compensa-
tion [33]), from inertial navigation (e.g., a machine-learning algorithm for Euler angle
measurements [34]) to high-level applications (e.g., action classification based on IMU by
means of ANN [35]).

Hereafter, the attention will be focused on the application of machine-learning algo-
rithms to enhance the performance of integrated navigation solutions based on multi-sen-
sor information fusion. As an example, different approaches (either regression models or
classification algorithms) have been compared in [36] to detect the sideslip of the robot.
Even though machine-learning approaches were characterized by the same accuracy in
sideslip detection of the classification algorithms, they proved worst from a computational
burden point of view, which is relevant for this kind of application. Authors in [25] ex-
ploited the hidden Markov process to estimate the presence of electromagnetic interfer-
ence and, consequently, suitably weight the correction effect of the magnetic field in an
attitude and heading reference system, thus enhancing its performance. Unfortunately,
the authors only assessed the performance improvement due to the HMP without com-
paring other solutions available in the literature. Some solutions are mandated to improve
sensors measurements for the successive exploitation in the information fusion filter (as
an example, [37]); as can be expected, the greater the number of sensors, the greater the
computational burden of the approach, thus inherently limiting the scalability of the
method.

Several papers have been proposed where different machine-learning algorithms are
exploited to realize the data fusion of various sensors with the data coming from the iner-
tial sensors, mainly GNSSs, cameras, odometers, and magnetometers [38–40] or ensure
the performance maintenance of the navigation system if the external correction infor-
mation would not be available [41]. As an example, the enhancement brought by an LSTM
ANN to an inertial navigation system for visual odometry applications is discussed in
[39], where the associated improvements are clearly presented from a quantitative point

Figure 2. Proposed method for navigation parameter estimates.

2.2. Artificial Intelligence for Inertial Sensing

As for all the scientific and industrial fields and applications, also in inertial and
integrated navigation, several papers have been presented in order to investigate the
advantages brought by the exploitation of AI techniques [29]. In particular, Machine
Learning (ML) has been adopted to enhance inertial sensor performances at different
stages of their typical application fields, from a fundamental hardware level (e.g., gyros
lifecycle estimation [32]) to calibration and error modeling (e.g., ANN for thermal drift
compensation [33]), from inertial navigation (e.g., a machine-learning algorithm for Euler
angle measurements [34]) to high-level applications (e.g., action classification based on
IMU by means of ANN [35]).

Hereafter, the attention will be focused on the application of machine-learning algo-
rithms to enhance the performance of integrated navigation solutions based on multi-sensor
information fusion. As an example, different approaches (either regression models or clas-
sification algorithms) have been compared in [36] to detect the sideslip of the robot. Even
though machine-learning approaches were characterized by the same accuracy in sideslip
detection of the classification algorithms, they proved worst from a computational burden
point of view, which is relevant for this kind of application. Authors in [25] exploited
the hidden Markov process to estimate the presence of electromagnetic interference and,
consequently, suitably weight the correction effect of the magnetic field in an attitude and
heading reference system, thus enhancing its performance. Unfortunately, the authors only
assessed the performance improvement due to the HMP without comparing other solutions
available in the literature. Some solutions are mandated to improve sensors measurements
for the successive exploitation in the information fusion filter (as an example, [37]); as can
be expected, the greater the number of sensors, the greater the computational burden of the
approach, thus inherently limiting the scalability of the method.

Several papers have been proposed where different machine-learning algorithms are
exploited to realize the data fusion of various sensors with the data coming from the inertial
sensors, mainly GNSSs, cameras, odometers, and magnetometers [38–40] or ensure the
performance maintenance of the navigation system if the external correction information
would not be available [41]. As an example, the enhancement brought by an LSTM ANN to
an inertial navigation system for visual odometry applications is discussed in [39], where
the associated improvements are clearly presented from a quantitative point of view but not
compared to other possible geometric-based approaches. On the contrary, ML is exploited

Sensors 2023, 23, 6127 6 of 23

in [41] to realize a tightly coupled GNSS receiver by predicting the raw measurements from
external sensors rather than the corrections they produce in the information fusion filter.

The main drawbacks of the latter approaches, with respect to other solutions proposed
in the literature, can be found in the lack of either the performance or the analysis capability
of the navigation quality. To overcome the above limitations, the authors present hereinafter
the comparison of different machine-learning solutions in order to investigate and assess
their performance from both accuracy and computational burden points of view. Differently
from the solutions considered so far, the proposed models are applied to the outputs
(position, velocity, and attitude) provided by a sub-optimal information fusion filter, whose
noise parameters have not been properly tailored for the application [30] but are roughly
estimated starting from the poor data sheet data of the inertial sensors.

3. Proposed ANN-Based Navigation Solutions

As stated above, the paper aims to investigate the suitability of machine-learning
algorithms to improve the performance of a loosely coupled integrated navigation system
based on a redundant configuration of low-cost, consumer-grade MEMS inertial sensors. To
this aim, ML models are trained in order to provide estimates of the navigation parameters
as close as possible to those assured by high-end, tactical-grade MEMS sensors. The
operating steps of the method are summarized in the block diagram of Figure 3 and
mainly enlist:

• Data preprocessing;
• Neural Networks (NN) models developing;
• Model’s training and validation;
• Hyper-parameter tuning.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 23

of view but not compared to other possible geometric-based approaches. On the contrary,
ML is exploited in [41] to realize a tightly coupled GNSS receiver by predicting the raw
measurements from external sensors rather than the corrections they produce in the in-
formation fusion filter.

The main drawbacks of the latter approaches, with respect to other solutions pro-
posed in the literature, can be found in the lack of either the performance or the analysis
capability of the navigation quality. To overcome the above limitations, the authors pre-
sent hereinafter the comparison of different machine-learning solutions in order to inves-
tigate and assess their performance from both accuracy and computational burden points
of view. Differently from the solutions considered so far, the proposed models are applied
to the outputs (position, velocity, and attitude) provided by a sub-optimal information
fusion filter, whose noise parameters have not been properly tailored for the application
[30] but are roughly estimated starting from the poor data sheet data of the inertial sen-
sors.

3. Proposed ANN-Based Navigation Solutions
As stated above, the paper aims to investigate the suitability of machine-learning al-

gorithms to improve the performance of a loosely coupled integrated navigation system
based on a redundant configuration of low-cost, consumer-grade MEMS inertial sensors.
To this aim, ML models are trained in order to provide estimates of the navigation param-
eters as close as possible to those assured by high-end, tactical-grade MEMS sensors. The
operating steps of the method are summarized in the block diagram of Figure 3 and
mainly enlist:
• Data preprocessing;
• Neural Networks (NN) models developing;
• Model’s training and validation;
• Hyper-parameter tuning.

Details of the considered steps are given in the following subsections. For the sake of
clarity, the proposed method will be presented by considering an application example
involving an actual car ride whose track is shown in Figure 4.

Figure 3. Block diagram of the proposed ML-based navigation solution.

Figure 4. Actual car route exploited as an application example for the presentation of the operating
steps of the proposed ML-based navigation solution.

Figure 3. Block diagram of the proposed ML-based navigation solution.

Details of the considered steps are given in the following subsections. For the sake
of clarity, the proposed method will be presented by considering an application example
involving an actual car ride whose track is shown in Figure 4.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 23

of view but not compared to other possible geometric-based approaches. On the contrary,
ML is exploited in [41] to realize a tightly coupled GNSS receiver by predicting the raw
measurements from external sensors rather than the corrections they produce in the in-
formation fusion filter.

The main drawbacks of the latter approaches, with respect to other solutions pro-
posed in the literature, can be found in the lack of either the performance or the analysis
capability of the navigation quality. To overcome the above limitations, the authors pre-
sent hereinafter the comparison of different machine-learning solutions in order to inves-
tigate and assess their performance from both accuracy and computational burden points
of view. Differently from the solutions considered so far, the proposed models are applied
to the outputs (position, velocity, and attitude) provided by a sub-optimal information
fusion filter, whose noise parameters have not been properly tailored for the application
[30] but are roughly estimated starting from the poor data sheet data of the inertial sen-
sors.

3. Proposed ANN-Based Navigation Solutions
As stated above, the paper aims to investigate the suitability of machine-learning al-

gorithms to improve the performance of a loosely coupled integrated navigation system
based on a redundant configuration of low-cost, consumer-grade MEMS inertial sensors.
To this aim, ML models are trained in order to provide estimates of the navigation param-
eters as close as possible to those assured by high-end, tactical-grade MEMS sensors. The
operating steps of the method are summarized in the block diagram of Figure 3 and
mainly enlist:
• Data preprocessing;
• Neural Networks (NN) models developing;
• Model’s training and validation;
• Hyper-parameter tuning.

Details of the considered steps are given in the following subsections. For the sake of
clarity, the proposed method will be presented by considering an application example
involving an actual car ride whose track is shown in Figure 4.

Figure 3. Block diagram of the proposed ML-based navigation solution.

Figure 4. Actual car route exploited as an application example for the presentation of the operating
steps of the proposed ML-based navigation solution.
Figure 4. Actual car route exploited as an application example for the presentation of the operating
steps of the proposed ML-based navigation solution.

Sensors 2023, 23, 6127 7 of 23

In this application, the inertial data are acquired from the STIM300 and Cube at
125 Hz while the position and velocity (in NED reference frame) are acquired from the
GNSS module with lower frequency (1 Hz), then are processed by means of an Error-State
Kalman Filter (ESKF). Both estimates obtained from ESKF, i.e., latitude, longitude, altitude,
attitude (heading, pitch, and roll), and velocity (in NED reference frame), are then taken
into account; in particular, the estimates obtained from the STIM300/GNSS are considered
as reference (Target) while those obtained from Cube/GNSS (Input) are processed by means
of ML algorithm as shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 23

In this application, the inertial data are acquired from the STIM300 and Cube at 125
Hz while the position and velocity (in NED reference frame) are acquired from the GNSS
module with lower frequency (1 Hz), then are processed by means of an Error-State Kal-
man Filter (ESKF). Both estimates obtained from ESKF, i.e., latitude, longitude, altitude,
attitude (heading, pitch, and roll), and velocity (in NED reference frame), are then taken
into account; in particular, the estimates obtained from the STIM300/GNSS are considered
as reference (Target) while those obtained from Cube/GNSS (Input) are processed by
means of ML algorithm as shown in Figure 5.

Figure 5. Machine Learning solution and navigation parameter estimations based on an Error-State
Kalman Filter.

3.1. Data Preprocessing
The input dataset for the ML models consists of the output of the redundant config-

uration of SensorTilesTM (the Cube) integrated with a GNSS Teseo LIV3F by a Kaman filter
whose noise parameters were not optimized as in [30] but obtained from datasheet infor-
mation. In this way, the estimates of navigation parameters are poorer with respect to
those provided in [30], but no specific optimization (as an example, Allan variance) is re-
quired, with a consequent gain in terms of implementation time.

Actually, the dataset includes about 81,000 samples with 9 parameters that are esti-
mates for both the Cube and the STIM integrated with GNSS, i.e., altitude, latitude, longi-
tude, heading, pitch, roll, and velocity along the three axes; the main statistical parameters
of the dataset are summarized in Table 1.

Table 1. Dataset statistics summary.

 Mean Std Min 25% 50% 75% Max
Lat [rad] 0.7125 0.0026 0.7124 0.7125 0.7125 0.7126 0.7126
Lon [rad] 0.2476 0.0028 0.2474 0.2475 0.2476 0.2477 0.2478
Alt [m] 20.6002 14.8431 0.0003 9.0984 18.5825 28.5465 61.5073

Heading
[rad]

−0.4692 1.6914 −3.1400 −1.6821 0.0069 0.7879 3.1400

Pitch [rad] 0.0069 0.0998 −0.2341 −0.0696 −0.0095 0.1116 0.2155
Roll [rad] 0.1519 3.0546 −3.1415 −3.0377 2.9960 3.0627 3.1415
VX [m/s] −0.1573 5.3205 −10.5311 −4.5739 −1.4232 5.3572 10.1318
VY [m/s] 0.1151 5.7372 −12.9115 −3.6694 −0.0372 5.8233 10.4455
VZ [m/s] −1.4146 1.2136 −4.9909 −2.1293 −1.1552 −0.5929 1.4289

As for the ML model definition and training, the navigation parameters that are esti-
mated by means of the Cube/GNSS integration represent the input for the NNs, while

Figure 5. Machine Learning solution and navigation parameter estimations based on an Error-State
Kalman Filter.

3.1. Data Preprocessing

The input dataset for the ML models consists of the output of the redundant con-
figuration of SensorTilesTM (the Cube) integrated with a GNSS Teseo LIV3F by a Kaman
filter whose noise parameters were not optimized as in [30] but obtained from datasheet
information. In this way, the estimates of navigation parameters are poorer with respect
to those provided in [30], but no specific optimization (as an example, Allan variance) is
required, with a consequent gain in terms of implementation time.

Actually, the dataset includes about 81,000 samples with 9 parameters that are es-
timates for both the Cube and the STIM integrated with GNSS, i.e., altitude, latitude,
longitude, heading, pitch, roll, and velocity along the three axes; the main statistical param-
eters of the dataset are summarized in Table 1.

Table 1. Dataset statistics summary.

Mean Std Min 25% 50% 75% Max

Lat [rad] 0.7125 0.0026 0.7124 0.7125 0.7125 0.7126 0.7126
Lon [rad] 0.2476 0.0028 0.2474 0.2475 0.2476 0.2477 0.2478
Alt [m] 20.6002 14.8431 0.0003 9.0984 18.5825 28.5465 61.5073

Heading [rad] −0.4692 1.6914 −3.1400 −1.6821 0.0069 0.7879 3.1400
Pitch [rad] 0.0069 0.0998 −0.2341 −0.0696 −0.0095 0.1116 0.2155
Roll [rad] 0.1519 3.0546 −3.1415 −3.0377 2.9960 3.0627 3.1415
VX [m/s] −0.1573 5.3205 −10.5311 −4.5739 −1.4232 5.3572 10.1318
VY [m/s] 0.1151 5.7372 −12.9115 −3.6694 −0.0372 5.8233 10.4455
VZ [m/s] −1.4146 1.2136 −4.9909 −2.1293 −1.1552 −0.5929 1.4289

As for the ML model definition and training, the navigation parameters that are
estimated by means of the Cube/GNSS integration represent the input for the NNs, while
those provided by the STIM/GNSS integration represent the corresponding target. Before
being processed by the proposed models, the dataset is first preprocessed to improve the
training success rate of the ANN. More specifically, the preprocessing steps are:

Sensors 2023, 23, 6127 8 of 23

1. Normalizing the dataset;
2. Removing outliers with the z-score technique;
3. Split the dataset into two parts: train and test.

The data normalization step transforms the parameter values by scaling each of them
within the interval between 0 and 1; to this aim, the Python Scikit-Learn MinMaxScaler [42]
estimator has been exploited to individually scale each parameter from its original range in
the dataset to a new interval in order to speed up the training phase of the NN. The data
normalization was conducted, paying attention to avoid data leakage from the test dataset
to the training dataset.

The standard score technique (usually referred to as z-scores or standard-score [43]),
exploited for the outlier’s removal step, is calculated by subtracting the mean value of
processed data from each raw observation and then dividing the difference by its standard
deviation. Values of the parameters characterized by a standard score greater than three
have been removed.

To estimate and validate the performance of the NN, the Train-Test split procedure
has been used where the dataset was split according to the following standard percentages:
train 80% and test 20%, i.e., the final 20% has been exploited for the testing stage (acting
this way also as validation).

In the training phase, the NNs models receive the inputs (Cube outputs processed by
the Kalman filter), generate the output (predictions) and compare the latter with the target
data (STIM outputs processed by the Kalman filter).

A crucial step in the design phase of a NN is the choice of model hyperparameters,
where a hyperparameter means all the parameters which control the learning process
of the model, unlike the network weights, which are identified as the parameters of a
NN architecture.

A brief description of the hyperparameters involved in our NNs will now be given:

• In a NN, the loss function quantifies the difference between the expected outcome
and the outcome produced by the model. From the loss function, we can derive the
gradients which are used to update the weights. The average overall losses constitute
the cost. A loss function based on the MAE was used for all the developed models;

• To assess the prediction performance of the models, two performance factors (MAE and
RMSE) have been taken into account to the purpose, i.e., (i) the concurrence between
estimated and nominal navigation parameters, and (ii) the number of parameters to
be determined and trained for the ANN model.

The Mean Absolute Error (MAE) and RMSE are expressed, respectively, as:

MAE =
N−1

∑
i=0

|xT [i]− x[i]|
N

(1)

RMSE =

√√√√N−1

∑
i=0

(xT [i]− x[i])2

N
(2)

where x[i] stands for the i-th value of a generic navigation parameter of the Cube (either
original or predicted by the ANN model), xT [i] is the corresponding value provided by the
STIM navigation, and N is the number of considered samples.

• An optimization algorithm (optimizer) finds the value of the parameters (weights)
that minimize the error when mapping inputs to outputs. These optimizers widely
increase the accuracy and speed training of the model as well. In the design of our
NNs, we selected Adam [44] as the optimizer. Adam is an alternative optimization
algorithm that provides more efficient weights by running repeated cycles of “adaptive
moment estimation.” Adam extends on stochastic gradient descent to solve non-convex
problems faster while using fewer resources than many other optimization programs;

Sensors 2023, 23, 6127 9 of 23

• The learning rate is a tuning parameter of the optimization algorithm that controls the
update of the network weights, moving towards the minimum of the loss function.
Choosing the learning rate is challenging in that a too-small value may imply a time-
consuming training process, whereas a too-large value may result in achieving learning
a sub-optimal set of weights too fast since an unstable training process;

• The batch size is a hyperparameter of gradient descent-based optimizers that control
the number of training samples to work through before the model’s internal parameters
are updated;

• The number of epochs is a hyperparameter of gradient descent-based optimizers that
control the number of complete passes through the training dataset.

During the training process, the weights of the NN, starting from a random initial
condition, are optimized to reduce the model prediction error. In the testing phase, the
network generates its outputs (predictions) in an unsupervised manner, and the concur-
rence with the target data is considered. Different hyperparameter values have been chosen
for our models, and the relative values will be shown in the next paragraphs; actually,
three different models of NN have been compared to improve the navigation performance
of the low-cost redundant IMU configuration.

3.2. Dense Neural Network Model

The first model taken into account is a Dense Neural Network (DNN) [45] character-
ized by an input layer with 335 neurons, two hidden layers with, respectively, 479 and
579 neurons, and an output layer. In a DNN model, a layer is fully connected with its
preceding layer; each neuron of the layer is connected to every neuron of its preceding
layer; hence it receives outputs from every neuron of its preceding layer.

As shown in Figure 6, the activation function used for the neurons of each layer is the
ReLU [46], but the last one has a linear activation function since the task addressed is a
regression task. The activation function ϕ is the decision-making element that defines the
decision boundary in the input space by setting a threshold.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 23

NNs, we selected Adam [44] as the optimizer. Adam is an alternative optimization
algorithm that provides more efficient weights by running repeated cycles of “adap-
tive moment estimation.” Adam extends on stochastic gradient descent to solve non-
convex problems faster while using fewer resources than many other optimization
programs;

• The learning rate is a tuning parameter of the optimization algorithm that controls
the update of the network weights, moving towards the minimum of the loss func-
tion. Choosing the learning rate is challenging in that a too-small value may imply a
time-consuming training process, whereas a too-large value may result in achieving
learning a sub-optimal set of weights too fast since an unstable training process;

• The batch size is a hyperparameter of gradient descent-based optimizers that control
the number of training samples to work through before the model’s internal param-
eters are updated;

• The number of epochs is a hyperparameter of gradient descent-based optimizers that
control the number of complete passes through the training dataset.
During the training process, the weights of the NN, starting from a random initial

condition, are optimized to reduce the model prediction error. In the testing phase, the
network generates its outputs (predictions) in an unsupervised manner, and the concur-
rence with the target data is considered. Different hyperparameter values have been cho-
sen for our models, and the relative values will be shown in the next paragraphs; actually,
three different models of NN have been compared to improve the navigation performance
of the low-cost redundant IMU configuration.

3.2. Dense Neural Network Model
The first model taken into account is a Dense Neural Network (DNN) [45] character-

ized by an input layer with 335 neurons, two hidden layers with, respectively, 479 and 579
neurons, and an output layer. In a DNN model, a layer is fully connected with its preced-
ing layer; each neuron of the layer is connected to every neuron of its preceding layer;
hence it receives outputs from every neuron of its preceding layer.

As shown in Figure 6, the activation function used for the neurons of each layer is the
ReLU [46], but the last one has a linear activation function since the task addressed is a
regression task. The activation function φ is the decision-making element that defines the
decision boundary in the input space by setting a threshold.

Figure 6. Architecture of the adopted dense neural network model.

In particular, Figure 6 shows the feed-forward layer of the DNN model. The training
phase of the network takes place in the backpropagation layer [47]. In this layer, the cho-
sen optimization algorithm, Adam, tunes the network parameters (weights). The hyperpa-
rameter values chosen for this model are shown in Table 2, along with a brief description
of the network architecture in terms of layers distribution and the number of correspond-
ing parameters.

Figure 6. Architecture of the adopted dense neural network model.

In particular, Figure 6 shows the feed-forward layer of the DNN model. The training
phase of the network takes place in the backpropagation layer [47]. In this layer, the
chosen optimization algorithm, Adam, tunes the network parameters (weights). The
hyperparameter values chosen for this model are shown in Table 2, along with a brief
description of the network architecture in terms of layers distribution and the number of
corresponding parameters.

Table 2. Hyperparameters of the dense neural network model.

Model Optimizer: Adam Loss: Mean Absolute Error

Training
Hyper-Parameters Batch Size: 185 Learning Rate: 0.001 Epochs: 5000

Layer Shape Param

Dense_1 335 3350
Dense_2 479 160,944
Dense_3 579 277,920

Dense out 9 5220
Total params 447,434

Trainable params 447,434
Non-trainable params 0

Sensors 2023, 23, 6127 10 of 23

This model is characterized by 447,434 weights, each of which can be trained. The
trainable parameters associated with each neuron are the weights (w) and the biases (b).
As stated above, these parameters are updated during the backpropagation procedure.

Both the train and the validation plots are shown in Figure 7. The training curve
illustrates how the network is optimizing its parameters during the training phase. The
curve illustrates how the network performs on the Test dataset.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 23

Table 2. Hyperparameters of the dense neural network model.

Model Optimizer: Adam Loss: Mean Absolute Error
Training

Hyper-Parameters Batch Size: 185 Learning Rate: 0.001 Epochs: 5000

Layer Shape Param
Dense_1 335 3350
Dense_2 479 160,944
Dense_3 579 277,920

Dense out 9 5220
Total params 447,434

Trainable params 447,434
Non-trainable params 0

This model is characterized by 447,434 weights, each of which can be trained. The
trainable parameters associated with each neuron are the weights (w) and the biases (b).
As stated above, these parameters are updated during the backpropagation procedure.

Both the train and the validation plots are shown in Figure 7. The training curve il-
lustrates how the network is optimizing its parameters during the training phase. The
curve illustrates how the network performs on the Test dataset.

Figure 7. Loss functions of the Dense model.

The current state of the model can be evaluated at each step of the training algorithm.
The training curve related to the Train dataset illustrates the “learning” behavior of the
model. The Test dataset is not involved in this training phase. Moreover, the network’s
evaluation of the Test dataset provides a clear picture of the inferential capacity of the
model. In this specific case, the two curves almost overlap with one another, indicating a
proper design of the NN.

3.3. Conv1D Model
The second model under consideration is a 1-D Convolutional Neural Network

(CNN) [48,49]. CNN models were developed for image classification problems, in which
the model learns an internal representation of a two-dimensional input in a process re-
ferred to as feature learning. The same process can be harnessed on one-dimensional se-
quences of data, such as the time sequences of navigation parameters of the considered
task. The model learns to extract features from sequences of observations and passes this
information to the Dense layer used for the regression task.

The benefit of using CNNs for sequence classification is that they can learn from the
raw time series data directly. The model can learn an internal representation of the time
series data and ideally achieve comparable performance to model fit using a version of
the dataset with engineered features.

Figure 7. Loss functions of the Dense model.

The current state of the model can be evaluated at each step of the training algorithm.
The training curve related to the Train dataset illustrates the “learning” behavior of the
model. The Test dataset is not involved in this training phase. Moreover, the network’s
evaluation of the Test dataset provides a clear picture of the inferential capacity of the
model. In this specific case, the two curves almost overlap with one another, indicating a
proper design of the NN.

3.3. Conv1D Model

The second model under consideration is a 1-D Convolutional Neural Network
(CNN) [48,49]. CNN models were developed for image classification problems, in which
the model learns an internal representation of a two-dimensional input in a process referred
to as feature learning. The same process can be harnessed on one-dimensional sequences
of data, such as the time sequences of navigation parameters of the considered task. The
model learns to extract features from sequences of observations and passes this information
to the Dense layer used for the regression task.

The benefit of using CNNs for sequence classification is that they can learn from the
raw time series data directly. The model can learn an internal representation of the time
series data and ideally achieve comparable performance to model fit using a version of the
dataset with engineered features.

The Conv1D model is composed of an input layer with 256 neurons, a hidden layer
with 128 neurons, and an output layer with a linear activation function. In addition to the
previous model, the batch normalization layer [50] is used after the two convolutive layers,
as shown in Figure 8.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 23

The Conv1D model is composed of an input layer with 256 neurons, a hidden layer
with 128 neurons, and an output layer with a linear activation function. In addition to the
previous model, the batch normalization layer [50] is used after the two convolutive lay-
ers, as shown in Figure 8.

Figure 8. Conv1D model.

The Batch Normalization stabilizes the learning process and drastically reduces the
number of training epochs required to train the NN.

In this model, the network is divided into two parts. The convolutive part focuses on
feature extraction, trying to obtain as much information as possible from the features. The
second part is a DNN dealing with the regression task.

The Max Pooling layer was also considered in the design of this network. A problem
with the output feature maps is that they are sensitive to the location of the features in the
input. One approach to address this sensitivity is to downsample the feature maps in or-
der to make them more robust to changes in the feature position in the dataset, according
to the local translation invariance. Pooling layers provide an approach to downsample
feature maps by summarizing the presence of features in patches of the feature map. Two
common pooling methods are Average Pooling and Max Pooling, which summarize the
average presence of a feature and the most activated presence of a feature, respectively.

Table 3 summarizes the relevant hyperparameters of the exploited Conv1D model
together with a brief description of the network architecture.

Table 3. Hyperparameters of the adopted Conv1D neural network model.

Model. Optimizer: Adam Loss: Mean Absolute Error
Training

Hyper-Parameters
Batch Size: 152 Learning Rate: 0.008 Epochs: 5000

Layer Shape Param
Conv1D_1 256 1024

Batch_Normalization_1 256 768
Conv1D_2 128 65,664

Batch_Normalization_2 128 384
Max_Poolling 128 0

Flatten 384 0
Dense_1 128 49,280
Dense_2 9 1161

Total params 118,281
Trainable params 117,513

Non-trainable params 768

As can be appreciated, the memory footprint associated with the model parameters
is about a quarter of that characterizing the DNN, thus making it feasible for deployment
on an edge computing device.

The Conv1D model shows a validation curve overlapping the training curve, as
shown in Figure 9, an indication of good training of the NN.

Figure 8. Conv1D model.

The Batch Normalization stabilizes the learning process and drastically reduces the
number of training epochs required to train the NN.

In this model, the network is divided into two parts. The convolutive part focuses on
feature extraction, trying to obtain as much information as possible from the features. The
second part is a DNN dealing with the regression task.

Sensors 2023, 23, 6127 11 of 23

The Max Pooling layer was also considered in the design of this network. A problem
with the output feature maps is that they are sensitive to the location of the features in the
input. One approach to address this sensitivity is to downsample the feature maps in order
to make them more robust to changes in the feature position in the dataset, according to the
local translation invariance. Pooling layers provide an approach to downsample feature
maps by summarizing the presence of features in patches of the feature map. Two common
pooling methods are Average Pooling and Max Pooling, which summarize the average
presence of a feature and the most activated presence of a feature, respectively.

Table 3 summarizes the relevant hyperparameters of the exploited Conv1D model
together with a brief description of the network architecture.

Table 3. Hyperparameters of the adopted Conv1D neural network model.

Model. Optimizer: Adam Loss: Mean Absolute Error

Training
Hyper-Parameters Batch Size: 152 Learning Rate: 0.008 Epochs: 5000

Layer Shape Param

Conv1D_1 256 1024

Batch_Normalization_1 256 768

Conv1D_2 128 65,664

Batch_Normalization_2 128 384

Max_Poolling 128 0

Flatten 384 0

Dense_1 128 49,280

Dense_2 9 1161

Total params 118,281

Trainable params 117,513

Non-trainable params 768

As can be appreciated, the memory footprint associated with the model parameters is
about a quarter of that characterizing the DNN, thus making it feasible for deployment on
an edge computing device.

The Conv1D model shows a validation curve overlapping the training curve, as shown
in Figure 9, an indication of good training of the NN.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 23

Figure 9. Loss functions of Conv1D model.

3.4. LSTM Model
A Recurring Neural Network (RNN) was considered for the third NN model. In par-

ticular, Long Short-Term Memory (LSTM) [51] Network is an advanced, recurrent archi-
tecture that allows relevant information to persist by filtering out unnecessary infor-
mation. LSTM ANN has internal mechanisms called gates that can regulate the flow of
information. These gates can learn which data in a sequence is important to keep or throw
away. By doing that, it can pass relevant information down the long chain of sequences to
make predictions. The exploited LSTM model is composed of an input layer with 200 neu-
rons, a hidden dense layer with 100 neurons, and an output of a dense layer, as shown in
Figure 10.

Figure 10. LSTM model.

Table 4 shows the most significative hyperparameters related to the LSTM model
with a brief description of the network architecture. The number of parameters is 182,698.
The memory footprint of this model is located, in terms of bytes, between the dense model
(high number of parameters) and the Conv1D model (low number of parameters).

Table 4. Hyperparameters of the adopted LSTM neural network model.

Model Optimizer: Adam Loss: Mean Absolute Error
Training

Hyper-Parameters
Batch Size: 200 Learning Rate: 0.005 Epochs: 5000

Layer Shape Param
LSTM 200 161,600

Dense_1 100 20,100
Dense_out 100 909

Total params 182,609
Trainable params 182,609

Non-trainable params 0

The LSTM model results in a validation curve almost overlapping the training curve,
as shown in Figure 11. It can be concluded that this overlapping is once again a sign of the
successful training of the model. Regarding the performance of the LSTM model, the
RMSE between the predicted values (generated from the network) and the target values

Figure 9. Loss functions of Conv1D model.

3.4. LSTM Model

A Recurring Neural Network (RNN) was considered for the third NN model. In partic-
ular, Long Short-Term Memory (LSTM) [51] Network is an advanced, recurrent architecture

Sensors 2023, 23, 6127 12 of 23

that allows relevant information to persist by filtering out unnecessary information. LSTM
ANN has internal mechanisms called gates that can regulate the flow of information. These
gates can learn which data in a sequence is important to keep or throw away. By doing that,
it can pass relevant information down the long chain of sequences to make predictions. The
exploited LSTM model is composed of an input layer with 200 neurons, a hidden dense
layer with 100 neurons, and an output of a dense layer, as shown in Figure 10.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 23

Figure 9. Loss functions of Conv1D model.

3.4. LSTM Model
A Recurring Neural Network (RNN) was considered for the third NN model. In par-

ticular, Long Short-Term Memory (LSTM) [51] Network is an advanced, recurrent archi-
tecture that allows relevant information to persist by filtering out unnecessary infor-
mation. LSTM ANN has internal mechanisms called gates that can regulate the flow of
information. These gates can learn which data in a sequence is important to keep or throw
away. By doing that, it can pass relevant information down the long chain of sequences to
make predictions. The exploited LSTM model is composed of an input layer with 200 neu-
rons, a hidden dense layer with 100 neurons, and an output of a dense layer, as shown in
Figure 10.

Figure 10. LSTM model.

Table 4 shows the most significative hyperparameters related to the LSTM model
with a brief description of the network architecture. The number of parameters is 182,698.
The memory footprint of this model is located, in terms of bytes, between the dense model
(high number of parameters) and the Conv1D model (low number of parameters).

Table 4. Hyperparameters of the adopted LSTM neural network model.

Model Optimizer: Adam Loss: Mean Absolute Error
Training

Hyper-Parameters
Batch Size: 200 Learning Rate: 0.005 Epochs: 5000

Layer Shape Param
LSTM 200 161,600

Dense_1 100 20,100
Dense_out 100 909

Total params 182,609
Trainable params 182,609

Non-trainable params 0

The LSTM model results in a validation curve almost overlapping the training curve,
as shown in Figure 11. It can be concluded that this overlapping is once again a sign of the
successful training of the model. Regarding the performance of the LSTM model, the
RMSE between the predicted values (generated from the network) and the target values

Figure 10. LSTM model.

Table 4 shows the most significative hyperparameters related to the LSTM model with
a brief description of the network architecture. The number of parameters is 182,698. The
memory footprint of this model is located, in terms of bytes, between the dense model
(high number of parameters) and the Conv1D model (low number of parameters).

Table 4. Hyperparameters of the adopted LSTM neural network model.

Model Optimizer: Adam Loss: Mean Absolute Error

Training
Hyper-Parameters Batch Size: 200 Learning Rate: 0.005 Epochs: 5000

Layer Shape Param

LSTM 200 161,600

Dense_1 100 20,100

Dense_out 100 909

Total params 182,609

Trainable params 182,609

Non-trainable params 0

The LSTM model results in a validation curve almost overlapping the training curve,
as shown in Figure 11. It can be concluded that this overlapping is once again a sign of
the successful training of the model. Regarding the performance of the LSTM model, the
RMSE between the predicted values (generated from the network) and the target values
(collected from STIM300) is equal to 0.12559. Therefore, both for the RMSE and for the
impact on the memory footprint, the LSTM model is positioned in the middle between the
two models seen above.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 23

(collected from STIM300) is equal to 0.12559. Therefore, both for the RMSE and for the
impact on the memory footprint, the LSTM model is positioned in the middle between the
two models seen above.

Figure 11. Loss functions of LSTM model.

3.5. Dense Model Optimization through Meta-Heuristic Optimization Techniques
As stated in Section 3.2, the dense NN model was characterized by the worst memory

footprint among all the considered models; on the other hand, as it will be shown below,
the dense model provided the best performance in terms of MAE and RMSE. Due to such
limitations, research activities were mainly focused on simultaneously optimizing both
the prediction performance and the number of dense model parameters. This requirement
can be satisfied if optimal hyperparameter values of the DNN models are singled out. This
optimization stage was carried out by means of meta-heuristic optimization techniques;
in particular, the Particle Swarm Optimization (PSO) [52–54] algorithm has been used to
finely tune the dense model hyperparameters, thus combining its inherent performance
in prediction with a lower memory footprint with respect to the original implementation.

The PSO is able to determine the solution that minimizes a defined cost function
within the hyperspace of all the possible solutions. According to our application, the so-
lutions space is given by (i) the number of neurons for each layer, (ii) batch size, and (iii)
the learning rate of the DNN, while the cost function takes into account both MAE of the
predicted navigation quantities and the number of model parameters. PSO will find the
optimal solution according to bio-inspired strategies (e.g., bird behavior) by continuously
narrowing the search interval around solutions characterized by lower values of the cost
function.

As a result of the optimization procedure, the dense NN model was composed of an
input layer with 216 neurons, two hidden layers with, respectively, 394 and 344 neurons,
and an output layer (Figure 12).

Figure 12. Dense model with Particle Swarm.

Table 5 shows the most significative hyperparameters related to the optimized Dense
model with a brief description of the network architecture.

Figure 11. Loss functions of LSTM model.

Sensors 2023, 23, 6127 13 of 23

3.5. Dense Model Optimization through Meta-Heuristic Optimization Techniques

As stated in Section 3.2, the dense NN model was characterized by the worst memory
footprint among all the considered models; on the other hand, as it will be shown below,
the dense model provided the best performance in terms of MAE and RMSE. Due to such
limitations, research activities were mainly focused on simultaneously optimizing both the
prediction performance and the number of dense model parameters. This requirement can
be satisfied if optimal hyperparameter values of the DNN models are singled out. This
optimization stage was carried out by means of meta-heuristic optimization techniques;
in particular, the Particle Swarm Optimization (PSO) [52–54] algorithm has been used to
finely tune the dense model hyperparameters, thus combining its inherent performance in
prediction with a lower memory footprint with respect to the original implementation.

The PSO is able to determine the solution that minimizes a defined cost function
within the hyperspace of all the possible solutions. According to our application, the
solutions space is given by (i) the number of neurons for each layer, (ii) batch size, and
(iii) the learning rate of the DNN, while the cost function takes into account both MAE of
the predicted navigation quantities and the number of model parameters. PSO will find
the optimal solution according to bio-inspired strategies (e.g., bird behavior) by continu-
ously narrowing the search interval around solutions characterized by lower values of the
cost function.

As a result of the optimization procedure, the dense NN model was composed of an
input layer with 216 neurons, two hidden layers with, respectively, 394 and 344 neurons,
and an output layer (Figure 12).

Sensors 2023, 23, x FOR PEER REVIEW 13 of 23

(collected from STIM300) is equal to 0.12559. Therefore, both for the RMSE and for the
impact on the memory footprint, the LSTM model is positioned in the middle between the
two models seen above.

Figure 11. Loss functions of LSTM model.

3.5. Dense Model Optimization through Meta-Heuristic Optimization Techniques
As stated in Section 3.2, the dense NN model was characterized by the worst memory

footprint among all the considered models; on the other hand, as it will be shown below,
the dense model provided the best performance in terms of MAE and RMSE. Due to such
limitations, research activities were mainly focused on simultaneously optimizing both
the prediction performance and the number of dense model parameters. This requirement
can be satisfied if optimal hyperparameter values of the DNN models are singled out. This
optimization stage was carried out by means of meta-heuristic optimization techniques;
in particular, the Particle Swarm Optimization (PSO) [52–54] algorithm has been used to
finely tune the dense model hyperparameters, thus combining its inherent performance
in prediction with a lower memory footprint with respect to the original implementation.

The PSO is able to determine the solution that minimizes a defined cost function
within the hyperspace of all the possible solutions. According to our application, the so-
lutions space is given by (i) the number of neurons for each layer, (ii) batch size, and (iii)
the learning rate of the DNN, while the cost function takes into account both MAE of the
predicted navigation quantities and the number of model parameters. PSO will find the
optimal solution according to bio-inspired strategies (e.g., bird behavior) by continuously
narrowing the search interval around solutions characterized by lower values of the cost
function.

As a result of the optimization procedure, the dense NN model was composed of an
input layer with 216 neurons, two hidden layers with, respectively, 394 and 344 neurons,
and an output layer (Figure 12).

Figure 12. Dense model with Particle Swarm.

Table 5 shows the most significative hyperparameters related to the optimized Dense
model with a brief description of the network architecture.

Figure 12. Dense model with Particle Swarm.

Table 5 shows the most significative hyperparameters related to the optimized Dense
model with a brief description of the network architecture.

Table 5. Hyperparameters of the adopted Dense neural network model with PSO.

Model Optimizer: Adam Loss: Mean Absolute Error

Training
Hyper-Parameters Batch Size: 185 Learning Rate: 0.00107 Epochs: 5000

Layer Shape Param

Dense_1 216 2160

Dense_2 394 85,498

Dense_3 344 135,880

Dense_out 9 3105

Total params 226,643

Trainable params 226,643

Non-trainable params 0

The first benefit coming from hyper-parameter tuning is the reduction of the memory
footprint compared to the Dense model without parameter optimizations (226,643 param-
eters, about half of the Dense previous model). The Dense model with PSO shows good
training behavior, as shown in Figure 13.

Sensors 2023, 23, 6127 14 of 23

Sensors 2023, 23, x FOR PEER REVIEW 14 of 23

Table 5. Hyperparameters of the adopted Dense neural network model with PSO.

Model Optimizer: Adam Loss: Mean Absolute Error
Training

Hyper-Parameters Batch Size: 185 Learning Rate: 0.00107 Epochs: 5000

Layer Shape Param
Dense_1 216 2160
Dense_2 394 85,498
Dense_3 344 135,880

Dense_out 9 3105
Total params 226,643

Trainable params 226,643
Non-trainable params 0

The first benefit coming from hyper-parameter tuning is the reduction of the memory
footprint compared to the Dense model without parameter optimizations (226,643 param-
eters, about half of the Dense previous model). The Dense model with PSO shows good
training behavior, as shown in Figure 13.

Figure 13. Loss functions of Dense model with Particle Swarm.

This model overcame the performance, in terms of accuracy, of the first Dense model
lowering the RMSE from 0.10847 to 0.07783. This last result shows that the Dense archi-
tecture trained with the Particle Swarm Optimization algorithm is the best among the an-
alyzed ones.

4. Results
This section presents the performance evaluation of four NN models where the re-

sults are obtained from the test dataset. Additionally, a comparison is made among the
models in terms of error and memory footprint. The error is analyzed through the RMSE
(Root Mean Squared Error) between the Cube estimates and the predictions generated by
the neural network models. The analysis is divided into two parts: RMSE between input
(Cube) and target (STIM) and RMSE between prediction and target.

Table 6 shows the RMSE between the Cube and STIM outputs; in particular, the value
of the overall RMSE between Cube output and STIM output is 5.75871, which is consid-
ered as the reference error to be compensated by using ANN models.

Figure 13. Loss functions of Dense model with Particle Swarm.

This model overcame the performance, in terms of accuracy, of the first Dense model
lowering the RMSE from 0.10847 to 0.07783. This last result shows that the Dense archi-
tecture trained with the Particle Swarm Optimization algorithm is the best among the
analyzed ones.

4. Results

This section presents the performance evaluation of four NN models where the results
are obtained from the test dataset. Additionally, a comparison is made among the models in
terms of error and memory footprint. The error is analyzed through the RMSE (Root Mean
Squared Error) between the Cube estimates and the predictions generated by the neural
network models. The analysis is divided into two parts: RMSE between input (Cube) and
target (STIM) and RMSE between prediction and target.

Table 6 shows the RMSE between the Cube and STIM outputs; in particular, the value
of the overall RMSE between Cube output and STIM output is 5.75871, which is considered
as the reference error to be compensated by using ANN models.

Table 6. The overall MAE and RMSE between the input and the target were evaluated on the entire
dataset (including all the features), and the RMSE was calculated for each feature of the dataset.

Parameter Cube Dense Conv1D LSTM Opt. Dense

Lat [m] 9.8851 1.9361 4.8929 1.9916 1.5458

Lon [m] 10.4388 2.8137 0.6659 2.8589 1.5778

Alt [m] 35.64075 0.17919 0.66060 0.24496 0.16951

Heading [rad] 0.57497 0.04966 0.02606 0.09868 0.00974

Pitch [rad] 0.07879 0.00725 0.00587 0.00722 0.00648

Roll [rad] 5.40247 0.38673 0.39741 0.41408 0.35528

Vx [m/s] 3.85137 0.08497 0.21840 0.09905 0.09356

Vy [m/s] 3.28942 0.07638 0.19832 0.07948 0.07568

Vz [m/s] 3.10396 0.03012 0.06646 0.02938 0.02800

MAE 0.17360 0.00366 0.00548 0.00524 0.00295

Memory FP N/A 447,434 118,281 182,609 226,643

Navigation
Parameters

RMSE
5.75872 0.10847 0.16087 0.12560 0.07784

4.1. Dense Model Performance

The first model tested in this study is the Dense model. The results of the test show a
significant reduction in the RMSE. A remarkable error reduction can be seen in the entire

Sensors 2023, 23, 6127 15 of 23

dataset; in particular, this reduction shown in Table 7 appears to be greater than an order of
magnitude. Similarly, the individual features also show an RMSE value reduced by at least
an order of magnitude.

Table 7. Prediction with Dense architecture.

Latitude
[rad]

Longitude
[rad]

Altitude
[m]

Heading
[rad]

Pitch
[rad]

Roll
[rad]

V(X)
[m/s]

V(Y)
[m/s]

V(Z)
[m/s]

Input 0.7125251 0.2477015 41.25674 0.58036 0.05838 3.03860 6.22518 0.91983 4.12185

Predict 0.7125225 0.2477014 32.4903 0.48726 0.11589 3.08995 11.67100 1.32938 1.28093

Target 0.7125224 0.2477013 32.52912 0.47043 0.11594 3.08365 11.62465 1.34654 1.27595

Table 7 shows the results of the Test dataset to evaluate the inferential capacity of
the ANN model: a row of input data (all characterized by the same sample rate) is ran-
domly injected into the NN as input, highlighting how this ANN architecture corrects the
Cube estimates.

The model acquires the input and generates the prediction without knowledge of the
target. The first line of Table 8 highlights the input data (Cube); the second line reports the
predicted data generated by the network; lastly, the third line shows the target data (STIM).
It is useful to highlight that the prediction makes significant corrections on some features,
such as altitude, roll, and speed components along the x and z-axis.

Table 8. Prediction with Conv1D architecture.

Latitude
[rad]

Longitude
[rad]

Altitude
[m]

Heading
[rad]

Pitch
[rad]

Roll
[rad]

V(X)
[m/s]

V(Y)
[m/s]

V(Z)
[m/s]

Input 0.7125251 0.2477015 41.25674 0.58036 0.05838 3.03860 6.22518 0.91983 4.12185
Predict 0.7125241 0.2477015 33.28172 0.47928 0.11387 3.06908 11.79970 1.40192 1.29300
Target 0.7125224 0.2477013 32.52912 0.47043 0.11594 3.08365 11.62465 1.34654 1.27595

4.2. Conv1D Model Performance

Leveraging this ANN architecture lowers the RMSE by about an order of magnitude
(Table 7). Similarly, some of the individual features also show an RMSE value reduced
by at least one order of magnitude. It is useful to highlight that the performance of this
architecture is lower than the Dense Network. However, this network has a lower number
of parameters and hence a lower memory footprint compared with those of the Dense
model. Table 8 shows how the Conv1D model corrects the Cube’s outcome values. It is
useful to highlight (see Table 7) that the prediction makes significant corrections on altitude
and roll components.

4.3. LSTM Model Performance

As shown in Table 7, the outcomes of the LSTM Network model are middle ranking, in
terms of performance, between the two models previously analyzed (Dense and Conv1D).
Table 9 shows how the network corrects the Cube’s output. This correction allows the
network to obtain prediction values close to the target (STIM). It is useful to highlight from
the data shown in Table 9 that the prediction makes significant corrections on altitude and
speed components along the x-axis and z-axis, which are very close to the target (STIM300).

Sensors 2023, 23, 6127 16 of 23

Table 9. Prediction with LSTM architecture.

Latitude
[rad]

Longitude
[rad]

Altitude
[m]

Heading
[rad]

Pitch
[rad]

Roll
[rad]

V(X)
[m/s]

V(Y)
[m/s]

V(Z)
[m/s]

Input 0.7125251 0.2477015 41.25674 0.58036 0.05838 3.03860 6.22518 0.91983 4.12185
Predict 0.7125233 0.2477015 33.01997 0.48281 0.11419 3.07922 11.55830 1.09890 1.26482
Target 0.7125224 0.2477013 32.52912 0.47043 0.11594 3.08365 11.62465 1.34654 1.27595

4.4. Performances of the Dense Model with Particle Swarm Optimization Algorithm

The use of the Dense model optimized with Particle Swarm reduces the RMSE to a
lower value compared to the outcomes of all the other models. In particular, as shown
in Tab 7, the global RMSE between the prediction generated by this model and the target
(STIM) is almost two orders of magnitude lower than the RMSE between the input (Cube)
and the target (STIM).

After the performance analysis of the individual NN models, this study has focused
on a comparison between them.

In the evaluation step, two main aspects were evaluated in detail:

- The reduction of the error between the prediction and the target;
- The NN’s impact on memory footprint;

In order to select the model with better performance, the RMSE of each ANN related
to the test dataset is shown in Table 10, where the Dense model tuned with Particle Swarm
provides the best results. Therefore, in terms of error reduction, the Dense model with PSO
could be considered the best-performing one.

Table 10. RMSE between Cube and STIM.

Models RMSE

Dense 0.00366
Conv1D 0.00548
LSTM 0.00524

Dense with PSO 0.00295

In this section, all the discussed ANN architectures are compared to understand which
NN model is the most suitable choice for edge devices by evaluating the impact on memory
footprint. Table 11 highlights that the Conv1D model is the best candidate for implementa-
tion on a microcontroller (uC). The LSTM architecture is the middle ranking, with respect
to the optimized Dense model and Conv1D, in terms of the number of parameters. At the
same time, the Dense model (without hyperparameters optimization) appears to be less
suitable for implementation on microcontrollers.

Table 11. The number of parameters.

Memory Footprint Parameters

Dense 447,434

Conv1D 117,513

LSTM 182,609

Dense with PSO 226,643

4.5. Trajectories Comparison

In conclusion, in order to have another point of view on the results obtained, in this
section, a comparison between the real trajectories (STIM300) with those identified by the
Cube and by the predictions of the Dense model with PSO have been evaluated. These
results are obtained through the scatter plot of the Latitude and Longitude components.

Sensors 2023, 23, 6127 17 of 23

Figure 14 shows the real path followed during the data acquisition of both the Cube
and the STIM. These scatter plots (latitude vs. longitude) represent the trajectories esti-
mated, respectively, by Cube, optimized Dense Net, and STIM300.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 23

memory footprint. Table 11 highlights that the Conv1D model is the best candidate for
implementation on a microcontroller (uC). The LSTM architecture is the middle ranking,
with respect to the optimized Dense model and Conv1D, in terms of the number of pa-
rameters. At the same time, the Dense model (without hyperparameters optimization) ap-
pears to be less suitable for implementation on microcontrollers.

Table 11. The number of parameters.

Memory Footprint Parameters
Dense 447,434

Conv1D 117,513
LSTM 182,609

Dense with PSO 226,643

4.5. Trajectories Comparison
In conclusion, in order to have another point of view on the results obtained, in this

section, a comparison between the real trajectories (STIM300) with those identified by the
Cube and by the predictions of the Dense model with PSO have been evaluated. These
results are obtained through the scatter plot of the Latitude and Longitude components.

Figure 14 shows the real path followed during the data acquisition of both the Cube
and the STIM. These scatter plots (latitude vs. longitude) represent the trajectories esti-
mated, respectively, by Cube, optimized Dense Net, and STIM300.

Figure 14. Latitude and longitude estimates: (a) Cube, (b) Dense NN, (c) STIM300.

To highlight the good inferential capabilities of the network, the overlapped trajecto-
ries plots have been provided in Figure 15. The overlapping of the STIM300 trajectory with
both the Cube and the net trajectories better explains the correction made by the NN
model on the Cube outcomes.

Figure 15. Trajectory estimates comparison: (a) target plot vs. input plot, (b) target plot vs. predic-
tion plot.

Figure 14. Latitude and longitude estimates: (a) Cube, (b) Dense NN, (c) STIM300.

To highlight the good inferential capabilities of the network, the overlapped trajectories
plots have been provided in Figure 15. The overlapping of the STIM300 trajectory with
both the Cube and the net trajectories better explains the correction made by the NN model
on the Cube outcomes.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 23

memory footprint. Table 11 highlights that the Conv1D model is the best candidate for
implementation on a microcontroller (uC). The LSTM architecture is the middle ranking,
with respect to the optimized Dense model and Conv1D, in terms of the number of pa-
rameters. At the same time, the Dense model (without hyperparameters optimization) ap-
pears to be less suitable for implementation on microcontrollers.

Table 11. The number of parameters.

Memory Footprint Parameters
Dense 447,434

Conv1D 117,513
LSTM 182,609

Dense with PSO 226,643

4.5. Trajectories Comparison
In conclusion, in order to have another point of view on the results obtained, in this

section, a comparison between the real trajectories (STIM300) with those identified by the
Cube and by the predictions of the Dense model with PSO have been evaluated. These
results are obtained through the scatter plot of the Latitude and Longitude components.

Figure 14 shows the real path followed during the data acquisition of both the Cube
and the STIM. These scatter plots (latitude vs. longitude) represent the trajectories esti-
mated, respectively, by Cube, optimized Dense Net, and STIM300.

Figure 14. Latitude and longitude estimates: (a) Cube, (b) Dense NN, (c) STIM300.

To highlight the good inferential capabilities of the network, the overlapped trajecto-
ries plots have been provided in Figure 15. The overlapping of the STIM300 trajectory with
both the Cube and the net trajectories better explains the correction made by the NN
model on the Cube outcomes.

Figure 15. Trajectory estimates comparison: (a) target plot vs. input plot, (b) target plot vs. predic-
tion plot.
Figure 15. Trajectory estimates comparison: (a) target plot vs. input plot, (b) target plot vs. prediction
plot.

In Figure 15a, it can be seen that the Cube’s trajectory differs from the target plot in
several points. On the other hand, in Figure 15b, the prediction plot (ANN) overlaps the
target plot (STIM300) almost perfectly. Therefore, Figure 15b shows the improvements and
the soundness of the NN in correcting the trajectory estimated by the Cube.

Moreover, to better emphasize the enhancements introduced by the proposed method
compared with non-optimized inertial sensors, the results are presented in terms of the
differences between the STIM300 (Target) and the predicted values, as well as between the
Target and the non-optimized Cube. Figure 16 shows the differences in position estimates
(∆Latitude, ∆Longitude, and ∆Altitude) in meters. Figure 17 exhibits the differences in
attitude estimates (∆Heading, ∆Pitch, and ∆Roll) in degrees. Finally, Figure 18 shows the
differences in velocity estimates in the NED reference (∆VelN , ∆VelE, and ∆VelD) in m/s.

The obtained results indicate a significant enhancement in performance for all naviga-
tion parameters when compared to the non-optimized Cube, which implies the absence of
Allan Variance in the noise estimates for the Kalman filter.

Furthermore, the proposed solution shows, as highlighted in Figures 19–21, differences
for position, attitude, and velocity (NED) on the order of about 1.5 m, 2 degrees, and
0.1 m/s, respectively, with respect to the target, i.e., the STIM300 (tactical-grade IMU).

Sensors 2023, 23, 6127 18 of 23

Sensors 2023, 23, x FOR PEER REVIEW 18 of 23

In Figure 15a, it can be seen that the Cube’s trajectory differs from the target plot in
several points. On the other hand, in Figure 15b, the prediction plot (ANN) overlaps the
target plot (STIM300) almost perfectly. Therefore, Figure 15b shows the improvements
and the soundness of the NN in correcting the trajectory estimated by the Cube.

Moreover, to better emphasize the enhancements introduced by the proposed
method compared with non-optimized inertial sensors, the results are presented in terms
of the differences between the STIM300 (Target) and the predicted values, as well as be-
tween the Target and the non-optimized Cube. Figure 16 shows the differences in position
estimates (ΔLatitude, ΔLongitude, and ΔAltitude) in meters. Figure 17 exhibits the differ-
ences in attitude estimates (ΔHeading, ΔPitch, and ΔRoll) in degrees. Finally, Figure 18
shows the differences in velocity estimates in the NED reference (Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁 , Δ𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 , and
Δ𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷) in m/s.

Figure 16. Comparison between the proposed method and the non-optimized Cube in terms of dif-
ferences in position estimates (ΔLatitude, ΔLongitude, and ΔAltitude) from the Target, in meters.

Figure 17. Comparison between the proposed method and the non-optimized Cube in terms of dif-
ferences in attitude estimates (ΔHeading, ΔPitch, and ΔRoll) from the Target, in degrees.

Figure 16. Comparison between the proposed method and the non-optimized Cube in terms of
differences in position estimates (∆Latitude, ∆Longitude, and ∆Altitude) from the Target, in meters.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 23

In Figure 15a, it can be seen that the Cube’s trajectory differs from the target plot in
several points. On the other hand, in Figure 15b, the prediction plot (ANN) overlaps the
target plot (STIM300) almost perfectly. Therefore, Figure 15b shows the improvements
and the soundness of the NN in correcting the trajectory estimated by the Cube.

Moreover, to better emphasize the enhancements introduced by the proposed
method compared with non-optimized inertial sensors, the results are presented in terms
of the differences between the STIM300 (Target) and the predicted values, as well as be-
tween the Target and the non-optimized Cube. Figure 16 shows the differences in position
estimates (ΔLatitude, ΔLongitude, and ΔAltitude) in meters. Figure 17 exhibits the differ-
ences in attitude estimates (ΔHeading, ΔPitch, and ΔRoll) in degrees. Finally, Figure 18
shows the differences in velocity estimates in the NED reference (Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁 , Δ𝑉𝑉𝑉𝑉𝑉𝑉𝐸𝐸 , and
Δ𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷) in m/s.

Figure 16. Comparison between the proposed method and the non-optimized Cube in terms of dif-
ferences in position estimates (ΔLatitude, ΔLongitude, and ΔAltitude) from the Target, in meters.

Figure 17. Comparison between the proposed method and the non-optimized Cube in terms of dif-
ferences in attitude estimates (ΔHeading, ΔPitch, and ΔRoll) from the Target, in degrees.
Figure 17. Comparison between the proposed method and the non-optimized Cube in terms of
differences in attitude estimates (∆Heading, ∆Pitch, and ∆Roll) from the Target, in degrees.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 23

Figure 18. Comparison between the proposed method and the non-optimized Cube in terms of dif-
ferences in velocity estimates (Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁, Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀, and Δ𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷) from Target, in m/s.

The obtained results indicate a significant enhancement in performance for all navi-
gation parameters when compared to the non-optimized Cube, which implies the absence
of Allan Variance in the noise estimates for the Kalman filter.

Furthermore, the proposed solution shows, as highlighted in Figures 19–21, differ-
ences for position, attitude, and velocity (NED) on the order of about 1.5 m, 2 degrees, and
0.1 m/s, respectively, with respect to the target, i.e., the STIM300 (tactical-grade IMU).

Figure 19. Differences in position estimates (in meters) between the proposed method and Target
(STIM300).

Figure 18. Comparison between the proposed method and the non-optimized Cube in terms of
differences in velocity estimates (∆VelN , ∆VelE, and ∆VelD) from Target, in m/s.

Sensors 2023, 23, 6127 19 of 23

Sensors 2023, 23, x FOR PEER REVIEW 19 of 23

Figure 18. Comparison between the proposed method and the non-optimized Cube in terms of dif-
ferences in velocity estimates (Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑁𝑁, Δ𝑉𝑉𝑉𝑉𝑉𝑉𝑀𝑀, and Δ𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷) from Target, in m/s.

The obtained results indicate a significant enhancement in performance for all navi-
gation parameters when compared to the non-optimized Cube, which implies the absence
of Allan Variance in the noise estimates for the Kalman filter.

Furthermore, the proposed solution shows, as highlighted in Figures 19–21, differ-
ences for position, attitude, and velocity (NED) on the order of about 1.5 m, 2 degrees, and
0.1 m/s, respectively, with respect to the target, i.e., the STIM300 (tactical-grade IMU).

Figure 19. Differences in position estimates (in meters) between the proposed method and Target
(STIM300).
Figure 19. Differences in position estimates (in meters) between the proposed method and Target
(STIM300).

Sensors 2023, 23, x FOR PEER REVIEW 20 of 23

Figure 20. Differences in attitude estimates (in degrees) between the proposed method and Target
(STIM300).

Figure 21. Differences in attitude estimates (in degrees) between the proposed method and Target
(STIM300).

Finally, with the aim of providing a quantitative parameter to express total system
performance, the Performance Factor (PF) is defined according to Equation (3):

𝑃𝑃𝐹𝐹𝑖𝑖 = � (𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑥𝑥2+𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑦𝑦2 + 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑧𝑧2) (3)

where RMSE is evaluated as differences between the proposed method (or Cube) and the
target i correspond to the position, attitude, and velocity (NED), while x, y, and z are the
latitude, longitude, and altitude values for the position estimates, heading, pitch and roll
angles for the attitude estimates and then the velocity estimates (in NED reference frame);
the PF results obtained are reported in Table 12 to appreciate better the overall perfor-
mance achieved.

Table 12. Performance Factor evaluations.

 PF Position [m] PF Attitude [deg] PF Velocity [m/s]
Prediction 1.142 0.893 0.0825

Cube 37.758 90.23 5.895

Figure 20. Differences in attitude estimates (in degrees) between the proposed method and Target
(STIM300).

Sensors 2023, 23, x FOR PEER REVIEW 20 of 23

Figure 20. Differences in attitude estimates (in degrees) between the proposed method and Target
(STIM300).

Figure 21. Differences in attitude estimates (in degrees) between the proposed method and Target
(STIM300).

Finally, with the aim of providing a quantitative parameter to express total system
performance, the Performance Factor (PF) is defined according to Equation (3):

𝑃𝑃𝐹𝐹𝑖𝑖 = � (𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑥𝑥2+𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑦𝑦2 + 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑧𝑧2) (3)

where RMSE is evaluated as differences between the proposed method (or Cube) and the
target i correspond to the position, attitude, and velocity (NED), while x, y, and z are the
latitude, longitude, and altitude values for the position estimates, heading, pitch and roll
angles for the attitude estimates and then the velocity estimates (in NED reference frame);
the PF results obtained are reported in Table 12 to appreciate better the overall perfor-
mance achieved.

Table 12. Performance Factor evaluations.

 PF Position [m] PF Attitude [deg] PF Velocity [m/s]
Prediction 1.142 0.893 0.0825

Cube 37.758 90.23 5.895

Figure 21. Differences in attitude estimates (in degrees) between the proposed method and Target
(STIM300).

Sensors 2023, 23, 6127 20 of 23

Finally, with the aim of providing a quantitative parameter to express total system
performance, the Performance Factor (PF) is defined according to Equation (3):

PFi =

√ (
RMSE2

x + RMSE2
y + RMSE2

z

)
(3)

where RMSE is evaluated as differences between the proposed method (or Cube) and
the target i correspond to the position, attitude, and velocity (NED), while x, y, and z are
the latitude, longitude, and altitude values for the position estimates, heading, pitch and
roll angles for the attitude estimates and then the velocity estimates (in NED reference
frame); the PF results obtained are reported in Table 12 to appreciate better the overall
performance achieved.

Table 12. Performance Factor evaluations.

PF Position [m] PF Attitude [deg] PF Velocity [m/s]

Prediction 1.142 0.893 0.0825

Cube 37.758 90.23 5.895

5. Conclusions

The aim of this work has been the analysis, development, and assessment of three
ANN models to realize an Inertial Navigation System which uses low-cost sensors with the
goal of approaching the accuracies of those obtained through high-end sensors.

The use of NN models was found to be of fundamental importance in improving the
performance of a low-cost sensor (SensorTileTM) for the realization of a redundant Inertial
Measurement Unit (IMU) with high performance.

According to our results, it can be pointed out that the accuracy achieved through the
inertial navigation system based on low-cost sensors together with the use of Artificial Neu-
ral Network models is comparable to that based on high-end sensors. System capabilities
will also be evaluated for Unmanned Aerial Systems (UAS) with the goal of better-assessing
altitude prediction, which, although with small variations, was still estimated correctly.

In conclusion, the validation results obtained by adopted models demonstrate that
these NNs models have a remarkable prediction capacity.

The choice of using one over another depends on the context of NN applications. For
instance, the outcomes of this study have proven that the Conv1D model could be the best
option for the implementation of the model on edge devices. On the other hand, in terms
of better accuracies, the Dense model with PSO should be considered the best option.

Given the effectiveness of optimization with the Particle Swarm on the Dense model,
further studies should be conducted in this way.

In particular, it could be of great interest to optimize the Conv1D and LSTM hyperpa-
rameters with PSO, in order to have an overall yardstick on all the NN models developed.

In addition, with the purpose of using NNs in real-time applications, an evaluation
of different kinds of microcontrollers should be undertaken to find the best solution for
hosting these models.

Author Contributions: Conceptualization, D.R., D.A. and R.S.L.M.; Data curation, G.d.A. and F.D.P.;
Formal analysis, D.R.; Investigation, G.d.A., V.B. and D.A.; Methodology, G.d.A. and D.R.; Software,
F.D.P.; Supervision, D.R., D.A. and R.S.L.M.; Validation, F.D.P., C.C. and F.C.F.; Visualization, E.C.;
Writing—original draft, G.d.A., D.R., F.D.P. and R.S.L.M.; Writing—review and editing, G.d.A.,
C.C., E.C., V.B., F.C.F. and R.S.L.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2023, 23, 6127 21 of 23

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klomp, M.; Jonasson, M.; Laine, L.; Henderson, L.; Regolin, E.; Schumi, S. Trends in Vehicle Motion Control for Automated

Driving on Public Roads. Veh. Syst. Dyn. 2019, 57, 1028–1061. [CrossRef]
2. Scott, J.E.; Scott, C.H. Models for Drone Delivery of Medications and Other Healthcare Items. Int. J. Healthc. Inf. Syst. Inform.

2018, 13, 376–392. [CrossRef]
3. Laksham, K. Unmanned Aerial Vehicle (Drones) in Public Health: A SWOT Analysis. J. Fam. Med. Prim. Care 2019, 8, 342–346.

[CrossRef] [PubMed]
4. Zaarane, A.; Slimani, I.; Al Okaishi, W.; Atouf, I.; Hamdoun, A. Distance Measurement System for Autonomous Vehicles Using

Stereo Camera. Array 2020, 5, 100016. [CrossRef]
5. Carsten, O.; Martens, M.H. How Can Humans Understand Their Automated Cars? HMI Principles, Problems and Solutions.

Cogn. Technol. Work. 2019, 21, 3–20. [CrossRef]
6. Silvestri, A.T.; Papa, I.; Squillace, A. Influence of Fibre Fill Pattern and Stacking Sequence on Open-Hole Tensile Behaviour in

Additive Manufactured Fibre-Reinforced Composites. Materials 2023, 16, 2411. [CrossRef] [PubMed]
7. Silvestri, A.T.; Amirabdollahian, S.; Perini, M.; Bosetti, P.; Squillace, A. Direct Laser Deposition for Tailored Structure. In

Proceedings of the ESAFORM 2021, Virtual, 14 April 2021.
8. Isgandarov, İ.A.; Bakhshiyev, H.E. The application of mems technology to determine an aircraft orientation. Bull. Civ. Aviat. Acad.

2021, 1, 14–19.
9. Schmidt, G.T. INS/GPS Technology Trends. Technology 2011, 116, 1–16.
10. Benser, E.T. Trends in Inertial Sensors and Applications. In Proceedings of the 2nd IEEE International Symposium on Inertial

Sensors and Systems, IEEE ISISS 2015—Proceedings, Hapuna Beach, HI, USA, 23–26 March 2015.
11. De Alteriis, G.; Silvestri, A.T.; Conte, C.; Bottino, V.; Caputo, E.; Squillace, A.; Accardo, D.; Schiano Lo Moriello, R. Innovative

Fusion Strategy for MEMS Redundant-IMU Exploiting Custom 3D Components. Sensors 2023, 23, 2508. [CrossRef]
12. Eichstädt, S.; Vedurmudi, A.P.; Gruber, M.; Hutzschenreuter, D. Fundamental Aspects in Sensor Network Metrology. Acta IMEKO

2023, 12, 1–6. [CrossRef]
13. Han, S.; Meng, Z.; Omisore, O.; Akinyemi, T.; Yan, Y. Random Error Reduction Algorithms for MEMS Inertial Sensor Accuracy

Improvement—A Review. Micromachines 2020, 11, 1021. [CrossRef] [PubMed]
14. De Alteriis, G.; Caputo, E.; Moriello, R.S. Lo On the Suitability of Redundant Accelerometers for the Implementation of Smart

Oscillation Monitoring System: Preliminary Assessment. Acta IMEKO 2023, 12, 1–9. [CrossRef]
15. Silvestri, A.T.; Bosetti, P.; Squillace, A. Laser-Directed Energy Deposition of H13: Processing Window and Improved Characteriza-

tion Procedures. Mater. Manuf. Process. 2023, 2023, 1–15. [CrossRef]
16. Iadarola, G.; Disha, D.; De Santis, A.; Spinsante, S.; Gambi, E. Global Positioning System Measurements: Comparison of IoT

Wearable Devices. In Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace),
Pisa, Italy, 27–29 June 2022; pp. 213–218.

17. Navidi, N.; Landry, R. A New Perspective on Low-Cost Mems-Based AHRS Determination. Sensors 2021, 21, 1383. [CrossRef]
18. Narasimhappa, M.; Mahindrakar, A.D.; Guizilini, V.C.; Terra, M.H.; Sabat, S.L. MEMS-Based IMU Drift Minimization: Sage Husa

Adaptive Robust Kalman Filtering. IEEE Sens. J. 2020, 20, 250–260. [CrossRef]
19. Del Pizzo, S.; Papa, U.; Gaglione, S.; Troisi, S.; Del Core, G. A Vision-Based Navigation System for Landing Procedure. Acta

IMEKO 2018, 7, 102–109. [CrossRef]
20. Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement

Characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [CrossRef]
21. Groves, P.D. Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd ed.; IEEE Aerospace and Electronic

Systems Magazine: Piscataway, NJ, USA, 2015. [CrossRef]
22. Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved Vehicle Localization Using On-Board Sensors and Vehicle

Lateral Velocity. IEEE Sens. J. 2022, 22, 6818–6831. [CrossRef]
23. Ristic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tracking Applications; Artech House: Norwood,

MA, USA, 2003; ISBN 1580538517.
24. Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle

Estimation Based on Consensus Kalman Filter. IEEE Trans. Control Syst. Technol. 2022, 31, 179–192. [CrossRef]
25. Tong, X.; Li, Z.; Han, G.; Liu, N.; Su, Y.; Ning, J.; Yang, F. Adaptive EKF Based on HMM Recognizer for Attitude Estimation Using

MEMS MARG Sensors. IEEE Sens. J. 2018, 18, 3299–3310. [CrossRef]
26. Fan, Q.; Zhang, H.; Sun, Y.; Zhu, Y.; Zhuang, X.; Jia, J.; Zhang, P. An Optimal Enhanced Kalman Filter for a ZUPT-Aided

Pedestrian Positioning Coupling Model. Sensors 2018, 18, 1404. [CrossRef]

https://doi.org/10.1080/00423114.2019.1610182
https://doi.org/10.4018/IJHISI.2018070102
https://doi.org/10.4103/jfmpc.jfmpc_413_18
https://www.ncbi.nlm.nih.gov/pubmed/30984635
https://doi.org/10.1016/j.array.2020.100016
https://doi.org/10.1007/s10111-018-0484-0
https://doi.org/10.3390/ma16062411
https://www.ncbi.nlm.nih.gov/pubmed/36984291
https://doi.org/10.3390/s23052508
https://doi.org/10.21014/actaimeko.v12i1.1417
https://doi.org/10.3390/mi11111021
https://www.ncbi.nlm.nih.gov/pubmed/33233457
https://doi.org/10.21014/actaimeko.v12i2.1532
https://doi.org/10.1080/10426914.2023.2219302
https://doi.org/10.3390/s21041383
https://doi.org/10.1109/JSEN.2019.2941273
https://doi.org/10.21014/acta_imeko.v7i2.533
https://doi.org/10.1109/JSEN.2021.3059050
https://doi.org/10.1109/maes.2014.14110
https://doi.org/10.1109/JSEN.2022.3150073
https://doi.org/10.1109/TCST.2022.3174511
https://doi.org/10.1109/JSEN.2017.2787578
https://doi.org/10.3390/s18051404

Sensors 2023, 23, 6127 22 of 23

27. De Alteriis, G.; Conte, C.; Accardo, D.; Rufino, G.; Schiano Lo Moriello, R.; Alvarez, O.H. Advanced Technique to Support ADS
System Failure Exploiting MEMS Inertial Sensors. In Proceedings of the AIAA Science and Technology Forum and Exposition,
AIAA SciTech Forum 2022, San Diego, CA, USA, 3–7 January 2022; American Institute of Aeronautics and Astronautics Inc.:
Reston, VA, USA, 2022.

28. Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Zheng, Z.; Ma, J. An Automated Driving Systems Data Acquisition and
Analytics Platform. Transp. Res. Part C Emerg. Technol. 2023, 151, 104120. [CrossRef]

29. Li, Y.; Chen, R.; Niu, X.; Zhuang, Y.; Gao, Z.; Hu, X.; El-Sheimy, N. Inertial Sensing Meets Machine Learning: Opportunity or
Challenge? IEEE Trans. Intell. Transp. Syst. 2022, 23, 9995–10011. [CrossRef]

30. De Alteriis, G.; Accardo, D.; Conte, C.; Schiano Lo Moriello, R. Performance Enhancement of Consumer-Grade MEMS Sensors
through Geometrical Redundancy. Sensors 2021, 21, 4851. [CrossRef]

31. IEEE Std 647-2006; IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros. IEEE: New York,
NY, USA, 2006. [CrossRef]

32. Zha, F.; Hu, B.Q.; Liu, J. Prediction of Gyro Motor’s State Based on Grey Theory and BP Neural Network. Zhongguo Guanxing
Jishu Xuebao/J. Chin. Inert. Technol. 2010, 3, 87–90. [CrossRef]

33. Chong, S.; Rui, S.; Jie, L.; Xiaoming, Z.; Jun, T.; Yunbo, S.; Jun, L.; Huiliang, C. Temperature Drift Modeling of MEMS Gyroscope
Based on Genetic-Elman Neural Network. Mech. Syst. Signal Process. 2016, 72–73, 897–905. [CrossRef]

34. Grekov, A.N.; Kabanov, A.A. Machine Learning Boosting Algorithms for Determining Euler Angles in an Inertial Navigation
System. In Proceedings of the 2022 International Russian Automation Conference, Sochi, Russia, 4–10 September 2022.

35. Eskofier, B.M.; Lee, S.I.; Daneault, J.F.; Golabchi, F.N.; Ferreira-Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.; Klucken,
J.; Kautz, T.; et al. Recent Machine Learning Advancements in Sensor-Based Mobility Analysis: Deep Learning for Parkinson’s
Disease Assessment. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS, Orlando, FL, USA, 16–20 August 2016.

36. Gonzalez, R.; Fiacchini, M.; Iagnemma, K. Slippage Prediction for Off-Road Mobile Robots via Machine Learning Regression and
Proprioceptive Sensing. Rob. Auton. Syst. 2018, 105, 85–93. [CrossRef]

37. Chen, Q.; Zhang, Q.; Niu, X. Estimate the Pitch and Heading Mounting Angles of the IMU for Land Vehicular GNSS/INS
Integrated System. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6503–6515. [CrossRef]

38. Jaradat, M.A.K.; Abdel-Hafez, M.F. Enhanced, Delay Dependent, Intelligent Fusion for Ins/Gps Navigation System. IEEE Sens. J.
2014, 14, 1545–1554. [CrossRef]

39. Rambach, J.R.; Tewari, A.; Pagani, A.; Stricker, D. Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose
Estimation. In Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, ISMAR, Merida, Mexico,
19–23 September 2016.

40. Li, Z.; Wang, J.; Li, B.; Gao, J.; Tan, X. GPS/INS/Odometer Integrated System Using Fuzzy Neural Network for Land Vehicle
Navigation Applications. J. Navig. 2014, 67, 967–983. [CrossRef]

41. Jwo, D.J.; Chuang, C.H.; Yang, J.Y.; Lu, Y.H. Neural Network Assisted Ultra-Tightly Coupled GPS/INS Integration for Seamless
Navigation. In Proceedings of the 2012 12th International Conference on ITS Telecommunications, ITST, Taipei, Taiwan, 5–8
November 2012.

42. Bisong, E. Introduction to Scikit-Learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A
Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 215–229, ISBN 978-1-4842-4470-8.

43. Everitt, B.; Hothorn, T. An Introduction to Applied Multivariate Analysis with R; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2011; ISBN 1441996508.

44. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

45. Verma, Y. A Complete Understanding of Dense Layers in Neural Networks. Analytics India Magazine, 19 September 2021.
46. Takekawa, A.; Kajiura, M.; Fukuda, H. Role of Layers and Neurons in Deep Learning With the Rectified Linear Unit. Cureus 2021,

13, 18866. [CrossRef]
47. Kelley, H.J. Gradient Theory of Optimal Flight Paths. ARS J. 1960, 30, 947–954. [CrossRef]
48. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to

Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
49. Fukushima, K. Artificial Vision by Deep CNN Neocognitron. IEEE Trans. Syst. Man. Cybern. Syst. 2021, 51, 76–90. [CrossRef]
50. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the 32nd International Conference on Machine Learning, ICML, Lille, France, 6–11 July 2015.
51. Hochreiter, S.; Schmidhuber, J. Long Short Term Memory. Neural Computation. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]
52. Macedo, I. Implementing the Particle Swarm Optimization (PSO) Algorithm in Python. 2018. Available online: https://

medium.com/analytics-vidhya/implementing-particleswarm-optimization-pso-algorithm-in-python-9efc2eb179a6 (accessed on
10 January 2023).

https://doi.org/10.1016/j.trc.2023.104120
https://doi.org/10.1109/TITS.2021.3097385
https://doi.org/10.3390/s21144851
https://doi.org/10.1109/IEEESTD.2006.246241
https://doi.org/10.1109/ICICTA.2009.489
https://doi.org/10.1016/j.ymssp.2015.11.004
https://doi.org/10.1016/j.robot.2018.03.013
https://doi.org/10.1109/TITS.2020.2993052
https://doi.org/10.1109/JSEN.2014.2298896
https://doi.org/10.1017/S0373463314000307
https://doi.org/10.7759/cureus.18866
https://doi.org/10.2514/8.5282
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/TSMC.2020.3042785
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://medium.com/analytics-vidhya/implementing-particleswarm-optimization-pso-algorithm-in-python-9efc2eb179a6
https://medium.com/analytics-vidhya/implementing-particleswarm-optimization-pso-algorithm-in-python-9efc2eb179a6

Sensors 2023, 23, 6127 23 of 23

53. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef]

54. Bonavolonta, F.; Di Noia, L.P.; Liccardo, A.; Tessitore, S.; Lauria, D. A PSO-MMA Method for the Parameters Estimation of
Interarea Oscillations in Electrical Grids. IEEE Trans. Instrum. Meas. 2020, 69, 8853–8865. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1109/TIM.2020.2998909

	Introduction
	Related Work
	Realized Prototype of a Redundant Inertial Measurement Unit
	Artificial Intelligence for Inertial Sensing

	Proposed ANN-Based Navigation Solutions
	Data Preprocessing
	Dense Neural Network Model
	Conv1D Model
	LSTM Model
	Dense Model Optimization through Meta-Heuristic Optimization Techniques

	Results
	Dense Model Performance
	Conv1D Model Performance
	LSTM Model Performance
	Performances of the Dense Model with Particle Swarm Optimization Algorithm
	Trajectories Comparison

	Conclusions
	References

