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Abstract: Heart sounds have been extensively studied for heart disease diagnosis for several decades.
Traditional machine learning algorithms applied in the literature have typically partitioned heart
sounds into small windows and employed feature extraction methods to classify samples. However,
as there is no optimal window length that can effectively represent the entire signal, windows may not
provide a sufficient representation of the underlying data. To address this issue, this study proposes a
novel approach that integrates window-based features with features extracted from the entire signal,
thereby improving the overall accuracy of traditional machine learning algorithms. Specifically,
feature extraction is carried out using two different time scales. Short-term features are computed
from five-second fragments of heart sound instances, whereas long-term features are extracted from
the entire signal. The long-term features are combined with the short-term features to create a feature
pool known as long short-term features, which is then employed for classification. To evaluate
the performance of the proposed method, various traditional machine learning algorithms with
various models are applied to the PhysioNet/CinC Challenge 2016 dataset, which is a collection of
diverse heart sound data. The experimental results demonstrate that the proposed feature extraction
approach increases the accuracy of heart disease diagnosis by nearly 10%.

Keywords: machine learning; long short-term features; feature selection; auscultation; heart
abnormalities; heart sound classification

1. Introduction

Heart disease is the main cause of death globally [1]. Thus, detecting heart defects
through artificial intelligence and machine learning algorithms will positively affect health
services globally [2]. One of the methods used for detecting heart diseases is auscultation
via stethoscopes. Heart rhythm disorders, heart valve diseases, and congenital heart
diseases can be detected through auscultation. The stethoscopes used for auscultation
have transformed into devices with the capability to record and filter heart sounds [3–5].
Heart sounds can now be uploaded to a computer, tablet, or smartphone and can be
shared through e-mails and messaging applications thanks to the significant capabilities of
modern digital stethoscopes. In this work, the PhysioNet/CinC Challenge 2016 dataset,
which consists of 2435 recordings, is used [6]. To meet the sample size requirements, in
most heart sound classification algorithms, heart sound instances are divided into small
fragments [7,8]. Afterward, features are extracted from each fragment for classification. This
method lacks information about the neighboring fragments and the heart sound instance
to which the corresponding fragment belongs for classification. To compensate for this
drawback, we propose two different periods named short-term and long-term periods for
extracting features. Short-term features are extracted from each window and are specific to
the corresponding fragment, whereas long-term features are extracted from the heart sound
instances to which the fragments being classified belong. To create a more informative
feature set, long-term features are combined with fragment-specific short-term features,

Sensors 2023, 23, 5835. https://doi.org/10.3390/s23135835 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135835
https://doi.org/10.3390/s23135835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0957-8541
https://orcid.org/0000-0002-1731-2647
https://doi.org/10.3390/s23135835
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135835?type=check_update&version=1


Sensors 2023, 23, 5835 2 of 15

resulting in a merged feature set known as a long short-term feature set. In the experiments,
short-term features are extracted using both Mel Frequency Cepstral Coefficients and the
statistical properties of the signals. Additionally, long-term features are extracted by using
the duration properties of fundamental heart sounds. There are 27 short-term features
and 6 long-term features. Thus, the dimension of each fragment in the long short-term
feature set is 33. Among these 33 features, the most informative ones are determined
through nearest component analysis. After the feature dimension reduction process, the
selected long short-term feature set performs better than the selected short-term feature
set. Additionally, the classification performance of these selected features is measured. The
experiments involving the merging of long short-term features and nearest component
analysis reveal not only an increase in the overall accuracy rate but also that the information
carried by long-term features is much richer than that carried by short-term ones.

The motivation for our work and some of our contributions to the literature can be
summarized as follows:

• Heart sound classification remains a prominent topic of discussion, and the Phys-
ioNet/CinC Challenge 2016 dataset is currently the most comprehensive and up-to-
date collection of data available. With the dataset being made available to the public,
numerous machine learning algorithms have been applied to the data, most of which
divide signals into fragments and then analyze the features extracted from those
fragments. This study stands out as the only one representing the features extracted
from both small fragments and the entire heart sound signal.

• The main contribution of this work lies in its assertion that small fragments and the
whole signal have distinct characteristics, and when used in combination, they increase
classification accuracy. To validate this assertion, we employ various machine learning
models utilizing a combination of features. The results indicate that the combined
feature set boosts the classification accuracy on the publicly available portion of the
PhysioNet dataset.

• Lastly, we propose a novel approach to eliminate extraneous peaks and determine the
fundamental heart sounds.

2. Related Works

Heart sound segmentation and classification studies have been conducted for a long
time. To provide an up-to-date account, this section summarizes studies conducted within
the last 10 years. In 2010, Schmidt et al. segmented fundamental heart sounds (FHSs) using
a hidden semi-Markov model (HSMM). Their strategy was based on extracting features
from systolic and diastolic durations. They achieved a 98.8% segmentation accuracy [9].
Ari et al. (2010) extracted wavelet features and used a modified version of the Support
Vector Machine (SVM) algorithm for the classification. The modified SVM and wavelet
features resulted in an 86.72% accuracy [10]. Avendano-Valencia et al. (2010) carried out
experiments on 26 normal and 19 pathological heart sounds to identify the most informative
features [11]. In 2011, Bentley et al. initiated a heart sound segmentation and classification
challenge [12]. They also released a public heart sound database called the PASCAL
database. Gharehbaghi et al. (2011) conducted a feature-based segmentation of FHSs on
120 child heart sound recordings and achieved a 97% segmentation accuracy [13]. Another
important achievement in 2011 was the increase in the number of available heart sounds.
For example, Li et al. (2011) contributed to The Dalian University of Technology’s heart
sound database [14] and Moukadem et al. (2011) contributed to the University of Haute
Alsace’s heart sound database [15]. In 2012, Tang et al. proposed a segmentation method
that separated heart cycles in the frequency domain and then clustered the FHSs. They
achieved a 95% segmentation accuracy [16]. Uguz implemented an artificial neural network
that utilized wavelet features for analyzing three classes, normal, pulmonary stenosis, and
mitral stenosis, and achieved an average accuracy of 98.33% for the three classes [17].

In 2013, Moukadem et al. proposed a method that utilized Shannon energy for
segmenting FHSs. The segmentation accuracy of the method was 95% on 80 samples,
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with an equal number of samples from each class [18]. Naseri and Homaeinezhad (2013)
utilized over 52 heart sounds for segmenting FHSs. They extracted features from both
the frequency and time domains [19]. Castro et al. (2013) carried out segmentation on the
PASCAL database, resulting in a 90.1% accuracy for first heart sound segmentation and
a 93.3% accuracy for second heart sound segmentation [20]. In 2014, Sun et al. carried
out segmentation on the Michigan Database using the Hilbert transform [21]. Varghees
and Ramachandran (2014) used a feature-based method, along with Shannon entropy [22].
Pedrosa et al. (2014) used periodic component features for segmenting the FHSs and
achieved a 98.6% accuracy on 72 heart sounds [23]. Papadaniil and Hadjileontiadis also
implemented a feature-based segmentation method that detected the starting and ending
points of FHSs [24]. In 2015, Zheng et al. utilized an SVM classifier that uses wavelet
features on 107 heart sounds and achieved a 97.17% classification accuracy [25]. Patidar et al.
used a modified and tunable version of wavelet transform as features for the SVM classifier,
achieving a reported 98.8% sensitivity on 163 heart recordings [26]. Gharehbaghi et al.
implemented a modified version of the SVM for two equally distributed classes of 60 heart
sound samples, reporting an 86.4% classification accuracy [27]. In 2016, PhysioNet released
the largest public heart sound database ever, which consists of seven different databases.
The source and other properties of each database are defined in PyhsioNet’s well-known
paper, along with the entire history of heart sound segmentation and classification works [6].
In the same year, a competition called the PhysioNet/Computing in Cardiology (CinC)
Challenge 2016 was held. Participants implemented their segmentation and classification
algorithms on the PhysioNet database. Springer et al. (2016) improved Schmidt et al’s
work on the hidden semi-Markov model [28]. Their proposed method has achieved
superior accuracy rates compared to the current methods and is currently considered the
best method for segmenting heart sounds into FHSs. In 2018, Yu Tsaoa et al. recorded
heart sounds in a noise-free environment and then added synthetic noise to the original
noiseless heart sounds. resulting in two different types of data. They trained two deep
learning algorithms using the noiseless heart sounds and a combination of noiseless data
and noisy data. The authors reported that the second deep learning algorithm that was
trained on the combined data outperformed the other algorithm in classifying noisy heart
sounds [29]. Siddique Latif et al. implemented a recurrent neural network (RNN) on the
PhysioNet 2016 database and compared the RNN with other deep learning models [8].
They reported achieving a 97.63% accuracy by dividing the available data into 75% for
training, 15% for validation, and 10% for testing. The RNN outperformed the other deep
learning algorithms. Juan et al. (2018) implemented a neural network-based classification
on a field-programmable gate array. They used a modified version of the AlexNet model,
achieving a 97% accuracy [30]. The use of Mel Frequency Cepstral Coefficients (MFFCs)
for extracting some of the short-term features in this study is considered one of the most
popular techniques for extracting features in digital voice recognition tasks. The MFFC
technique was first introduced to replicate the human hearing mechanism [31]. From
the time they were introduced, MFFCs have been widely used for extracting short-time-
period features. Although MFFCs are useful, they need to be supplemented with other
features. In the literature, especially in audio-signal processing for speech, there have been
efforts to enhance MFFCs by incorporating long term-features that contain complementary
information not detected in the short-time period alone [32].

3. Materials and Methods
3.1. Dataset

In all the experiments, the PhysioNet Computing in Cardiology 2016 database was
used. This dataset is a combination of nine different databases formed by independent
research groups at different locations and times. Since the dataset consists of different
databases, the quality, recording length, and sampling frequency of the recordings are dif-
ferent. To equalize the sampling frequencies, all recordings are set to a sampling frequency
of 2000 kHz. There are 2435 labeled heart sounds in this dataset, consisting of two classes:
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normal and abnormal. Normally labeled samples are used to represent healthy heart
sounds, which only contain the first (S1) and second (S2) heart sounds. Abnormally labeled
samples are used to represent unhealthy heart sounds from confirmed cardiac patients.
Unhealthy heart sounds exhibit additional noisy patterns alongside the fundamental heart
sounds. The first and second heart sounds are called fundamental heart sounds. A cardiac
period begins with S1 and is followed by S2. The time interval between S1 and S2 is called
the systolic period and the time interval between S2 and S1 is called the diastolic period, as
shown in Figure 1.

Figure 1. Fundamental heart sounds, cardiac cycle, and systolic and diastolic periods.

As stated above, healthy heart sounds comprise only S1 and S2 patterns, which are
produced from the contraction and relaxation movements of the heart. On the other
hand, unhealthy heart sounds exhibit additional noisy patterns alongside S1 and S2. The
difference between a healthy and an unhealthy heart sound is presented in Figure 2.

Figure 2. Heart sound graph of a healthy individual (upper). Heart sound graph of an unhealthy
individual (lower).

3.2. Proposed Method

Heart sound classification tasks consist of three main steps, as shown in Figure 3.
These steps include pre-processing, feature extraction, and classification [33–35]. They are
conducted on a small window of the examined heart sound [36].

Figure 3. The classical method of heart sound classification.
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The original contribution of this study is to extract features not only from a small
window but also from the entire heart sound signal. The first-time scale is defined as
the short-term scale and the second time scale is defined as the long-term scale. In the
short-term scale, heart sounds are divided into fixed-sized small fragments, and short-
term features are extracted from those fragments. In the long-term scale, heart sound
instances are considered as a whole, and long-term features are extracted from each instance.
Classification is carried out on each fragment. So, for each fragment, the short-term features
extracted from the respective fragment and the long-term features extracted from the
instance to which the respective fragment belongs are merged to create a mixed set of
features. The feature-merging process enhances the overall representation thanks to the
useful information carried by the long-term features.

The proposed method consists of four main steps and nine sub-steps. The main steps
are pre-processing, feature extraction, feature pooling, and classification. To provide a
clearer understanding, a flowchart of the proposed methodology is presented in Figure 4.

Figure 4. Flowchart of the proposed method.

The proposed method, which aims to extract features not only from small window
segments but also from the entire heart sound signal, represents an original contribution of
this study. The method involves a two-time-scale approach, where the short-term time scale
refers to fixed-sized fragments of heart sounds, and the long-term time scale encompasses
complete heart sound instances. In the short-term time scale, the heart sounds are parti-
tioned into small fragments of a predefined size, and short-term features are extracted from
each fragment. On the other hand, in the long-term time scale, the heart sound instances
are treated as a whole, and long-term features are extracted from each instance. The classifi-
cation process is carried out on each fragment, resulting in a comprehensive analysis. To
create a comprehensive set of features for each fragment, the short-term features extracted
from the respective fragment are combined with the long-term features extracted from
the instance to which the fragment belongs. This merging process enhances the overall
representation by incorporating the valuable information carried by the long-term features.
The proposed method is outlined in detail through four key steps, namely preprocessing,
feature extraction, feature pooling, and classification. The preprocessing step involves
necessary data cleaning and noise reduction techniques to ensure the quality of the heart
sound signals. Next, the feature extraction step focuses on extracting relevant features from
both short-term fragments and long-term instances. Subsequently, the feature pooling step
combines the short-term and long-term features to create a merged feature set that captures
the comprehensive characteristics of the heart sound data. Finally, the classification step
utilizes appropriate classification algorithms to assign labels to the fragments based on the
merged feature set, enabling the accurate classification of different heart sound patterns. By
following this four-step process, the proposed method enables robust and comprehensive
analysis of heart sound signals, effectively extracting relevant features from both short-
term and long-term perspectives. This methodology enhances the overall representation
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and classification accuracy by incorporating valuable information from the entire heart
sound signal.

3.2.1. Pre-Processing

In the pre-processing step, noise reduction, peak detection, segmentation, and frag-
mentation are performed. The heart sounds in the dataset were recorded in both clinical
and non-clinical environments. So, both environmental noise and body organ noise such
as lung noise are present in the recordings [37,38]. It is known that fundamental heart
sounds and abnormal patterns caused by heart malfunction occur at lower frequencies [39].
Therefore, a low-pass filter was used to eliminate the noise effect in the recordings.

After the noise reduction process, the envelopes of the heart sound signals are extracted
to determine the boundaries of the first and second heart sounds. An accepted method for
this task is to find all potential peaks using a threshold value and eliminate unnecessary
peaks. In our experiments, a methodology called extra peak rejection was used. In this
approach, a threshold value equivalent to 30% of the maximum amplitude value is used to
determine candidate peaks. Then, to discard extra peaks and identify the correct ones that
correspond to the first and second heart sounds, an elimination algorithm is used. Some of
the steps in the elimination algorithm are presented below:

• If two neighboring peaks have a time interval of less than 50 ms, the peak with the
smaller amplitude value is rejected, and the other peak is considered a prospective
descriptor point.

• If two neighboring peaks have a time interval of less than 50 ms, the number of
heartbeats in healthy individuals should be between 40 and 140 beats per min. Thus,
the cardiac cycle, which consists of the systolic and diastolic periods, cannot be shorter
than 400 ms or longer than 1500 ms.

• If two neighboring peaks have a time interval of less than 400 ms and more than 50 ms,
the peak with the smaller amplitude value is rejected, and the other peak is considered
a prospective descriptor point.

• If the time interval between the two peaks is more than 1500 ms, it indicates the
presence of unidentified peaks. Thus, the threshold value is refined and the rejection
steps are applied again.

The last step in pre-processing is fragmentation. The main purpose of fragmentation
is to create bigger sample pools, especially for deep learning algorithms. In this work, all
recordings were divided into five-second-long windows. The candidate peaks above the
threshold line and the extracted S1 and S2 points obtained using the extra peak rejection
method are presented in Figure 5.

Figure 5. Peaks with values above the threshold (upper). Peaks after extra peak rejection process
(lower).
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3.2.2. Feature Extraction

The short-term features contain a total of 27 features, with 14 of them being extracted
from the time, high-order statistics, energy, and frequency domains. The rest of the short-
term features are extracted from Mel Coefficients. Mel Frequency Cepstral Coefficients
(MFFCs) are used in many speech recognition tasks. The MFFC extraction process is in-
spired by the human cochlea, an organ that vibrates differently depending on the frequency
of incoming sounds to facilitate hearing. To mimic this mechanism, first, the power spec-
trum of each window is computed [31,32]. Then, a narrow filter is utilized to capture the
energy near the 0 Hz frequency. Finally, to simulate the human ability to perceive low
frequencies, a logarithmic scale is utilized.

Details about the short-term features are presented in Table 1. Regarding the notations
in Table 1, each window is denoted as T seconds, fs is the sampling frequency, and X(i)
represents the signal, where i varies over the total number of samples. X(f) denotes the
Fourier transform of the current signal and Xj(f) denotes the framed signal, with j ranging
over the number of frames. Pj(f) is the power spectrum of frame j. To compute the Mel
Frequency Cepstral Coefficients, first, the signal is divided into short frames, and the
spectral power density for each frame is calculated. Then, the Mel filter bank is applied
to the power spectra, and the energy in each filter is summed. Next, the logarithm of the
energies in all filter banks (26 filters are used) is obtained. After taking the logarithm, the
Discrete Cosine Transform (DCT) is implemented, and the first 13 coefficients are selected
as the MFFC features.

Table 1. Detailed profile of the short-term features.

Feature Mathematical Description Explanation

1 (∑
T f s
i=1 X(i))
T f s The mean value of the current signal.

2 (X((T f s)/2))+X((T f s)/2)+1)
T f s The median value of the current signal.

3

√
∑

T f s
i=1 ((X(i))−Mean)2

T f s The standard deviation of the current signal.

4 ∑
T f s
i=1 |(X(i))−Mean|

T f s The mean absolute deviation.
5 1

4 (n + 1)th term first quartile of the current signal (Q1).
6 3

4 (n + 1)th term third quartile of the current signal (Q3).

7 Q3–Q1 The interquartile range, which is the difference between the first and
third quartiles.

8 ∑N
i=1 ((X(i)−m)/s)3. 1

N

The skewness of the current signal. X(i) is an individual score; “m” is the
population mean; “s” is the population standard deviation; N is the

population size.

9 ∑N
i=1 ((X(i)−m)/s)4. 1

N

Kurtosis of the current signal. X(i) is an individual score; “m” is the population
mean; “s” is the population standard deviation; N is the

population size.
10 ∑

T f s
i=0 X(i) log(X(i)) Shannon entropy value of the current signal.

11 ∑N
f=0 X( f ) log(X( f ))

After applying the fast Fourier transform, the Shannon energy is computed
(spectral entropy of the current signal). Note: X( f ) denotes the Fourier transform

of the current signal.
12 Max(∑N−1

i=0 X(i)e−
i2πkn

N ) The maximum frequency (Hz) after applying the fast Fourier transform.

13 Max(∑N−1
i=0 X(i)e−

i2πkn
N )

The maximum frequency spectrum value after applying the fast
Fourier transform.

14 Energy[Max(∑N−1
i=0 X(i)e−

i2πkn
N )] The ratio of the energy of the maximum frequency to the total energy.

5th to 27th 13 coefficients from the MFFCs Mel Frequency Cepstral Coefficients

The short-term features have been carefully chosen to capture the essential aspects
of the current signal and are highly relevant to the study’s objectives. The mean value
of the signal serves as a fundamental measure of the signal’s central tendency, providing
insights into its overall magnitude. The median value of the signal complements the
mean by capturing the middle value, thus offering a robust estimation less susceptible
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to outliers. Furthermore, the standard deviation quantifies the dispersion of the signal
values around the mean, enabling the assessment of variability within the signal. The
mean absolute deviation provides a measure of the average absolute difference between
the data points and the mean, giving insights into the overall signal variation. To capture
the distributional characteristics, the first quartile (Q1) and third quartile (Q3) reflect the
values below which 25 and 75% of the data lie, respectively. The interquartile range,
defined as the difference between Q3 and Q1, provides information about the spread of
the middle 50% of the data. These quartile-based features are useful for understanding the
distributional properties of the signal. In addition, skewness and kurtosis offer insights
into the shape of the signal’s distribution. Skewness quantifies the asymmetry of the
distribution, whereas kurtosis measures the “peakedness” or “flatness” of the distribution,
revealing deviations from a normal distribution. Furthermore, the Shannon entropy and
Shannon energy values provide information about the signal’s randomness and spectral
characteristics. Shannon entropy assesses the uncertainty or disorder of the signal, whereas
Shannon energy, which is computed after applying the fast Fourier transform, captures the
spectral entropy. Finally, the Mel Frequency Cepstral Coefficients (MFCCs) (15th to 27th
features) are widely used in audio signal analysis for capturing the spectral characteristics
of the signal. These coefficients provide information about the signal’s frequency content
and have proven effective in various audio classification tasks. By incorporating these
specific short-term features, our study aims to comprehensively analyze the current signal,
capturing its central tendency, variability, distributional properties, spectral characteristics,
and frequency content. The selection of these features is justified by their relevance to the
research objectives and their ability to provide valuable insights into the characteristics of
the heart sound signals under investigation.

The long-term features consist of six features extracted from the time and high-order
statistics domains. Detailed information about the long-term features is presented in Table 2.
Regarding the notations in Table 2, it is assumed that there are N occurrences of S1 and S2,
and the time indices of those fundamental heart sounds are represented as S1(i) and S2(I),
where ‘’i” ranges over the total number of S1 and S2, which is N. X(f) denotes the Fourier
transform of the current signal.

Table 2. Detailed profile of the long-term features.

Feature Mathematical Description Explanation

1 T12 = abs(∑N
i=1 S1(i)−S2(i))

N This feature is used to represent the mean value of the systolic intervals.

2 T21 = abs(∑N
i=1 S2(i)−S1(i+1))

N−1 This feature is used to represent the mean value of the diastolic intervals.

3 SD12 =

√
∑N

i=1 ((S1(i)−S2(i))−T12(a))2

N This feature is used to represent the standard deviation of the systolic intervals.

4 SD21 =

√
∑N

i=1 ((S2(i)−S1(i+1))−T21(a))2

N−1 This feature is used to represent the standard deviation of the systolic intervals.

5

Total Number o f Peaks
A f ter Extra Peak Rejection

Total Number o f Peaks Ratio of rejected peaks to total peaks.

6

Mean Amplitude Value o f the Peaks
A f ter Extra Peak Rejection

Mean Amplitude Value o f All Peaks Amplitude value of rejected peaks to all.

To determine the information levels of the features, neighborhood component analysis
is implemented. According to this analysis, long-term features carry more information than
short-term features, and within the short-term features, the MFCCs carry more information
compared to the time-, frequency-, and energy-domain features, as shown in Figure 6. In
Figure 6, STF indicates short-term features and LTF indicates long-term features. The order
of the features in the figure is the same as the order in Tables 1 and 2.



Sensors 2023, 23, 5835 9 of 15

Figure 6. Information levels of the features. Dotted line is used to display the threshold level. Blue
squares are the ones below threshold, and red lines are the ones above threshold.

3.2.3. Feature Pooling

To merge the short- and long-term features, long-term features are added at the end
of the short-term features. There are 27 short-term and 6 long-term features. After feature
reduction using component analysis, it is understood that all long-term features and 16
short-term features carry a significant amount of information. The potential feature sets
and their corresponding dimension sizes are presented in Table 3.

Table 3. Feature sets.

Abbreviation Number of Features Explanation

STF 27 Short-term features.
LST 6 Long-term features.

LSTF 33 Short-term features + long-term features.
SSTF 16 Short-term features after feature reduction.

SLSTF 22 Short-term features after feature reduction + long-term features.

3.2.4. Classification

The PhysioNet dataset has been utilized by numerous machine learning algorithms
since becoming publicly accessible. Among these algorithms, traditional machine learning
models have proven to be the most popular and successful. To evaluate the effectiveness
of various state-of-the-art machine learning techniques and their variant algorithms, we
conducted tests on a wide range of models. A comprehensive list of the tested algorithms
can be found in Table 4. The fine K-Nearest Neighbor classifier with long short-term
features emerged as the most successful among these algorithms.

Table 4. Classification techniques and algorithms.

Technique
Algorithms

1 2 3 4 5 6

Decision Trees Fine Tree Medium Tree Coarse Tree
Naive Bayes

(NB) Gaussian NB Kernel NB

Support Vector
Machines
(SVMs)

Linear SVM Quadratic SVM Cubic SVM Fine SVM Medium SVM Coarse SVM

K-Nearest
Neighbors

(KNNs)
Fine KNN Medium KNN Coarse KNN Cosine KNN Cubic KNN Weighted KNN

Ensemble
Methods Boosted Tree Bagged Tree Subspace

Discriminant Subspace KNN RUSBoosted
Tree

4. Results and Discussion

To assess the classification accuracy of the feature sets shown in Table 3, we employed
a range of machine learning techniques, utilizing the 22 classification algorithms presented
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in Table 4. The abbreviations used in Table 4 are as follows: DT (Decision Tree), NB (Naive
Bayes), SVM (Support Vector Machine), KNN (K-Nearest Neighbor), and EM (Ensemble
Method).

In all our experiments, the available data were partitioned into two subsets, with 70%
of the data reserved for training and the remaining 30% for validation. The computations
were performed using MATLAB, and the Machine Learning Toolbox of MATLAB was
utilized to extract the performance metrics.

Our analysis revealed that, in comparison to short-term features or long-term features,
the use of long short-term features led to an increase in the classification accuracy ranging
from 3 to 10% across all employed algorithms, as illustrated in Table 5. These results
suggest that long short-term features are better suited for extracting relevant information
from heart sound signals and can significantly enhance the performance of classification
algorithms.

Table 5 displays the performance metrics of the most accurate algorithms among the
tested techniques. It provides a summary of the accuracy results obtained from these
techniques. However, for the sake of brevity in this section, the accuracy and other metrics
of all 22 algorithms are presented in Tables A1–A5 in Appendix A. Analyzing the results
presented in these tables, we can see that using the proposed technique can increase
accuracy by more than 10%, especially in cases where the classification accuracy is very
low, e.g., 70% or lower. Another important finding is that the Selected Merged Features
(SLSTF) achieved better classification accuracy than either the short-term or long-term
features alone. Our experiments demonstrated that incorporating long-term information
into window-specific short-term features can significantly enhance classification accuracy.

An additional observation that can be derived from Table 5 is that the accuracies of the
K-Nearest Neighbor and Ensemble Method algorithms remained consistently close across
different feature sets. The findings of this study indicate that the K-Nearest Neighbor (KNN)
and Ensemble Method algorithms exhibited remarkable similarity in terms of accuracy
across various feature sets. KNN is a straightforward and intuitive classification algorithm
that assigns labels to data points based on their proximity to labeled instances. It is not
bound by any assumptions regarding the underlying data distribution and demonstrates
versatility in accommodating different feature sets. By calculating distances between data
points and identifying the nearest neighbors, KNN classifies new data points based on
the labels of these neighbors. The relatively close results in terms of accuracy obtained
for different feature sets in KNN can be attributed to the algorithm’s heavy reliance on
the distance metric. When distinct feature sets yield comparable distances, it results in
similar classification accuracy. Ensemble Methods are characterized by their amalgamation
of multiple learning algorithms to enhance predictive performance. Functioning as a col-
lective unit, Ensemble Methods combine individual models to arrive at a final prediction.
The incorporation of weak learners, which are individual models with moderate accuracy,
allows Ensemble Methods to generate a strong learner by leveraging the diverse knowledge
encapsulated within the constituent models. This diversity facilitates the capture of varied
aspects within the data, ultimately contributing to improved accuracy. Notably, Ensemble
Methods exhibit closely aligned accuracy levels for different feature sets owing to their
ability to harness the collective expertise of the constituent models, rendering them less sus-
ceptible to the idiosyncrasies of individual feature sets. The aforementioned observations
highlight the robust decision-making processes inherent in KNN and Ensemble Method
algorithms, which enable these techniques to maintain consistent accuracy across diverse
feature sets. These characteristics make them reliable choices for addressing classification
tasks in scenarios involving varying feature representations.

For optimal performance, the highest accuracy is achieved by employing specific
algorithms within their respective techniques. The most accurate algorithm among the
Decision Tree models was the Fine Tree algorithm. Among the Naive Bayes models, the
Gaussian algorithm achieved the best results. The Fine Gaussian algorithm was found
to be the most accurate among the Support Vector Machine models. In the case of the
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K-Nearest Neighbor models, the Weighted KNN algorithm demonstrated superior accuracy.
Finally, among the Ensemble Methods, the Subspace KNN algorithm was found to be the
most accurate.

Table 5. Classification accuracy of the tested algorithms with different feature sets.

Technique
Feature Sets

STF LTF LSTF SSTF SLSTF

Decision Trees 78.6% 77.9% 87.8% 83% 70%
Naive Bayes 68% 75.2% 83.3% 71.6% 76%

Support Vector Machines 81.6% 74.5% 91.2% 79% 80.5%
K-Nearest Neighbors 87.3% 86% 89.9% 86.9% 88%
Ensemble Methods 90.3% 89% 92.7% 90.5% 90.1%

The proposed technique raises an important discussion point regarding whether
the windows used for classification should be isolated from neighboring information.
To address this issue, it is necessary to consider whether a normal record can contain
abnormal fragments, and vice versa. It is reasonable to expect that if a heart sound record
is normal, all fragments of that record will be classified as normal, and vice versa. It is also
assumed that each fragment possesses sufficient representative properties for the record it
belongs to. However, this assumption may not always hold, as some fragments may not
contain enough origin information to be accurately classified. One possible solution to this
issue is to incorporate origin information into the fragments. The results presented in the
tables indicate that adding origin information through long-term features can significantly
improve the robustness of nearly all classification algorithms.

5. Conclusions

Phonocardiogram recordings carry a lot of useful information about the heart condi-
tion, and machine learning algorithms can be employed for automatic diagnosis purposes.
Thus, a variety of methods have been proposed for automatic heart sound classification.
This work aims to enhance classification accuracy by changing the perspective in the fea-
ture extraction process. Generally, heart sounds are divided into small fragments, and
classification is carried out on those fragments. However, this approach lacks overall
information about the heart sound instance and its neighboring fragments. The proposed
feature extraction method is designed to compensate for this deficiency by incorporating
two different time scales: the first corresponds to the individual fragment, and the second
encompasses the entire heart sound instance, which consists of the respective fragment.
Features are extracted from both time scales, and with the help of both feature sets, classifi-
cation accuracy and other performance metrics are improved across various state-of-art
classification algorithms.

By employing a two-time-scale approach that incorporates both short-term and long-
term features, we aimed to address the limitations of existing methods that primarily rely
on analyzing small fragments of heart sounds. Through comprehensive feature extraction
from both the respective fragment and the entire heart sound instance, our proposed
method captures a more holistic representation of the heart sound signal. This approach
allows us to leverage the valuable information carried by the long-term features, providing
a more accurate and robust analysis. A comparative analysis of our proposed method with
state-of-the-art classification algorithms showcases its superiority in terms of classification
accuracy and other performance metrics. The incorporation of both time scales leads
to a significant improvement in the classification results, demonstrating the importance
of considering the overall information of the heart sound instance and its neighboring
fragments. The findings of this study have important implications for the field of automatic
heart sound classification. Our proposed method enhances not only classification accuracy
but also our understanding of the underlying patterns and characteristics of heart sounds.
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This, in turn, contributes to the advancement of computer-aided diagnosis systems for
cardiovascular diseases.

Further research directions may include exploring additional feature extraction tech-
niques and refining the classification algorithms to achieve even higher accuracy. Addition-
ally, the generalization and applicability of the proposed method can be evaluated on larger
and more diverse datasets to ensure its robustness across different patient populations and
clinical settings.

In summary, this study highlights the significance of incorporating both short-term
and long-term features in the feature extraction process for automatic heart sound classi-
fication. The proposed method offers improved accuracy and provides valuable insights
into heart sound analysis. With continued advancements in machine learning and signal
processing techniques, the field of automatic heart sound classification holds great promise
for improving cardiovascular disease diagnosis and patient care.

Author Contributions: Conceptualization, M.G. and F.U.; methodology, M.G. and F.U; software,
M.G.; validation, M.G. and F.U.; writing—review and editing, M.G. and F.U. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw dataset, which was downloaded from the PhysioNet website,
is available at https://physionet.org/content/challenge-2016/1.0.0/ (accessed on 29 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In Tables A1–A5 below, STF = short-term features, LTF = long-term features, LSTF = long
short-term features, SSTF = selected short-term features, SLSTF = selected long short-term
features.

Table A1. Detailed classification metrics of Decision Tree algorithms.

Algorithm Metrics
Feature Sets

STF LTF LSTF SSTF SLSTF

Fine Tree
Accuracy 78.6% 77.9% 87.8% 83.1% 70.8%
Sensitivity 84% 92% 86% 91% 78%
Specificity 93% 53% 94% 69% 93%

Medium Tree
Accuracy 77.9% 76.6% 84.9% 84.4% 71.4%
Sensitivity 68% 95% 72% 92% 63%
Specificity 98% 81% 97% 62% 96%

Coarse Tree
Accuracy 72.2% 75.7% 83.5 80.2% 56.2%
Sensitivity 63% 76% 62% 95% 43%
Specificity 97% 94% 97% 33% 97%

Table A2. Detailed classification metrics of Naive Bayes algorithms.

Algorithm Metrics
Feature Sets

STF LTF LSTF SSTF SLSTF

Gaussian Naive Bayes Accuracy 68% 75.2% 83.3% 71.6% 76%
Kernel Naive Bayes Accuracy 67% 74.5% 82.8% 70.8% 76%

https://physionet.org/content/challenge-2016/1.0.0/
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Table A3. Detailed classification metrics of Support Vector Machine algorithms.

Algorithm Metrics
Feature Sets

STF LTF LSTF SSTF SLSTF

Linear Support Vector Machine
Accuracy 71.7% 75.7% 77% 66.4% 67.4%
Sensitivity 64% 76% 65% 57% 58%
Specificity 96% 94% 97% 97% 97%

Quadratic Support Vector Machine
Accuracy 83.6% 75.8% 84.2% 80.3% 81.8%
Sensitivity 80% 99% 80% 75% 77%
Specificity 96% 97% 96% 98% 98%

Cubic Support Vector Machine
Accuracy 88.3% 74.4% 89.7% 86.3% 89.3%
Sensitivity 87% 76% 89% 84% 89%
Specificity 93% 65% 93% 93% 93%

Fine Gaussian Support Vector Machine
Accuracy 81.6% 74.5% 91.2% 79.8% 80.1%
Sensitivity 96% 84% 97% 96% 97%
Specificity 71% - 73% 62% 73%

Medium Support Vector Machine
Accuracy 84.1% 77.9% 87.4% 83.5% 83.9%
Sensitivity 79% 78% 80% 79% 79%
Specificity 98% - 98% 98% 98%

Coarse Support Vector Machine
Accuracy 72.1% 76.7% 77.5% 69.7% 69.7%
Sensitivity 64% 77% 66% 61% 61%
Specificity 98% - 98% 98% 98%

Table A4. Detailed classification metrics of K-Nearest Neighbor algorithms.

Algorithm Metrics
Feature Sets

STF LTF LSTF SSTF SLSTF

Fine K-Nearest Neighbor
Accuracy 84.1% 85.4% 86.2% 83.1% 85.9%
Sensitivity 97% 94% 97% 96% 97%
Specificity 88% 99% 90% 85% 91%

Medium K-Nearest Neighbor
Accuracy 84.4% 80.5% 84.6% 84.1% 84.6%
Sensitivity 80% 88% 80% 79% 80%
Specificity 99% - 99% 99% 99%

Coarse K-Nearest Neighbor
Accuracy 73.2% 76.2% 74.5% 73.6% 73.8%
Sensitivity 65% 96% 64% 66% 66%
Specificity 98% 84% 98% 98% 98%

Cosine K-Nearest Neighbor
Accuracy 84.6% 81% 85.1% 83.2% 84.7%
Sensitivity 80% 87% 81% 78% 80%
Specificity 99% 39% 99% 98% 99%

Cubic K-Nearest Neighbor
Accuracy 83.7% 81.2% 84.7% 83.5% 84.1%
Sensitivity 79% 87% 79% 79% 79%
Specificity 99% 37% 99% 99% 99%

Weighted K-Nearest Neighbor
Accuracy 87.3% 86% 89.9% 86.9% 88%
Sensitivity 84% 97% 85% 83% 85%
Specificity 98% 95% 98% 98% 99%

Table A5. Detailed classification metrics of Ensemble Method algorithms.

Algorithm Metrics
Feature Sets

STF LTF LSTF SSTF SLSTF

Boosted Tree
Accuracy 82.6% 77.3% 84.1% 76.7% 78.3%
Sensitivity 78% 98% 80% 70% 72%
Specificity 99% 88% 99% 96% 97%

Bagged Tree
Accuracy 89.1% 91% 91.3% 86.8% 90%
Sensitivity 88% 97% 90% 86% 88%
Specificity 93% 95% 95% 90% 95%

Subspace Discriminant
Accuracy 62.3% 76% 73.8% 50.9% 52.5%
Sensitivity 51% 99% 53% 36% 38%
Specificity 98% 96% 97% 98% 98%
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Table A5. Cont.

Algorithm Metrics
Feature Sets

STF LTF LSTF SSTF SLSTF

Subspace K-Nearest Neighbor
Accuracy 90.3% 89% 92.7% 90.5% 90.1%
Sensitivity 96% 97% 96% 96% 96%
Specificity 82% 94% 82% 82% 83%

RUSBoosted Trees
Accuracy 87% 71% 88.1% 83% 85.2%
Sensitivity 87% 70% 87% 82% 85%
Specificity 89% 72% 91% 85% 87%
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