
Citation: Paul, S.K.; Nicolescu, M.;

Nicolescu, M. Enhancing

Human–Robot Collaboration

through a Multi-Module Interaction

Framework with Sensor Fusion:

Object Recognition, Verbal

Communication, User of Interest

Detection, Gesture and Gaze

Recognition. Sensors 2023, 23, 5798.

https://doi.org/10.3390/s23135798

Academic Editors: Min Young Kim

and Byeong Hak Kim

Received: 24 April 2023

Revised: 5 June 2023

Accepted: 19 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enhancing Human–Robot Collaboration through
a Multi-Module Interaction Framework with Sensor Fusion:
Object Recognition, Verbal Communication, User of Interest
Detection, Gesture and Gaze Recognition
Shuvo Kumar Paul *, Mircea Nicolescu and Monica Nicolescu

Department of Computer Science and Engineering, University of Nevada, Reno, 1664 N Virginia St,
Reno, NV 89557, USA; mircea@cse.unr.edu (M.N.); monica@cse.unr.edu (M.N.)
* Correspondence: shuvo.k.paul@nevada.unr.edu

Abstract: With the increasing presence of robots in our daily lives, it is crucial to design interaction
interfaces that are natural, easy to use and meaningful for robotic tasks. This is important not only
to enhance the user experience but also to increase the task reliability by providing supplementary
information. Motivated by this, we propose a multi-modal framework consisting of multiple inde-
pendent modules. These modules take advantage of multiple sensors (e.g., image, sound, depth)
and can be used separately or in combination for effective human–robot collaborative interaction.
We identified and implemented four key components of an effective human robot collaborative
setting, which included determining object location and pose, extracting intricate information from
verbal instructions, resolving user(s) of interest (UOI), and gesture recognition and gaze estimation
to facilitate the natural and intuitive interactions. The system uses a feature–detector–descriptor
approach for object recognition and a homography-based technique for planar pose estimation and a
deep multi-task learning model to extract intricate task parameters from verbal communication. The
user of interest (UOI) is detected by estimating the facing state and active speakers. The framework
also includes gesture detection and gaze estimation modules, which are combined with a verbal
instruction component to form structured commands for robotic entities. Experiments were con-
ducted to assess the performance of these interaction interfaces, and the results demonstrated the
effectiveness of the approach.

Keywords: HRI; human–AI interaction; interaction interface; gaze estimation; pose estimation;
multi-modal inputs; multi-party interaction; collaborative HRI; gesture recognition; information
extraction

1. Introduction

The robotics revolution is driven by advancements in automation, engineering and AI,
leading to the integration of robots into daily life. Unlike industrial robots, service robots
engage in diverse tasks while interacting with humans. To ensure seamless integration,
intuitive interaction interfaces and user trust are crucial. This requires a human–robot
interaction (HRI) framework that facilitates natural interaction and enhances task reliability
with multi-modal sensing and sensor fusion technologies. By combining visual, auditory,
depth sensors, etc., robots can achieve a comprehensive understanding of their environment
and human partners, and this can aid in clarifying or deducing absent task parameters,
thereby enhancing their reliability in performing designated tasks.

As robotic technology continues to advance, these entities will become an integral part
of modern society and have the potential to influence our social experiences. However, their
successful integration will heavily depend on whether or not users trust robots to accurately
complete tasks. Therefore, it is essential to ensure that robots can consistently execute

Sensors 2023, 23, 5798. https://doi.org/10.3390/s23135798 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23135798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23135798
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23135798?type=check_update&version=1

Sensors 2023, 23, 5798 2 of 43

tasks in a proper and reliable manner to build and maintain this trust. In order to facilitate
efficient human–robot interaction within a collaborative setting involving multiple users
and object manipulation, we suggest the four following key components: (1) recognizing
objects within the scene; (2) obtaining clear task parameters; (3) identifying the intended
user(s) or user(s) of interest; and (4) incorporating gestures and gaze to facilitate natural
interaction and provide supplementary task-related information. By integrating these four
components, we can ensure a clear understanding of tasks, including which objects to
manipulate and what actions to perform. This approach enables targeted user interaction
and facilitates natural communication, ultimately enhancing the overall effectiveness and
success of human–robot collaboration.

Additionally, to properly execute robotic tasks, instructions must include a set of
parameters that define a task configuration. We propose the two essential properties of a
complete task configuration:

1. To execute the intended task, the task configuration should comprise all the essential
task parameter details. The necessary task parameters can vary depending on the
task, such as the navigational task, which may require direction, and an assisting
task, which may need information related to objects, their attributes, locations in
the environment and the order of task initiation. The robot can then accurately
interpret structured instructions by extracting task parameters from its sensors and
filtering them.

2. The reliability of task configurations is essential for the successful execution of in-
tended tasks by robots. Even when the robot adheres to the given instructions, errors
in the task parameters can still occur due to the noisy sensory data or ambiguities
during parameter extraction. For instance, a robot may turn right instead of executing
a rightward movement. To mitigate this issue, the cross-validation of instructions is
necessary to establish the user’s intent. This can be achieved by integrating sensory
information with a range of interfaces designed for human–robot interaction.

The initial statement asserts that the first property alone can be adequate for executing
a robotic task, but the second property offers greater certainty about the validity of task con-
figurations. Thus, if sensor input streams cannot determine the necessary task parameters,
interaction interfaces can be used to establish and confirm these parameters, and vice versa.
Although attaining the second property may be unfeasible for every task configuration,
verifying instructions from multiple sensor streams and interaction interfaces should be
a goal in collaborative human–robot interaction (HRI) design, as it would lead to more
dependable task configurations. More dependable task configurations would contribute to
successful task completion and strengthen trust in robots. These factors necessitate the use
of natural interaction interfaces.

In natural human interactions, different modalities are used to effectively convey
information. These modalities include gestures, speech and facial expressions, among
others. Two very important natural interaction interfaces for humans are gaze [1] and ges-
tures [2], particularly pointing gestures, which can convey simple messages or commands
to the robot. Although they are inadequate for conveying complex information, these
interfaces provide a more intuitive and natural way of communicating simpler instructions
in noisy environments.

Moreover, these interaction interfaces allow for the intuitive specification of objects and
their locations and can serve as straightforward yet meaningful commands. Additionally,
particular human gestures and gaze indicate specific information that can convey the
user’s general intent. This inferred intent information can then be compared or matched
with predefined gesture and gaze configurations to provide supplementary information or
appropriate commands for the robot to execute specific tasks.

Speech is a natural means of conveying complex commands that can be effectively
parsed and processed by modern natural language processing (NLP) techniques. Using
natural language allows for faster and more intrinsic communication between humans
and robots. However, natural language commands must first be translated into a formal

Sensors 2023, 23, 5798 3 of 43

language that the robot can understand and act upon. The robot then formulates a struc-
tured message that is transformed back into natural language for easier comprehension by
the user.

Additionally, for natural and effective verbal and non-verbal interactions, it is essential
to understand the roles, i.e., speaker, addressee and bystander known as footing [3]. For a
robot to participate seamlessly in multi-party conversations and interactions, it must be
able to accurately infer these roles.

While humans can detect active speakers and assume their roles during conversa-
tions [4], robots find it challenging to perform such precise interpretation as the task of
active speaker detection is inherently multi-modal, requiring the synthesis and compre-
hension of audio-visual and sometimes linguistic information. It is also necessary for the
robot to infer whether the instructions were intended for it or not. While this scenario
is relatively simple in a single-user environment, it becomes much more complex in a
multi-user collaborative settings where users can communicate and direct instructions to
one another and the robot. Thus, in a multi-party collaborative human–robot interaction
(HRI) settings, the robot must reliably determine whether it is being addressed and identify
the user of interest (UOI) who is directing the instructions.

Once we established the validity of the task parameters, we need to provide a robot
with reliable information of the object(s) of interest (OOI) in the 3D space so that it can
effectively manipulate the object. Object detection and respective pose estimation are two
critical components that help robots better understand and interact with their environment.
Object detection allows robots to identify and locate objects in their field of view, enabling
them to make informed decisions based on their surroundings. Pose estimation, on the
other hand, gives robots the ability to determine the 3D position and orientation of objects
in space, a crucial piece of information for tasks such as object grasping and obstacle
avoidance. The combination of object detection and pose estimation provides robots with a
comprehensive understanding of their environment, enabling them to perform tasks more
effectively and efficiently.

We propose a simple and reliable HRI framework that addresses the challenges men-
tioned to date. The components within our framework offer flexibility, as they can be
utilized either individually or combined with other modules based on the requirements of
the specific interaction scenario. To this effect, our contributions are as follows:

1. We use a feature-detector-descriptor-based method for detection and a homography-
based pose estimation technique where, by utilizing the fusion of image and depth
information, we estimate the pose of an object in terms of a 2D planar representation
in 3D space.

2. An NLP system that extracts a set of information from verbal instructions retrieved
from the audio input; verbal instructions with robot are parsed to extract task action,
object of interest and its attributes and position in the 2D image frame.

3. Detect the user(s) of interest (UOI(s)):

• Detecting the facing state—determining whether the user is facing the robot’s
viewpoint camera or not.

• Detecting the speaking state—identifying whether the user is speaking or not.

4. A gesture recognition system that estimates whether the user is performing a pointing
gesture and the pointing direction.

5. A gaze estimation technique using only 2D images that can be used to direct the
attention of the interacting robots towards an object or a certain location in the scene.

6. Finally, we show how pointing gesture recognition and gaze estimation can be used
in conjunction with the information extracted from the verbal instruction and the
detected objects in the scene to generate reliable robotic task configurations by disam-
biguating and supplementing the necessary task parameters.

The proposed system has the potential to greatly enhance the interaction between
humans and robots. The integration of one or multiple of these interaction interfaces can

Sensors 2023, 23, 5798 4 of 43

allow for a more comprehensive understanding of the environment and user inputs, leading
to improved task execution, increased reliability and an overall enhanced user experience.

In the subsequent section, a brief overview of the prior work is provided. Next,
we elaborate on the methodology of each module in detail. Subsequently, the following
chapters present our evaluation, encompassing experimental outcomes and observations.
Finally, we conclude this paper by summarizing our work and suggesting future directions
for further investigation.

2. Related Work

The following subsections will cover some previous research related to proposed modules.

2.1. Object Detection

The detection of objects remains a central challenge in the field of computer vision, and
the introduction of feature detectors and descriptors has been recognized as a significant
advancement in this area. The academic literature has seen the emergence of a wide range
of detectors, descriptors and their various adaptations in recent decades. The applications
of these methods have been extended to several other vision-based domains, including but
not limited to panorama stitching, tracking and visual navigation.

The Harris corner detector, which has been widely acknowledged as one of the
earliest feature detectors, was originally introduced by Harris et al. [5]. Subsequently,
Tomasi et al. [6] developed the Kanade–Lucas–Tomasi (KLT) tracker, building upon the
Harris corner detector. The Good Features To Track (GFTT) detection metric was proposed
by Shi and Tomasi [7], who demonstrated its superior performance compared to existing
techniques. Hall et al. [8] introduced the concept of saliency with regard to scale change,
and evaluated the Harris method proposed in [9] as well as the Harris Laplacian corner
detector [10], which combines the Harris detector with the Laplacian function.

Lowe’s 2004 paper on scale invariant feature transform (SIFT) is a landmark contri-
bution to the field of computer vision, driven by the need for a feature detector that can
operate independently of the image scale. SIFT serves both as a detector and descriptor of
image features. In 2008, H. Bay et al. introduced speeded up robust features (SURF) as an
alternative to SIFT, but both approaches require significant computational resources. The
SIFT detector employs the difference of Gaussians (DoG) at varying scales, whereas the
SURF detector uses a Haar wavelet approximation of the determinant of the Hessian matrix
to expedite the detection process. Numerous versions of SIFT [11–14] and SURF [15–17]
have been presented in the past, with the aim of addressing various issues and reporting
improvements in matching. Nevertheless, the issue of execution time continues to pose a
challenge for numerous vision applications.

Various detectors have been developed to improve execution time in computer vision
applications. For example, FAST [18] and AGAST [19] are among the detectors developed
to enhance the performance. Calonder et al. developed the BRIEF [20] descriptor, which
utilizes binary strings and offers an efficient processing time. Another descriptor, ORB [21]
was presented by Rublee et al. which combines the modified FAST for feature detection
with BRIEF for description. BRISK [22] employs AGAST and FAST for corner detection
and filtering, respectively. In contrast, the FREAK [23] method utilizes a circular sampling
grid to generate retinal sampling patterns and constructs a binary descriptor through the
application of a one-bit difference of Gaussians (DoG) technique. The KAZE and AKAZE
methods, introduced by Alcantarilla et al., utilize non-linear scale-space through non-linear
diffusion filtering, with the latter utilizing a more computationally efficient method called
fast explicit diffusion (FED) [24,25].

In our work, we have selected four methods to investigate: SIFT, SURF, FAST+BRISK
and AKAZE. We selected these descriptors based on the comprehensive comparisons con-
ducted in recent literature [26–28]. To achieve an optimal solution, we carefully chose two
floating-point detector-descriptors (SIFT and SURF) and two binary detector-descriptors
(AKAZE and BRISK). Floating point-based detector-descriptors are known for their accu-

Sensors 2023, 23, 5798 5 of 43

racy, while the binary detector-descriptors offer faster processing speeds. Our goal was to
strike a balance and find a solution that delivers the best possible results.

2.2. Planar Pose Estimation

Planar pose estimation techniques have gained popularity in recent years across
various fields, including robotics and augmented reality.

One technique proposed by Simon et al. [29] uses homography projection and con-
secutive image analysis to estimate the pose of planar structures. Changhai et al. [30]
presents a robust method for estimating 3D poses of planes using weighted incremental
normal estimation and Bayesian inference. Donoser et al. [31] utilized the properties of
maximally stable extremal regions (MSERs [32]) to construct a perspectively invariant
frame and estimate the planar pose. In our approach, we estimate the basis vectors of the
object surface by applying perspective transformation to a set of corresponding points on
the test image, and use depth information to compute the normal and estimate the 3D pose
of the planar object.

2.3. Pointing Gesture Recognition

In the past, pointing gesture interfaces were predominantly developed with wearable
devices, such as glove-based systems, as presented in [33,34]. To locate pointed objects by
interpreting the pointing gestures, Kahn et al. introduced the Perseus architecture [35,36]
that utilized several feature maps, including intensity, edge, motion, disparity and color.
Kadobayashi et al. proposed a gesture interpreter termed VisTA-Walk which employed the
Pfinder algorithm [37], a multi-class statistical color and shape model that can extract the 2D
representations of the head and hands under different viewing conditions. More recently,
researchers have explored different approaches to solve the pointing gesture detection
problem, including using stereo cameras, depth cameras or multi-cameras [38–40].

The utilization of hidden Markov models (HMMs) in detecting pointing gestures
has been extensively explored in the literature. Wilson et al. [41] proposed a parametric
HMM, which allows for the recognition, representation and interpretation of parameterized
gestures such as pointing. Nickel et al. [42] integrated dense disparity maps of a person’s
face and hands with a hidden Markov model (HMM) in order to detect pointing gestures.
Park et al. [43] applied the cascade HMM with particle filters that requires a significant
number of HMM states for precise gesture recognition; however, it results in prolonged
processing times.

In their comprehensive review of hand gesture recognition, Rautaray et al. [44] identi-
fied the recognized constraints associated with the popular approaches in this field.

This study utilizes the estimated (image) coordinates of the user’s forearm joints,
namely the elbow and wrist, to achieve two objectives. Firstly, to distinguish whether the
user is executing pointing gestures; and secondly, to deduce the general direction in which
the user is pointing, such as left, right or straight. To accomplish the latter, the system
computes the line that intersects the arm joints and subsequently utilizes this information
to estimate the pointing direction.

2.4. Natural Language Understanding in HRI

Natural language has been widely studied as a means of interaction between humans
and robots in various contexts such as navigation, manipulation and task execution. The
use of natural language understanding (NLU) has been employed along with other sensory
information, such as vision, to improve the interpretation of human instructions or scene
configurations. The primary objective of NLU in human–robot interaction (HRI) can be
broadly classified into two categories.

Numerous methods have been proposed by researchers to address the challenge of
natural language-based interaction in human–robot interaction (HRI). One approach, de-
veloped by Kollar et al. [45], involves inferring the most probable path for an agent by
extracting specific parameters from the verbal information. MacMahon et al. [46] intro-

Sensors 2023, 23, 5798 6 of 43

duced MARCO, an agent that deduces implied actions by combining linguistic conditional
phrases, spatial action data and environmental arrangement. Statistical machine trans-
lation techniques were explored by Matuszek et al. [47] for following natural language
route instructions.

Furthermore, some scientists suggested the implementation of robotic architectures
that possess the capability to convert natural language commands into logical action
language and goal representation. For instance, Cantrell et al. [48] designed a robotic
architecture that features a planner that employs discovered knowledge to learn the pre-
vious and post-conditions of prior action sequences from natural language expressions.
Additionally, Dzifcak et al. [49] have proposed an incremental process that converts natural
language instructions into action language and goal representation. This representation
can be analyzed to assess the feasibility of the objective and establish new action scripts
designed to achieve the established goals.

Finally, incorporating spatial relationships has emerged as an effective approach
for establishing natural modes of communication between robots and humans. As per
the research conducted by Kuo et al. [50], hierarchical recurrent network coupled with a
sampling-based planner can learn and comprehend a series of natural language commands
in a continuous configuration space. Similarly, Skubic et al. [51] showcased how a multi-modal
robotic interface that utilizes linguistic spatial descriptions along with other spatial information
obtained from an evidence grid map can facilitate seamless human–robot dialogue.

Overall, the use of natural language in HRI has shown great potential for improving
the ease of communication between humans and robots. The various approaches proposed
in the literature demonstrate the diversity of methods that can be employed to address the
challenges of natural language understanding in HRI.

2.5. User(s) of Interest Detection

To successfully identify UOI in a multi-user environment, the system must determine
two crucial pieces of information: the active speaker, who is issuing commands and the in-
tended recipient, whether it be the robot or other users. While active speaker detection (ASD)
has received considerable research attention, its application within the context of human–
robot interaction (HRI) remains relatively limited. The following subsections delve into
noteworthy studies conducted on active speaker detection (ASD) and addressee detection.

2.5.1. Active Speaker Detection (ASD)

The task of identifying the active speaker from a set of candidates in a visual scene,
known as active speaker detection (ASD), is essential for correctly attributing thoughts
and ideas to the speaker. In the context of human–robot interaction, ASD can assist in
associating commands, requests and suggestions with the appropriate user, whether a
robot or a human.

Recent research has focused on developing new techniques and models to improve
ASD performance. Pouthier et al. [52] introduced a novel multi-modal fusion scheme based
on self-attention and uncertainty to leverage audio and video modalities for ASD. Similarly,
Kopuklu et al. [53] proposed a pipeline consisting of audio-visual encoding, inter-speaker
modeling and temporal modeling stages, known as ASDNet, for detecting active speakers
in challenging environments.

Other approaches have focused on audio-based methods: Kheradiya et al. [54] pro-
posed a technique based on an audio-visual sensor array to localize the active speaker.
Chakravarty et al. [55] used audio voice activation detection (AVD) to train a personalized
video-based active speaker classifier, modeling the voice of individual users to improve
detection accuracy.

Multi-modal approaches have also been explored: Chung et al. [56] minimized audio-
video synchronization error to predict active speakers by offsetting the distance between
audio and visually embedded features. Roth et al. [57] presented a neural model with a

Sensors 2023, 23, 5798 7 of 43

two-stream convolutional neural network for extracting features from audio-visual input
followed by a recurrent neural network for active speaker classification.

Additionally, Aubrey et al. [58] presented V-VAD, a method that uses visual informa-
tion to detect voice activity solely based on the motion vectors obtained from the complex
wavelet motion estimation algorithm. However, this approach is limited when the subject’s
face suffers from low resolution or occlusion, making it challenging to detect lip contours
for feature extraction and classifier design.

Recent work has also explored the use of attention mechanisms and graph convolu-
tional networks to improve ASD accuracy. Tao et al. [59] proposed a feature representa-
tion network that captures the long-term temporal context from audio and visual cues
and employs cross-attention and self-attention to learn intermodality interactions. Al-
cazer et al. [60] introduced a novel multi-modal assignation technique based on graph
convolutional networks, which simultaneously detects speech events and estimates the
active speaker.

In their study, Richter et al. [61] proposed lip movement detection to verify the active
speaker and suggested that mutual gaze at the end of an utterance is a significant cue for
addressee recognition in multi-party HRI scenarios. Meanwhile, Everingham et al. [62]
used the temporal motion of facial landmarks to detect speech, assuming that motion in
the lip area indicates speech. Li et al. [63] categorized addressee detection and selection
methods for social robots into passive and active methods. Passive methods were designed
to detect a predefined visual cue, while active methods utilized human motion, pose, gaze
and facial expression to detect the addressee.

2.5.2. Addressee Detection

The primary method used for addressee detection involves detecting eye contact,
which focuses on determining whether the gaze is directed towards a specific target.

To sense eye contact in an image, Smith et al. [64] proposed a passive appearance-
based approach that relies on gaze locking, rather than gaze tracking, and exploits the
unique appearance of direct eye gaze.

Muller et al. [65] introduced a method for detecting eye contact during multi-person in-
teractions, leveraging speaking behavior as weak supervision to train the eye contact detector.

Our approach utilizes facial landmarks to identify the active speaker and simultane-
ously classify the facing state, i.e., whether the active speaker(s) are addressing the robot or
other user(s).

2.6. Gaze Estimation

In their study, Mehlmann et al. [66] put forth a modeling approach that leverages gaze
for grounding and integrating with the dialog and task management, with a focus on the
multi-modal, parallel and bidirectional aspects of gaze. Kompatsiari et al. [67] investigated
mutual (social) and neutral (non-social) gaze by conducting experiments involving letter
identification with a robot gaze. Their findings suggested that people were more responsive
to mutual gaze and were more engaged with the robot when mutual gaze was established.

Wood et al. [68] proposed a model-based approach for binocular gaze estimation using
a set of vision algorithms. The approach includes the use of Haar-like feature-based cascade
classifiers for detecting eye-pairs and segmenting two coarse regions of interest (ROIs)
from the eye-pair region, analyzing the ROIs’ radial derivative to detect Limbus boundary
points as the parts of radial edges, and finally RANSAC for robust ellipse fitting. Chen
et al. [69] presented a probabilistic eye gaze tracking system that estimates the probability
distributions of eye parameters and eye gaze by combining image saliency with the 3D eye
model. The system does not require an individual calibration process and can gradually
improve when the user is naturally viewing a series of images on the screen. Lu et al. [70]
proposed the ALR method, which adaptively selects an optimal set of sparse training
samples for gaze estimation via l1-optimization. The method integrates subpixel alignment

Sensors 2023, 23, 5798 8 of 43

and blink detection into a unified optimization framework to better handle slight head
motion and eye blinking in appearance-based gaze estimation.

Sugano et al. [71] utilized a fully calibrated multi-view gaze dataset to generate a large
amount of cross-subject training data by performing 3D reconstruction. They trained a
random regression forest model on the synthesized dataset to estimate gaze. Liu et al. [72]
directly trained a differential convolutional neural model to estimate gaze differences
between eye inputs of the same user for a set of sample images. They then compared the
inferred differences to a set of subject-specific calibration images to predict gaze direction.
Park et al. [73] introduced a deep neural network model that estimates 3D gaze direction
from a single-eye input by regressing to an intermediate pictorial representation instead of
regressing the pitch and yaw angles of the eyeball. Cheng et al. [74] proposed the FAR-Net,
a face-based asymmetric regression network trained with a mechanism that asymmetrically
weights and sums the generated loss by the eye gaze directions. The network is optimized
by utilizing the eye that can achieve high performance. Park et al. [75] presented the FAZE
framework, a novel few-shot adaptive gaze estimation framework that models person-
specific gaze networks with ≤9 calibration samples. The framework learns rotation-aware
latent representations of gaze via an encoder–decoder architecture.

Mora et al. [76] proposed a multi-modal method that uses depth information to obtain
accurate head pose in 3D space, eye-in-head gaze directional information from image
data, and a rectification scheme exploiting 3D mesh tracking to facilitate head pose-free
eye-in-head gaze direction estimation.

In our approach, we utilized predefined 3D facial points and matched them to a
set of extracted estimated 3D facial landmarks of the users from 2D images to infer the
gaze direction.

3. Methodology

In the upcoming subsections, we will delve into system specifications and the details
of how each module was designed and implemented.

3.1. System Specification

The proposed framework was implemented on an Ubuntu 20.04 platform equipped
with 3.8 GHz Intel R Core(TM) i7-7560U CPU, GTX 1050 GPU and 16 GB system mem-
ory. For object detection and pose estimation, a Microsoft Kinect sensor v1 RGB-D cam-
era was employed, while Logitech’s C920 Pro HD webcam was used for other modules.
The framework was developed on top of ROS Noetic [77], OpenCV [78], Pytorch [79]
and Mediapipe [80].

3.2. Object Detection and Pose Estimation

Thanks to deep learning, significant progress has been made in the areas of object
classification [81–86], detection [87–92] and segmentation [93–95] from images. However,
3D localization and pose estimation have not progressed at the same pace. One of the main
reasons for this is the lack of labeled data, which is not practical to manually infer. As a re-
sult, the deep learning community has shifted towards synthetic datasets [96–100] for these
applications. Many pose estimation methods utilizing deep learning techniques [101–105]
use synthetic datasets for training and have shown satisfactory accuracy.

Although synthetic data offer a potential solution to the problem of insufficient la-
beled data, generating such data necessitates creating 3D models of photorealistic objects
that reflect real-world situations. As a result, generating synthetic data for new objects
requires a considerable amount of effort from skilled 3D artists. Furthermore, training and
deploying deep learning models demand significant computational resources, making it
difficult to achieve real-time object detection and pose estimation on machines with limited
computational capabilities. To tackle these problems, we have devised a simplified pipeline
that focuses on planar objects, requiring only an RGB image and depth information to
accomplish real-time object detection and pose estimation.

Sensors 2023, 23, 5798 9 of 43

In this article, we present an algorithm (Algorithm 1) that leverages a planar pose
estimation technique. The underlying assumption in our proposed technique is that
the object being considered exhibits an adequate level of texture and can be suitably
represented by a planar surface or face. By assuming the presence of texture, we can exploit
visual cues and features specific to the object’s surface to facilitate its detection and pose
estimation. Additionally, by representing the object as a planar surface or face, we can
leverage geometric transformations and related techniques to accurately determine its
position and orientation in three-dimensional space.

Algorithm 1: Planar Pose Estimation
Input: Training images of planar objects, I

1 Detector ← Define feature detector
2 Descriptor ← Define feature descriptor
3 /* retrieve feature descriptor */
4 /* for each image in I */
5 for i in I do
6 /* K is set of detected keypoints for image i */
7 K ← DetectKeypoints(i, Detector)
8 /* D[i] is the corresponding descriptor set for image i */
9 D[i]← GetDescriptors(K, Descriptor)

10 end for
11 while camera is on do
12 f ← RGB image frame
13 PC ← Point cloud data
14 /* KF is set of detected keypoints for image frame f */
15 KF ← DetectKeypoints(f , Detector)
16 /* DF is the corresponding descriptor set for rgb image f */
17 DF ← GetDescriptors(KF , Descriptor)
18 for i in I do
19 matches← FindMatches(D[i], DF)
20 /* If there is at least 10 matches then we have the object (described in image i) in the

scene */
21 if Total number of matches ≥ 10 then
22 /* extract matched keypoints pair (kpi , kp f) from the corresponding descriptors

matches. */
23 kpi , kp f ← ExtractKeypoints(matches)
24 H← EstimateHomography(kpi , kp f)
25 pc, px , py ← points on the planar object

obtained using Equation (3)
26 p

′
c, p

′
x , p

′
y ← corresponding projected points

of pc, px , py on image frame f
estimated using Equations (1) and (2)

27 /* ~c denotes the origin of the object frame with respect to the base/world frame */
28 ~c,~x,~y← corresponding 3d locations

of p
′
c, p

′
x , p

′
y from point cloud PC

29 /* shift ~x,~y to the origin of the base or the world frame */
30 ~x ← ~x−~c
31 ~y← ~y−~c
32 /* estimate the object frame in terms of three orthonormal vectors î, ĵ, and k̂. */

33 î, ĵ, k̂← from Equation (4)
34 /* compute the rotation φi , θi , ψi of the object frame î, ĵ, k̂ with respect to the base

or the world frame ~X,~Y, ~Z. */
35 φi , θi , ψi ← from Equation (8)
36 /* finally, publish the position and orientation of the object. */
37 publish(~c, φi , θi , ψi)
38 end for
39 end while

It is important to acknowledge that this assumption may not be universally applicable
to all objects in every scenario. Certain objects may lack sufficient texture or possess complex
geometries that deviate from a planar representation. Nonetheless, for a significant number
of practical cases encountered in human–robot interaction, this assumption holds true and
provides a valuable foundation for our technique to achieve reliable and precise results.

The algorithm is composed of four separate stages:

1. Extraction of features from images and finding the corresponding matches.
2. Estimation of homography and performing perspective transformation.

Sensors 2023, 23, 5798 10 of 43

3. Calculation of directional vectors on the surface of the object.
4. Pose estimation of the object from the depth information.

3.2.1. Feature Extraction and Matching

To detect objects in images, our process starts by identifying distinct features within
planar objects. These features are patterns in the images that describe their characteristics.
We use algorithms to detect features such as edges, corners, interest points, blobs and
ridges. Once detected, we transform these features into a vector space using a feature
descriptor. This allows us to perform numerical operations on the feature vectors. The
feature descriptor encodes the patterns into a set of numerical values, which we can use to
compare, match and differentiate one feature from another. By comparing these feature
vectors, we can identify similarities in different images, which can aid us in detecting objects.
Ideally, the information we gather from these features is invariant to image transformations.

Our research involved the exploration of four descriptors: SIFT [106], SURF [107],
AKAZE [108] and BRISK [22]. Although SIFT, SURF and AKAZE are feature detectors and
descriptors, BRISK utilizes the FAST [18] algorithm for feature detection.

After extracting and converting the features into vectors, we proceed to compare them
in order to determine whether or not an object is present in the scene. In cases where the
feature descriptors are non-binary, such as SIFT and SURF, we utilize the nearest neighbor
algorithm to find matches. However, as this method becomes computationally expensive
in high-dimensional data, and with the addition of more objects, it can adversely impact
the real-time pose updating process. To mitigate this issue to some extent, we opted to
employ the FLANN [109] implementation of the K-d nearest neighbor search, which is
a K-nearest neighbor algorithm approximation, optimized for high dimensional features.
In contrast, for binary feature descriptors such as AKAZE and BRISK, we utilized the
Hamming distance ratio method to identify matches. If the number of matches exceeds ten,
we can infer that the object is present in the scene.

3.2.2. Homography Estimation and Perspective Transformation

A homography is a 2D planar projective transformation that can be determined from a
given pair of images. It is an invertible mapping of points and lines on the projective plane,
as depicted in Figure 1. Essentially, a homography matrix H maps a set of points in one
image to their corresponding set of points in another image.

To compute the corresponding points, we can use Equations (1) and (2), which describe
the relationship between the projected point (x′, y′) shown in Figure 1 on the rotated plane
and the reference point (x, y).

The 2D point (x, y) in an image can be expressed as a 3D vector (x, y, 1), which is
referred to as the homogeneous representation of a point on the reference plane or image
of the planar object. Equation (1) uses H to denote the homography matrix, while [x y 1]T

denotes the homogeneous representation of the reference point (x, y). The projected point
(x′, y′) can be estimated using the values of a, b and c in Equation (2).a

b
c

 = H

x
y
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

 (1)


x
′
=

a
c

y
′
=

b
c

(2)

To estimate the homography, we utilize the matches obtained from the nearest neighbor
search as input. However, these matches can sometimes have false correspondences, which
do not correspond to the same real-world feature, thus hindering accurate homography
estimation. To overcome this, we employ RANSAC [110], which robustly estimates the

Sensors 2023, 23, 5798 11 of 43

homography by only considering inlier matches. RANSAC accomplishes this by attempting
to estimate the underlying model parameters and detecting outliers through random
sampling, using a minimum number of observations.

Unlike other techniques that utilize as much data as possible to find model parameters
and then remove outliers, RANSAC employs the smallest possible set of data points
to estimate the model. This approach makes RANSAC faster and more efficient than
traditional solutions.

Figure 1. Object in different orientation from the camera.

3.2.3. Finding Directional Vectors on the Object

In order to determine the pose of a planar object, it is necessary to identify the three
orthonormal vectors on the object that describe its coordinate frame. This coordinate frame
indicates the object’s orientation relative to the world coordinate system. The first step is to
estimate the basis vectors on the planar object, which define the plane, as shown in Figure 2.
The basis vector of the 2D plane is computed using Equation (3). The next step involves
calculating the cross product of these basis vectors to determine the third directional vector,
which represents the surface normal of the object. The object coordinate system is denoted
by xyz, while the world coordinate system is represented by XYZ. The object’s orientation
axes with respect to its body are defined as follows:

x → right
y→ up
z→ towards the camera

Initially, the positions of three points (pc, px, py) are extracted from a reference image
of a planar object using Equation (3). Subsequently, the corresponding points (p

′
c, p

′
x, p

′
y)

are determined from the image obtained from the Microsoft Kinect sensor, utilizing the
homography matrix H, as given in Equations (1) and (2).

To obtain the 3D positions of these points, we use point cloud data captured by the
Kinect sensor. We denote the positions of p

′
c, p

′
x, p

′
y as vectors ~c, ~x and ~y. The vector ~c

represents the translation from the object frame to the world frame and the position of the
object in the world frame. To align ~x and ~y with the world frame, we center them at the
origin of the world frame by subtracting~c.

We calculate the cross product of ~x and ~y to obtain the third axis, ~z. However, the
estimated axes ~x and ~y may not be perfectly orthogonal due to the homography matrix
being an approximation. To resolve this issue, we recalculate the vector ~x by taking the
cross product of ~y and~z.

Using these three orthogonal vectors, we calculate the orthonormal unit vectors, î, ĵ
and k̂, along the ~x, ~y and ~z vectors, respectively, using Equation (4). These unit vectors
describe the object frame.

Sensors 2023, 23, 5798 12 of 43

To validate our approach, we project these vectors onto the image plane. The resulting
orthogonal axes projected onto the object plane are displayed in Figure 3. This shows that
our method provides an accurate estimation of the position and orientation of the planar
object in 3D space. 

pc = (w/2, h/2)

px = (w, h/2)

py = (w/2, 0)

(3)

Figure 2. Axis on the reference plane.

Figure 3. Computed third directional axis projected onto the image plane.

ĵ =
~y
|~y| = [jX jY jZ]

k̂ =
~x×~y
|~x×~y| = [kX kY kZ]

î =
~y×~z
|~y×~z| = [iX iY iZ]

(4)

3.2.4. Planar Pose Computation

The orientation of the object relative to a fixed coordinate system is computed using
Euler angles. Euler angles comprise three angles that describe the orientation of a rigid
body. To obtain the rotation matrix R, which rotates the X axis to î, the Y axis to ĵ and the Z
axis to k̂, we use Equation (5).

Sensors 2023, 23, 5798 13 of 43

R =

iX jX kX
iY jY kY
iZ jZ kZ

 (5)

Euler angles describe the combination of rotations around the X, Y and Z axes, denoted
by φ, θ and ψ, respectively, as shown in Equation (6). The rotation matrix resulting from
these three axis rotations is calculated as the product of three matrices: R = RzRyRx
(Equation (7)). Note that the first intrinsic rotation corresponds to the rightmost matrix in
the product, while the last intrinsic rotation corresponds to the leftmost matrix.



Rx =

[
1 0 0
0 cos φ − sin φ
0 sin φ cos φ

]

Ry =

[
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

]

Rz =

[
cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

] (6)

R =

cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ
−sθ sφcθ cφcθ

 (7)

In Equation (7), c and s represent cos and sin, respectively.
Solving for φ, θ and ψ from (5) and (7), we obtain



φ = tan−1
(

jZ
kZ

)

θ = tan−1

 −iZ√
1− i2

Z

 = sin−1(−iZ)

ψ = tan−1
(

iY
iX

)
(8)

3.3. Information Extraction from Verbal Commands

Verbal communication between humans during collaboration typically involves ex-
changing specific information such as the task to be performed, the object of interest,
navigation directions and the location of interest in the scene. Humans also use descriptive
language to clarify the object they are referring to by specifying its general color, pattern,
shape, size and relative position, as a means of disambiguation [111]. For example, phrases
like “bring that red shirt”, “The book on the left” or “take the small box” define certain
task parameters. In our work, we employed a neural network model to extract these task
parameters from spoken instructions, as illustrated in Figure 4.

– bring that

– bring that book

– bring the red book

– bring the large box

– put the red book on the table

Figure 4. Green box represents the task action; red box indicates the location of the object in the scene;
brown box signifies the size of the object; yellow and blue boxes specify the object of interest and the
corresponding attributes, respectively.

We created a collaborative robotic commands dataset and evaluated 8 architectures to
train our model. Ultimately, we determined that a single layer bidirectional long short-term

Sensors 2023, 23, 5798 14 of 43

memory (Bi-LSTM) model was the best option. Long short-term memory networks, also
known as LSTMs [112], are a type of recurrent neural network (RNN) that have proven
to be highly effective in handling sequential data such as text, speech, audio, video and
more. In our study, we opted to use a bidirectional LSTM architecture to take advantage
of both the past and future contextual information of a given sentence, as well as to learn
long-term temporal dependencies while avoiding the problem of exploding or vanishing
gradients that are common in traditional RNNs during the backpropagation optimization
process. The Bi-LSTM consists of two components, namely the forward LSTM (fi) and the
backward LSTM (bi) as shown in Figure 5.

Figure 5. NN model for parameter extraction from verbal commands.

Our objective was to extract various task parameters from spoken commands, so
we developed a deep multi-task learning model. Multi-task learning (MTL) is a machine
learning technique where a shared model jointly learns multiple tasks. Deep multi-task
learning tries to produce a generalized representation that is powerful enough to be shared
across multiple tasks; here, each task denotes a multi-class classification.

Dataset: We generated a dataset comprising a large number of commands. Each
of these commands consists of action-based instructions and includes essential details
regarding one or more of the following parameters: object name, object color, object size
and the designated or intended location of the object. In total, the dataset contains an
impressive 154,065 samples, each of which is associated with five distinct labels.

Model Architecture: The neural network model used in this study comprises three
distinct layers: an embedding layer, a bi-directional long short-term memory (Bi-LSTM)
layer and a fully connected layer. The vocabulary size of the dataset is denoted by V,
and each word is represented by a one-hot encoding of dimension W ∈ R1×V. The input
data in the form of sequences or sentences comprise n words and are passed through the
embedding layer E .

Sensors 2023, 23, 5798 15 of 43

Embeddings can transform categorical or discrete variables into learned, low-dimensional
continuous vectors. Neural network embeddings have the ability to reduce the dimension-
ality of categorical variables and represent them in the transformed space. The embedding
layer E ∈ RV×d, where d� V represents the lower-dimensional embedding vector, which
is then fed into the Bi-LSTM layer.

After the forward and backward LSTMs have been processed, their outputs are con-
catenated and fed into four fully connected (FCN) layers. Finally, the softmax activation
function is applied to classify the four task parameters. We utilized the cross entropy loss
function (Lc) to measure the performance of each classifier, and we then computed the
mean of these losses (Lm = 1

5 Σ5
c=1Lc) to update our model. Our approach ensures that the

model can effectively classify the input data into one of the five task parameters.

3.4. User(s) of Interest Detection

Research has shown that the facing and the gaze transition pattern of the speaker and
listener have a strong association with turn-talking [113–115]. Vertegaal et al. [116] reported
a high probability of the interacting parties facing each other during speaking and listening.
Motivated by these findings, we decoupled the problem into two subproblems:

• Detecting the facing state—determining whether the user is facing the camera (robot’s
viewpoint) or not.

• Detecting the speaking state—determining whether the user is speaking or not.

This separation results in four possible states: (i) speaking and facing, (ii) speaking
but not facing, (iii) not speaking but facing, and (iv) not speaking and not facing. If the user
is in state i, we can infer that they are verbally communicating with or addressing the robot
and therefore consider them as a user of interest (UOI).

To address these subproblems, we utilized a third-party library to extract facial land-
marks and generated a dataset of these landmarks for both the facing and not-facing states
of users.

3.4.1. Dataset

We generated a dataset containing facial landmarks for each participating member in
different collaborating scenarios. We leveraged Google’s Mediapipe [80] library to extract
facial landmarks for each of these scenario configurations.

Data Acquisition: Logitech’s C920 Pro HD webcam was used which has a horizontal
field of view (HFOV) of 70.42◦. Mediapipe’s face mesh module could consistently extract
facial landmarks at a max distance of 1.2 m. Hence, the users were positioned at different
distances ranging from 0.3 to 1.2 m and at different angles within the HFOV (see Figure 6).

We defined four states for the participating users:

• Facing the camera, not speaking;
• Facing the camera, speaking;
• Not facing the camera, not speaking;
• Not facing the camera, speaking.

Each dependable frame, from which the system was able to extract facial landmarks,
produced 468 3D landmarks per user that were categorized as either facing or not facing,
and speaking or not speaking. The dataset, denoted as D ∈ RS×U×468×3, contains S
samples and U users in the scene. To ensure consistency across the samples, the data are
mean-shifted and undergoes mean-max scaling.

Sensors 2023, 23, 5798 16 of 43

Figure 6. Positioning of the users.

Data Analysis

The face landmark model [117] detects the face landmarks, each containing 3 values
representing the x, y and an estimated z position in the frame. The x and y coordinates are
normalized screen coordinates, while the z coordinate is scaled as the x coordinate under the
weak perspective projection camera model [118]. Figure 7a illustrates the variance across
the 468 facial landmarks, while Figure 7b demonstrates the different variance intensities
for different facial landmark position. This provides some insight into the information
contained across different channels and landmarks. Channel x has the most variance for
the facial landmarks around the nose and mouth, for channel y around the nose and the
left and right edges of the face and for channel z left and right edges of the face.

(a)

Figure 7. Cont.

Sensors 2023, 23, 5798 17 of 43

(b)

Figure 7. Information contained by the facial landmarks: (a) Variance across the enumerated facial
landmarks; and (b) Variance intensity of the facial landmarks projected onto the face.

The proposed approach is composed of two distinct stages, illustrated in Figure 8. The
first stage involves identifying whether the user is facing the camera, while the second stage
involves determining whether the user is speaking or not. The face landmark model [117]
is employed to extract facial landmarks from the users in the scene, which are subsequently
utilized by two concurrent processes for facing state detection and speaking state estimation.
The output from both processes is then combined to ascertain whether the users in the
scene are UOIs or not, as outlined in Algorithm 2. The proposed framework’s architecture
is described in detail in the following sections.

Figure 8. System overview for resolving UOI.

Sensors 2023, 23, 5798 18 of 43

Algorithm 2: Resolving User of Interest by Estimating Facing and Speaking State

1 UOIDetection (I);
Input :I is the sensor image

S is extracted facial landmarks from the
sequence sensor images
F is the classification of facing state
D is the vector containing decision values for

facing state over n sequence
Output :U f is users’ speaking state

Us is users’ facing state
2 /* L contains facial landmarks for all the detected faces */

3 L ←− Detect faces and extract corresponding
facial features using [80]

4 /* Initialize two zero vectors representing users’ facing (U f) and speaking state

(Us) */

5 U f , Us =~0,~0, where |U f | = |Us| = |L|
6 for i = 1 to |L| do
7 /* Shift the sequence of the facial landmarks to the right for user i */

8 Si
>>←−− Si

9 /* Replace the first element in the sequence Si with the last extracted facial

landmarks for user i */

10 Si[0]←− Li
11 /* Flatten the sequence and reduce the dimension using PCA */

12 x ←− PCA(Flatten(Si))

13 U f
i ←− ClassifyFacingState(x)

14 /* Extract the upper lip landmarks */

15 xul
upper lip landmarks←−−−−−−−−−−− Li

16 /* Extract the lower lip landmarks */

17 xll
lower lip landmarks←−−−−−−−−−−− Lix

18 /* Compute the sum of absolute differences between the lip landmarks */

19 δ←− Σ|xul − xll |
20 /* Shift the sequence of the decision state Di to the right, for user i */

21 Di
>>←−− Di

22 /* Replace the first element in the decision sequence */

23 if δ ≥ θs then
24 Di[0]←− 1
25 else
26 Di[0]←− 0
27 end if
28 /* Compute the confidence by taking the dot product of the decision sequence

for facing state and the weight vector W */

29 if Di ·W ≥ 0.5 then
30 Us

i ←− 1
31 else
32 Us

i ←− 0
33 end if
34 end for
35 return U f , Us

Sensors 2023, 23, 5798 19 of 43

Detecting the Facing State

The system first tries to estimate whether the user is looking towards the robot.
To achieve this, principal component analysis (PCA) is employed on the dataset D to
reduce its dimensions while preserving 95% of the information. The resulting transformed
dataset, Dpca, is divided into training set Dtrain and testing set Dtest at a ratio of 70% to
30%, respectively.

In our study, we trained the data using six widely recognized and publicly available
machine learning algorithms. These algorithms were selected based on their widespread
usage and proven effectiveness across diverse domains. By evaluating the performance
of these algorithms, we aimed to assess their effectiveness and suitability for our specific
research objectives. The following algorithms were included in our training process:

1. Nearest neighbors;
2. Gaussian process;
3. Decision tree;
4. Random forest;
5. AdaBoost;
6. Naive Bayes.

Detecting the Speaker

The facial landmarks on the upper and lower lips were selected to further analyze and
detect the lip motion for active speaker detection. The assumption was that, when a user
speaks, the distance between their upper and lower lips increases. The absolute distance
between the corresponding lip points was calculated and scaled using a min–max scaler.
This distance was then compared to a threshold value, θs, to determine whether the user
was speaking. However, when pronouncing bilabial consonants such as “b” or “p”, the lips
touch, causing the system to detect a non-speaking state. To address this issue, the decision
of 1 for speaking and 0 for not speaking was stored in a decision vector, Ds, of length n. A
normalized weight vector, Ws (as shown in Equation (9)), was then applied to the decision
vector to mitigate these types of noise. Each frame was given more significance than the
previous one, so the decision for the most recent frame was weighted more heavily. We
used a normalized logarithmic growth function for generating this weighted voting scheme.

Ws =
A

∑n
i=1 Ai

(9)

where:

A = 〈y | ∀x ∈ K, y = basex〉; base = 2
K = 〈k | ∀j ∈ {0, 1, 2, .., n− 1}, k = α + j ∗ δ〉
δ = 1−α

n
α = 0.1

In Equation (9), A denotes the weight values which are then normalized by dividing
with the summation of the vector.

The decision vector is multiplied element-wise by the weight vector to compute the
confidence of the decision for that frame and is compared against θd = 0.5, i.e., 50% to
resolve the speaking state.

3.5. Pointing Gesture Recognition

To predict the pointing gestures and general pointing direction, we utilized Alpha-
Pose [119] to extract skeletal joint locations. We made the assumption that the user would
use only one hand at a time for pointing, for simplicity. Pointing gestures were categorized
by Park et al. [43] as either large or small, which we labeled as extended (Figure 9a,b) and
bent (Figure 9c,d) arm gestures. In addition, the relative direction of the forearm with
respect to the body during the pointing gesture was classified into three categories: across
(Figure 9b,d), outward (Figure 9a,c) and straight (Figure 10b).

Sensors 2023, 23, 5798 20 of 43

In order to detect pointing gestures, we utilize the angle θa, as illustrated in Figure 10a,
which represents the angle between the forearm and a vertical line. If this angle is less
than a predetermined threshold value θt, we may infer that a pointing gesture has been
performed. Conversely, if the forearm angle is smaller when compared to the angle formed
when the user is pointing (as shown in Figure 10b), it may be concluded that the user is not
performing a pointing gesture. In the scenario where the user points directly towards the
camera (as depicted in Figure 10c), the forearm angle approaches 0, and to address this,
we measure the ratio of forearm lengths ρa. When a pointing gesture is not detected, the
lengths of the identified forearms should be equivalent (as demonstrated in Figure 10c).
However, if there is a notable disparity between the lengths of the forearms, it may be
inferred that the user is executing a pointing gesture towards the camera (or its proximity)
using the corresponding arm (as shown in Figure 10b). In addition, we determine the
pointing direction d by analyzing the relative positions of the wrist and the elbow of the
pointing arm, which may be used to augment navigational commands.

(a) (b)

(c) (d)

Figure 9. Gesture categories: (a) Extended outward; (b) Extended across; (c) Bent outward; and
(d) Bent across.

Sensors 2023, 23, 5798 21 of 43

(a) (b) (c)

Figure 10. Measures for different pointing states. (a) Generated angle θa; (b) Length of forearms dl , dr

when not pointing; and (c) Straight.

3.5.1. θa Calculation from Wrist and Elbow Location

We only required the locations of certain joints from the extracted skeletal joints,
namely the left elbow, left wrist, right elbow and right wrist. Therefore, our method will
still function properly even if certain body parts are obscured, as long as the joints in the
pointing hand are detected. Let us denote the skeletal joint coordinates of the elbow as
(x1, y1) and the wrist as (x2, y2). We can define the pointing 2D vector centered at the origin
as~a = (x2 − x1, y2 − y1). We will compare this vector with a vertical vector, denoted as
~v = (0, 1). The pointing angle, θa, can be calculated using Equation (10).

θa = cos−1 ~a ·~v
|a||vs.| (10)

In order to determine whether the forearm is performing a pointing gesture, we
compare the angle of the forearm, θa, to a threshold angle, θt. If θa is greater than θt, we
then examine the x coordinates of the wrist and elbow to identify the general direction of
the pointing gesture (left or right, relative to the body). To determine whether the user is
pointing straight ahead, we compare the ratio of the length of the forearm of interest to the
length of the other arm, denoted as ρa, to a predefined ratio, ρt. We used a value of 0.8 for
ρt and a threshold angle of 15◦ for θt.

3.5.2. OOI Estimation from Pointing Gesture

For each detected object, the bounding box can be defined as a list of four 2D line
segments BB = [s1, s2, s3, s4]; si is defined by the following parametric equation:

si = (ai, tbi) =

(
Vi,

{
t(Vi+1 −Vi) if i < 4,
t(V1 −Vi) else

)
(11)

Here, Vi refers to the ith vertex of a quadrangle bounding box (1 ≤ i ≤ 4) with
0 ≤ ti ≤ 1 indicating the position of a point on a segment. When ti = 0, it indicates the
initial point, while ti = 1 represents the final point in the segment. Figure 11 provides
a visual representation of this concept. Moreover, the center of each detected object is
obtained by averaging the four vertices.

Moreover, to estimate the direction of pointing, a 2D line is computed based on the
pixel location of the arm joints, as presented in Equation (12).

lp = ((x1, y1), t(x2 − x1, y2 − y1)) = (ap, tbp) (12)

Here, lp indicates the pointing direction in the image frame, while (x1, y1) and (x2, y2)
correspond to the pixel locations of the elbow and the wrist, respectively. The variable t
represents the position on the line, with −∞ < t < +∞.

Sensors 2023, 23, 5798 22 of 43

Figure 11. Visualization of the parametric equation of a segment.

We can calculate the intersecting point pi for each si by solving for t using Equation (13),
where pi = ai + tibi. Then, we measure the distance from the object center to each intersect-
ing point, and determine the minimum distance δ as the object distance. To compute the
minimum distance δ for each detected object, Algorithm 3 outlines the necessary steps. The
object with the smallest δ is assumed to be the pointed object.

ti = (ap − ai)×
bp

bi × bp
(13)

Algorithm 3: Minimum Distance Computation Given 2D Pointed Vector and
Object Boundary Vertices

1 MinimumObjectDistance (lp, V);
Input : lp is the 2D pointing vector

V is a list of vertices representing
the bounding box

Output : δ least distance from the object center
2 /* C is the center of the object */

3 C = 1
4

4
∑

i=1
Vi

4 δ = null
5 for i = 1 to 4 do
6 si ←− Equation (11)
7 ti ←− Equation (13)
8 pi ← ai + tbi
9 d = ||pi − C||

10 if δ == null or d < δ then
11 δ = d
12 end if
13 end for
14 return δ

3.6. Gaze Estimation

In our work, one of our aims was to estimate gaze based on 2D images. However,
due to the nature of gaze estimation being a 3D problem, we took a unique approach.
Our initial step involved utilizing a general 3D model (mesh) of a human face, assuming
that it would roughly represent the facial proportions of a human face. Subsequently, we
leveraged Google’s mediapipe [80] library to estimate the facial landmarks of users from
the 2D images. This approach is outlined in Algorithm 4.

Sensors 2023, 23, 5798 23 of 43

Algorithm 4: Estimate Gaze Direction from 2D Images

1 GazeEstimation (I, F, C, E, P);
Input : I ∈ H×W is the 2D image

F ∈ R6×3 is a list of 3D points from
a representative human face model

C ∈ R3×3 is the camera matrix
E ∈ R2×3 is the centers of the eyeballs

measured from the human face model
P ∈ R2×2 is the 2D pupil location

Output : Dg ∈ R2×2 estimated 2D gaze direction
Lg contains the two 2D points describing the line (gaze)

2 /* f ∈ R6×2 is the 6 2D points corresponding to F of the users extracted from I */

3 f ←− extracted 6 2D facial landmarks
4 /* R, t are the rotation and translation vectors */

5 R, t←− solvePnP(F, f, C) [120]
6 /* ft ∈ R6×3, is the concatenation of f and a zero vector 0 f ∈ R6×1 */

7 ft ←− [f | 0 f]

8 /* Pt ∈ R2×3, is the concatenation of P and a zero vector 0p ∈ R2×1 */

9 Pt ←− [P | 0p]
10 /* T ∈ R3×4 is the transformation from image point to world point */

11 T ←− estimateTransformation(ft, F)
12 /* Pw ∈ R2×3 is the projected image points P to the world points */

13 PT
w ←− T ·

P
0
1


14 /* G ∈ R2×3 is the estimated gaze point in the 3D space; d is an arbitrary gaze

distance */

15 G ←− E + (Pw − E) ∗ d
16 /* g ∈ R2×2 is the projected G on the image plane */

17 g←− projectPoint(G, R, t, C)
18 /* pi ∈ R2×2 is the projected Pw on the image plane */

19 pi ←− projectPoint(Pw, R, t, C)
20 /* Correct the gaze point by compensating for the head movement */

21 g←− P + (g− P)− (pi − P)
22 /* Form Dg */

23 Dg ←− [P, g]
24 return Dg

We chose the tip of the nose as the origin for our coordinate system and identified five
other facial landmarks relative to it: the chin, the left corner of the left eye, the right corner
of the right eye, the left mouth corner and the right mouth corner. We denote this set of
points as po ∈ R6×3. We obtained six 2D points pi ∈ R6×2 from the mediapipe [80], and the
corresponding estimated 3D points in world coordinates as pe ∈ R6×3. Using the pinhole
camera model, we computed the 3D to 2D and 2D to 3D transformations.

The pinhole camera model is a mathematical model (Equation (14)) that describes the
relationship between points in the 3D world and their projection to the 2D image plane.
Using this equation, we can obtain a transformation to project a 3D point into the 2D
image plane.

The distortion-free projective transformation given by a pinhole camera model is
shown below.

sp = A[R|t]Pw (14)

Sensors 2023, 23, 5798 24 of 43

where Pw = [Xw Yw Zw]T is a 3D point expressed with respect to the world coordinate
system, p = [uvs.1]T is a 2D pixel in the image plane, A is the camera intrinsic matrix, R
and t are the rotation and translation that describe the change in coordinates from world
to camera coordinate systems (or camera frame) and s is the projective transformation’s
arbitrary scaling and not part of the camera model.

The rotation (R) and translation (t) vectors are computed from the 6 2D image points
selected from the extracted estimated facial landmarks (Figure 12) and the corresponding
predefined 3D model points; the selected 6 2D points are circled in red in Figure 12. The
open source implementation of the [120] is used to calculate the transformation matrix
which is applied to project the 3D world points onto the 2D image plane; this provides
us with some indication/notion of where the estimated gaze direction points to in the
3D space.

Figure 12. Selected facial landmarks.

Next, we start by taking the 2D image coordinates (x, y) of the pupil and converting
them into 3D model coordinates by appending a 0 to create the tuple (x, y, 0). We apply an
affine transformation to this tuple using a transformation matrix to project it into 3D space.
Next, we utilize the obtained 3D model points of the pupils and the predefined eye center
points to determine the gaze direction. To find the intersection point of the gaze with the
image plane, we utilize Equation (15) and solve for s.

s = c + (p− c)t (15)

where:

s ∈ R1×3 is the intersection point of the gaze and the image plane
p ∈ R1×3 is the predefined pupil location
c ∈ R1×3 is the predefined eye center location
t ∈ R1 is the distance between the subject and the camera

It is important to take into account the rotation of the head to ensure that our method
for estimating gaze is not affected by any movement of the head. To achieve this, we
rely on the estimated initial position of the head to calculate the corrected gaze direction
using Equation (16).

g = lp + (gi − lp)− (hp − lp) (16)

where:

g ∈ R1×2 is the corrected gaze point on the image plane;
lp ∈ R1×2 is the estimated location of the left pupil on the image plane;
gi ∈ R1×2 is the projected gaze point on the 2D plane;
hp ∈ R1×2 is the projected head pose on the image plane.

Sensors 2023, 23, 5798 25 of 43

In order to address unexpected variations or incorrect estimations, a weighted voting
mechanism is employed across n frames to mitigate the impact of inaccurate estimations.
This involves applying a normalized weight vector Ws to the estimated gaze direction over n
vectors (estimated gaze direction). As each subsequent frame holds more significance than
the preceding one, the estimation from the most recent frame carries greater weight than
earlier ones. To generate this weighted voting scheme, we used a normalized logarithmic
growth function, as shown in Equation (17).

Ws =
A

∑n
i=1 Ai

(17)

where:

A = 〈y | ∀x ∈ K, y = basex〉; base = 2
K = 〈k | ∀j ∈ {0, 1, 2, .., n− 1}, k = α + j ∗ δ〉
δ = 1−α

n
α = 0.1

In Equation (17), A denotes the weight values which are then normalized by dividing
with the summation of the vector.

4. Results and Discussion

In the upcoming subsections, we will review the experiments and discuss the outcomes
for each individual module.

4.1. Object Detection and Pose Estimation

We evaluated the proposed algorithm by comparing the accuracy of object recognition,
pose estimation and execution time of four different feature descriptors.

In order to achieve accurate homography estimation, it is necessary for the system to
have sufficient observable features. Otherwise, good matches may not be found, resulting
in failure. As a result, our object detection and pose estimation method place a constraint
on the out-of-plane rotation θ, as depicted in Figure 13. Specifically, if the object’s out-of-
plane rotation exceeds θ, it cannot be recognized by the system. In addition, for real-time
applications, fast execution is crucial to enable multiple object detection and pose estimation.
We tested four different descriptors on various planar objects, and the comparative results
are presented in Table 1. The execution time was measured for the object detection and
pose estimation step. AKAZE and BRISK had shorter processing times for detection and
pose estimation, which would result in a higher frame rate. However, SIFT and SURF
offered greater out-of-plane rotational freedom.

Table 1. Comparison of feature descriptors.

Descriptor Maximum out of Plane Rotation (degree) Execution Time (s)

SIFT 48◦ ± 2◦ 0.21 s

SURF 37◦ ± 2◦ 0.27 s

AKAZE 18◦ ± 1◦ 0.05 s

BRISK 22◦ ± 2◦ 0.06 s

To evaluate the accuracy of homography estimation for planar objects under increasing
out-of-plane rotations, we compared the difference in RMS (ε, as shown in Equation (18))
between the re-calculated ~x and the original ~x (denoted as ~x

′
in the equation). If the

homography estimation is accurate and assuming that the depth information is reliable,
then the original and recalculated ~x should be (almost) same. Thus, the ε gives us an
indication of how much the estimations are off.

Sensors 2023, 23, 5798 26 of 43

In order to estimate the out-of-plane rotation, our approach involved several steps.
Firstly, we positioned the object on an angular scale Figure 13 and centered it within the
image frame. This alignment was achieved by matching the corner distance between the
object and the image frame, and ensuring that the object’s center coincided with the center
of the image frame. Then, we rotated the object, and the horizontal out-of-plane angular
rotation was measured by referencing the angular scale. The same thing was performed for
the vertical out-of-plane rotation by rotating the camera by 90◦.

Figure 13. Out of plane rotation.

The two estimated vectors ~x and ~y, which represent the basis of the plane of the
planar object, are ideally orthogonal to each other, but this is rarely the case in practical
settings. The values of ε presented in Figure 14 provide an average measure of the error
in homography estimation for different out-of-plane rotations. As depicted in Figure 14,
AKAZE produced significantly higher ε values compared to the other methods, indicating a
larger error in homography estimation. On the other hand, the remaining methods showed
comparable ε values within a close range.

Figure 14. Out of plane rotation vs. ε.

Sensors 2023, 23, 5798 27 of 43

To evaluate how the execution time for object detection scales up with an increasing
number of objects, we opted to use SIFT and SURF. Table 2 displays the mean processing
time for object detection, indicating that, in all cases, SURF took approximately 50% longer
than SIFT for detection. Based on this finding and previous results, we selected SIFT for
subsequent experiments.

The system demonstrated the ability to detect multiple objects in real-time while
simultaneously estimating their corresponding poses. Figure 15 depicts the detected objects
with their estimated directional planar vectors. The system also exhibited robustness to
in-plane rotation and partial occlusion.

Table 2. Execution time of SIFT and SURF for multiple object detection.

Number of Objects
Detection Time (s)

SIFT SURF

1 0.06 s 0.09 s

2 0.11 s 0.17 s

3 0.17 s 0.26 s

4 0.22 s 0.35 s

5 0.28 s 0.45 s

6 0.34 s 0.54 s

Figure 15. Multiple object detection with estimated planar vectors.

To validate the accuracy of the pose estimation, we utilized RViz, a 3D visualizer
designed for the robot operating system (ROS). The directional axes computed were pro-
jected onto the image and the resulting poses were then displayed in RViz. As depicted
in Figure 16, we compared the two outputs to qualitatively verify the detection and pose
estimation accuracy, which rendered similar results. We extended our experiments to
multiple objects, including those held by humans. Figure 17 showcases the concurrent
detection and pose estimation of two different boxes and an object grasped by a person.

ε =
1
N

N

∑
i=1
||~xi

′
− ~xi||, where N is the number of frames (18)

Sensors 2023, 23, 5798 28 of 43

(a) (b) (c)

(d) (e) (f)

Figure 16. (a–c) are recovered poses from the robot’s camera and (d–f) are corresponding poses
visualized in RViz.

(a) (b)

Figure 17. Pose estimation performance: (a) Pose estimation of multiple objects; and (b) Estimated
pose of an object held by a human.

4.2. Information Extraction from Verbal Commands

The system receives verbal command and extracts up to five pieces of distinct task
information. These parameters are stored so that each task can be executed sequentially.
Figure 18 tabulates the received verbal command converted to text and the corresponding
extracted task parameters; if no matches are found, the corresponding parameters are set to
None. Each command initiates a task and is stored according to the order of task initiation
(Figure 19). Additionally, Figure 20 shows the performances of different models. Figure 20a
depicts the training loss of each model, Figure 20b shows the combined accuracy and
Figure 20c shows the task accuracy for OOI prediction. Table 3 organizes the total number
of parameters for the trained models. We can see that, although bidirectional LSTM has
more parameters, it has the highest accuracy and converges sooner compared to other
models; henceforth, we chose Bi-LSTM as the model for extracting task parameters.

Sensors 2023, 23, 5798 29 of 43

Verbal command: “give me the plate”

Object: plate | Action: give | Attributes: none | Position: none

Verbal command: “bring me that red cup”

Object: cup | Action: bring | Attributes: [red] | Position: none

Verbal command: “go left”

Object: none | Action: go | Attributes: none | Position: left

Verbal command: “grab the large green box on your right”

Object: box | Action: grab | Attributes: [green, large] | Position: right

Verbal command: “put the jar on the table”

Object: jar | Action: put | Attributes: none | Position: none

Figure 18. Extracted task parameters from different verbal commands.

+====+========+========+================+==========+
| NO | Object | Action | Attributes | Position |
+====+========+========+================+==========+
| 1 | plate | give | None | None |
+====+========+========+================+==========+
| 2 | cup | bring | [red] | None |
+====+========+========+================+==========+
| 3 | None | go | None | left |
+====+========+========+================+==========+
| 4 | box | grab | [green, large] | right |
+====+========+========+================+==========+
| 5 | jar | put | None | None |
+====+========+========+================+==========+

Figure 19. Stored sequential task parameters.

Table 3. Number of model parameters.

Model Total Parameters

GRU 41,371

GRU_Bi 59,963

RNN 32,795

RNN_Bi 42,811

LSTM 45,659

LSTM_Bi 68,539

Sensors 2023, 23, 5798 30 of 43

(a) (b)

(c)

Figure 20. Performance of different models: (a) Total loss across epochs; (b) Combined accuracy of all the
5 extracted task parameters across epochs; and (c) Accuracy for parameter “Item (OOI)” across epochs.

4.3. User(s) of Interest Estimation

We conducted a thorough evaluation of our proposed algorithm by assessing its accu-
racy in recognizing the user of interest (UOI) and detecting speaking states. Additionally,
we tested the effectiveness of our approach for active speaker detection by conducting
experiments in real-world scenarios.

To conduct these experiments, we instructed participants to interact with each other or
with a robot according to predefined instructions. The scenes were designed to include one
or two users, and additional users could be added for a wider field of view. For example, in
one scenario, participants were instructed to talk to each other, allowing us to confirm that
they were speaking but not facing the robot. Similarly, when a participant faced the robot,
we assumed that they were the UOI and instructing the robot. We used this information as
the ground truth for quantitative evaluation.

Given that our work relies on several modules, we decoupled them to evaluate each
module’s performance. These modules include facing and speaking state detection to pre-
dict the UOI. Finally, we demonstrated the effectiveness of our framework by showcasing
the final results in various interaction scenarios.

4.3.1. Facing State Estimation

We utilized six classifiers to train the data with each sample in the dataset created by
concatenating n frames. Afterwards, we applied PCA to reduce dimensionality. Table 4
presents a summary of the different classifiers along with their corresponding accuracy and
execution time. Among them, the Gaussian process demonstrated the highest accuracy,
while the second and third best performers were nearest neighbors and AdaBoost, respec-
tively. Although the Gaussian process was comparatively slower in terms of execution
time, taking 0.064 ms, it was still fast enough for real-time execution.

Sensors 2023, 23, 5798 31 of 43

Table 4. Performance of Different Classifiers.

Classifier Accuracy (%) Execution Time (ms)

Nearest neighbors 93.88 0.012904

Gaussian processi 98.70 0.064134

Decision tree 84.73 0.000025

Random forest 82.29 0.000111

AdaBoost 91.69 0.002113

Naive Bayes 70.82 0.000272

4.3.2. Speaking State Estimation

To determine the average accuracies of estimating speaking state for different sequence
lengths and θs values, a series of experiments were conducted. Each frame in the sequence
was evaluated for the speaking state and then multiplied by a weight vector to filter out
any noisy decisions. This weight vector is described in the detecting the speaker section.
The accuracy results, presented in Figure 21a, clearly demonstrate a positive correlation
between accuracy and sequence length, indicating that accuracy increases as the sequence
length increases.

As for θs, the accuracy increased up to θs = 0.0093 and then decreased significantly (as
shown in Figure 21b). Based on our findings, a θs value of around 0.009 is a good threshold
for determining the speaking state.

(a) (b)

Figure 21. Speaking state estimation performance: (a) Accuracy across different sequence lengths;
and (b) Accuracy across different.

4.3.3. Final Experiment

We conducted experiments involving multi-party interactions, where two users en-
gaged in verbal communication with each other and a robot (represented by a camera). The
scenario illustrated in Figure 22 represents a collaborative setting where humans engage
in interactions with both objects and a robot. In this particular context, the users have the
ability to communicate with one another and the robot through the exchange of instructions.
In this depiction, we have a Baxter [121] robot—a humanoid industrial robot equipped
with sensors on its head. These sensors enable Baxter to detect the presence of people in its
vicinity and provide it with the capability to adjust to its surroundings. The robot plays an
active role within this collaborative environment, receiving instructions from the users and
executing the corresponding actions to assist in accomplishing the task.

Sensors 2023, 23, 5798 32 of 43

Figure 22. A collaborative multi-party HRI setting.

Due to the nature of the collaborative work environment, the humans and the robot are
situated in close proximity to one another, ideally within 1.5–4 m. This proximity facilitates
efficient communication and interaction, enabling a seamless collaboration. During these
experiments, the users faced the addressee while speaking. Three scenarios are depicted
in Figure 23. In Figure 23a, both users faced the robot, while the user on the right spoke,
indicating that they were addressing the robot and therefore the UOI. In Figure 23b, the
user on the right faced the robot and spoke, making them the UOI in this example. In the
final example (Figure 23c), both users faced each other and spoke, so there were no UOIs
in this scenario. These examples demonstrate the reliable performance of our proposed
method in identifying UOIs in multi-party interactive scenarios.

(a) (b)

(c)

Figure 23. Result for different interacting scenarios: (a) Both user facing the robot; (b) One of the
users facing the robot; and (c) Both the users facing each other.

Sensors 2023, 23, 5798 33 of 43

4.4. Pointing Gesture Estimation

We conducted experiments in which participants performed a specific pointing gesture
in a predefined scenario. The scene consisted of three objects: two books and a Cheez-It box,
and the participant could only point to one object at a time. For example, in one scenario,
the participant was instructed to extend their right hand and point at the leftmost object,
indicating a pointing gesture using their right hand, pointing to the left and targeting the
object on the right from their perspective. This information served as the ground truth for
quantitative evaluation. The participants were positioned in the center of the image frame
and directed to point to different areas of the scene. The pointing direction was classified
as “away”, “across” or “straight” for the hand used to point and “not pointing” for the
other hand. These experiments were performed with the participant standing at distances
of 1.22, 2.44, 3.66 and 4.88 m from the camera.

We evaluated the accuracy, precision and recall of each reliable frame by comparing
the prediction to the label. Suppose that a sample frame is labeled “Right hand: pointing;
Left hand: not pointing”; in that case, if the prediction is “Right hand: pointing”, we
classify the sample as true positive. If the prediction is incorrect and does not detect the
pointing right hand, we classify it as false negative. Similarly, if the prediction is “Left
hand: pointing”, we classify it as false positive, and if it is incorrect and does not detect the
non-pointing left hand, we classify it as true negative.

Table 5 presents the accuracy, precision and recall scores for varying distances.
Figure 24 provides a visual representation of the system output for different pointing scenarios.

(a) (b)

(c) (d)

Figure 24. System output with different pointing scenarios: (a) Pointing across with left hand;
(b) Pointing away with right hand; (c) No pointing; and (d) Pointing across with right hand.

In our experiment, we placed multiple objects with predefined attributes on a table, as
shown in Figure 25. The participants were asked to point to a specific object while providing
a natural language instruction. Using this information, the system determined the task

Sensors 2023, 23, 5798 34 of 43

parameters and provided a follow-up response to address any uncertainties. Figure 26
illustrates two example scenarios, and Table 6 displays the task parameters extracted from
each scenario configuration. The “Structured Information” column shows the information
extracted from both the pointing state and verbal command. The first column indicates
whether the user pointed or not, the second column lists the experiment corresponding
to the pointing state and the third column presents different verbal commands with the
task action “bring”. The fourth column displays the extracted information from the verbal
commands and simultaneous pointing state, while the fifth column lists the predicted
object of interest (OOI) requiring the action. The sixth column provides the system’s
corresponding response. Ambiguity is indicated by light blue cells.

Figure 25. Object attributes.

Ambiguity arises when the intended object of interest (OOI) cannot be inferred from
the verbal command and accompanying pointing gesture provided to the system. In such
cases, the system is unable to identify the desired object and issues feedback requesting
more information, such as “Need additional information to identify object”. Consequently,
the system awaits further input from the user, either in the form of a refined command or
a clearer pointing gesture. Once these inputs are provided, the system repeats the entire
identification process.

Table 6 indicates that, in the “Not Pointing” state, ambiguity arises when there is
insufficient object attribute(s) (Exp 1, 3) to uniquely identify the OOI, leading the system to
request additional information. In contrast, in the “Pointing” state, ambiguity arises when
the pointing direction fails to intersect with any of the object boundaries. Verbal commands
can resolve this type of ambiguity by providing additional information. Ambiguity can
also occur if the identified objects from the extracted identifiers and the pointing gesture
are different. However, the system gives priority to the object inferred from the pointing
gesture since the speech-to-text module may sometimes miss transcription.

(a)

Figure 26. Cont.

Sensors 2023, 23, 5798 35 of 43

(b)

Figure 26. Example scenarios where the user points to different objects while voicing the command “give
me that”: (a) Pointing to the object labeled “book-1”; and (b) Pointing to the object labeled “cheez-it”.

Table 5. Pointing gesture recognition.

Distance Accuracy Precision Recall
4.88 1 1 1
3.66 0.995 1 0.99
2.44 0.995 1 0.99
1.22 0.995 1 0.99

Table 6. Generated task parameters.

Pointing State Exp# Verbal Command Structured Information Identified Object Feedback

1 bring that, bring me that
{action: “bring”, pointing_identifier: True, object: “book”,

object_identifiers: {attributes: null, position: null}}
“book-1” None

2 bring the red book
{action: “bring”, pointing_identifier: True, object: “book”,

object_identifiers: {attributes: “red”, position: }}
“book-2” NonePointing

3 bring that red thing
{action: “bring”, pointing_identifier: True,

object: null, object_identifiers: {attributes: “red”, position: }}
“cheez-it” None

1 bring that, bring me that
{action: “bring”, pointing_identifier: False,

object: null, object_identifiers: {attributes: null, position: null}}
None (ambiguous)

"Need additional information

to identify object"

2 bring the red book
{action: “bring”, pointing_identifier: False,

object: “book”, object_identifiers: {attributes: “red”, position: null}}
“book-2” NoneNot pointing

3 bring that red thing
{action: “bring”, pointing_identifier: False,

object: null, object_identifiers: {attributes: “red”, position: “right”}}
None (ambiguous)

”Need additional information

to identify object”

4.5. Gaze Estimation

We instructed the participants to either look at specific objects within a predetermined
setting or give verbal instructions. The environment included four objects, and for instance,
in one of the scenarios, the user was directed to look at the leftmost object. Hence, for this
specific data sample, we can confirm that the user gazed at the leftmost object (rightmost
from the user’s perspective). We regarded this information as the ground truth to evaluate
our approach. The gaze estimation system’s final output is shown in Figure 27, where the
estimated gaze direction is depicted by green arrows, and the estimated objects of interest
(OOI) are represented by bounding boxes. If the gaze distances from multiple objects
are less than the threshold distance θd, the object with the shortest distance is enclosed

Sensors 2023, 23, 5798 36 of 43

in a green box, while all other objects are enclosed in blue boxes (Figure 27a,b). This
visualization provides insight into the performance of the gaze estimation module.

At the same time, the system is capable of receiving verbal commands and extracting
up to five distinct task-related pieces of information. These parameters are then stored
in sequence so that each task can be carried out in order. Figure 18 presents the verbal
commands that were received and converted into text, along with the corresponding task
parameters that were extracted. If no matches were found, the corresponding parameters
were set to None. Each command triggered a task and was stored based on the order in
which it was initiated. Furthermore, Figure 20 displays the performance of various models.
Figure 18a illustrates the training loss of each model, Figure 18b depicts the combined
accuracy, and Figure 18c shows the task accuracy for OOI prediction. Table 3 tabulates the
total number of parameters for the trained models. It can be observed that, although the
bidirectional LSTM has more parameters, it has the highest accuracy and converges more
quickly than the other models. As a result, we selected Bi-LSTM as the model for extracting
task parameters.

We conducted experiments involving multiple objects placed on a table, each with
predefined attributes, while instructing participants to focus on a particular object. Using
this information and natural language instructions, the system created task parameters
and provided follow-up responses in case of any ambiguities. Table 7 displays sample
scenario configurations and the extracted task parameters with the “Structured Informa-
tion” column, showing information from the pointing state and verbal command. The
first column indicates whether the user was looking at an object or not, the second column
lists experiments for corresponding pointing states and the third column presents different
verbal commands with various task actions. The fourth column shows the extracted infor-
mation from verbal commands and simultaneous pointing states. Table 8 includes columns
containing the identified objects from the corresponding verbal and gaze information, and
the final column presents the system’s corresponding response. Yellow cells represent
ambiguity or lack of information.

Ambiguity arises when the object of interest (OOI) cannot be accurately inferred from
the provided verbal command and gaze cues. In such cases, the system is unable to identify
the OOI and, as a result, generates the feedback message "Need additional information to
identify object." Thereafter, the system waits for the user to redirect their gaze towards the
object and/or modify the command. Once these inputs are received, the system reinitiates
the process.

Table 7. Extracted Task Parameters from Verbal Command.

Gazing State Exp# Verbal Command Structured Information

Looking at an object

1 bring me that action: bring, object: none, identifier: none, location: none

2 could you give me that blue thing action: give, object: none, identifier: red, location: none

3 give me that small box action: give, object: box, identifier: small, location: none

4 put the blue box on the table action: give, object: box, identifier: blue, location:Table

Not looking at any object

1 bring me that action: bring, object: none, identifier: none, location: none

2 could you give me that blue thing action: give, object: none, identifier: red, location: none

3 give me that small box action: give, object: box, identifier: small, location: none

4 put the blue box on the table action: give, object: box, identifier: blue, location: table

Sensors 2023, 23, 5798 37 of 43

Table 8. OOI Estimation and Feedback.

Gazing State Exp# Identified Object from Verbal Info Object Detected from Gazing Info Feedback

1 None (not enough info) Object 3 (Pasta Roni) None

2 None (ambiguous) Object 2 (Book) None

3 Object 3 (tea box) Object 3 (tea box), object 2 (book) None
Looking at an object

4 Object 3 (Pasta Roni) Object 3 (Pasta Roni) None

1 None (not enough info) None (ambiguous)
“Need additional information

to identify object”

2 None (ambiguous) None (ambiguous)
“Need additional information

to identify object”
3 Object 3 (tea box) None None

Not looking at any object

4 Object 3 (Pasta Roni) None None

(c) (d)

(e)

Figure 27. Estimated gaze projected onto the image plane; (a) User is looking to their left; (b) User is
looking straight ahead; and (c) User is looking to their right.

5. Conclusions

This paper proposes a multi-modal framework that integrates several modules crucial
for an effective human–robot collaborative interaction. The framework encompasses vari-
ous components such as obtaining the location and pose information of objects in the scene,
detecting UOIs and extracting intricate task information from verbal communications.
Additionally, the proposed framework incorporates sensor fusion techniques that com-
bine pointing gestures and gaze to facilitate natural and intuitive interactions, providing
supplementary or disambiguated task information that might be unclear or missing. The
integration of multi-modal and sensor fusion techniques enhances the framework’s ability
to facilitate human–robot interaction in complex and dynamic environments, enabling
seamless collaboration and achieving desired outcomes.

Sensors 2023, 23, 5798 38 of 43

To identify the objects present in the scene, we employed a feature-detector-descriptor
approach for detection and a homography-based technique for pose estimation. Our
approach uses depth information to estimate the pose of the object in a 2D planar repre-
sentation in 3D space. SIFT was found to be the best feature-detector-descriptor for object
recognition, and RANSAC was employed to estimate the homography. The system could
detect multiple objects and estimate their pose in real-time.

Verbal communication serves as a means to extract detailed information pertaining
to a given task, such as commands for actions and descriptions of objects. This process
is complemented by the recognition of pointing gestures, whereby the general direction
towards a pointed object is estimated in order to facilitate a natural interaction interface
for the user. The resulting information is organized into specific categories, known as
parameters, which can be analyzed and used to generate a structured command that can be
easily interpreted by a robot.

Next, we presented a technique for the real-time detection of the user of interest
(UOI) in multi-party verbal interactions in a collaborative human–robot interaction (HRI)
setting. The approach involves estimating whether the user is facing the robot (or camera)
and determining the active speaker(s) using a dataset of facial landmarks extracted from
participants interacting in predefined settings. Machine learning algorithms were trained to
determine the best model for estimating the facing state, with Gaussian process having the
highest accuracy. The distance between the landmarks on the lips was used to determine
the active speaker. The framework was evaluated in multi-party interaction scenarios, and
the results demonstrated the effectiveness of the approach in determining the UOIs.

We introduced an approach for recognizing pointing gestures in a 2D image frame,
which can detect the gesture and estimate both the direction of the pointing and the object
being pointed to in the scene.

To infer the gaze direction, the gaze estimation module matches a set of extracted
estimated 3D facial landmarks of the user from 2D images to predefined 3D facial points.

The gesture detection and gaze estimation modules are then combined with the verbal
instruction component of the framework and experiments are conducted to assess the
performance of these interaction interfaces.

We also explored task configuration formation by presenting various natural language
instructions, interaction states and the recorded task parameters in a table. Additionally, the
information is compiled into named parameters and analyzed to create a structured command
for robotic entities. If any parameter is missing or unclear, the system provides feedback.

The system can be further improved by extracting particular information and patterns
from the user dialogues; this would help in determining UOI even when the user is not
facing the robot. Additionally, incorporating reliable 3D information would improve
precision and eliminate ambiguity. Furthermore, investigating more complex interaction
scenarios with multiple users and intricate dialogues could lead to the development of
more meaningful HRI systems.

Author Contributions: Conceptualization, S.K.P., M.N. (Mircea Nicolescu); methodology, S.K.P., M.N.
(Mircea Nicolescu) and M.N. (Monica Nicolescu); formal analysis, S.K.P., M.N. (Mircea Nicolescu) and
M.N. (Monica Nicolescu); data curation, S.K.P.; writing—original draft preparation, S.K.P.; writing—
review and editing, S.K.P., M.N. (Mircea Nicolescu) and M.N. (Monica Nicolescu); visualization,
S.K.P.; supervision, M.N. (Mircea Nicolescu) and M.N. (Monica Nicolescu). All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 5798 39 of 43

Abbreviations
The following abbreviations are used in this manuscript:

UOI User(s) of interest
OOI Object(s) of interest

References
1. Admoni, H.; Scassellati, B. Social eye gaze in human–robot interaction: A review. J. Hum.-Robot. Interact. 2017, 6, 25–63.
2. Yang, H.D.; Park, A.Y.; Lee, S.W. Gesture spotting and recognition for human–robot interaction. IEEE Trans. Robot. 2007,

23, 256–270.
3. Goffman, E. Forms of Talk; University of Pennsylvania Press: Philadelphia, PA, USA, 1981.
4. Goffman, E. Frame Analysis: An Essay on the Organization of Experience; Harvard University Press: Cambridge, MA, USA, 1974.
5. Harris, C.G.; Stephens, M. A combined corner and edge detector. Alvey Vis. Conf. 1988, 15, 10–5244.
6. Tomasi, C.; Kanade, T. Detection and tracking of point features. Int. J. Comput. Vis. 1991, 9, 137–154.
7. Shi, J.; Tomasi. Good features to track. In Proceedings of the 1994 IEEE Conference on Computer Vision and Pattern Recognition,

Seattle, WA, USA, 21–23 June 1994; pp. 593–600.
8. Hall, D.; Leibe, B.; Schiele, B. Saliency of Interest Points under Scale Changes. BMVC 2002, 2, 646–655.
9. Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. 1998, 30, 79–116.
10. Mikolajczyk, K.; Schmid, C. Indexing based on scale invariant interest points. In Proceedings of the Eighth IEEE International

Conference on Computer Vision, ICCV 2001, Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 525–531.
11. Ke, Y.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. In Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, Washington, DC, USA, 27 June–2
July 2004; Volume 2, pp. II–II .

12. Lodha, S.K.; Xiao, Y. GSIFT: Geometric scale invariant feature transform for terrain data. Vis. Geom. XIV 2006, 6066, 169–179.
13. Abdel-Hakim, A.E.; Farag, A.A. CSIFT: A SIFT descriptor with color invariant characteristics. In Proceedings of the 2006 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
Volume 2, pp. 1978–1983.

14. Morel, J.M.; Yu, G. ASIFT: A new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2009, 2, 438–469.
15. Alcantarilla, P.F.; Bergasa, L.M.; Davison, A.J. Gauge-SURF descriptors. Image Vis. Comput. 2013, 31, 103–116.
16. Kang, T.K.; Choi, I.H.; Lim, M.T. MDGHM-SURF: A robust local image descriptor based on modified discrete Gaussian–Hermite

moment. Pattern Recognit. 2015, 48, 670–684.
17. Fu, J.; Jing, X.; Sun, S.; Lu, Y.; Wang, Y. C-surf: Colored speeded up robust features. In Trustworthy Computing and Services,

Proceedings of the International Conference, ISCTCS 2012, Beijing, China, 28 May–2 June 2012; Springer: Berlin/Heidelberg, Germany,
2012; pp. 203–210.

18. Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Computer Vision—ECCV 2006, Proceedings
of the 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 430–443.

19. Mair, E.; Hager, G.D.; Burschka, D.; Suppa, M.; Hirzinger, G. Adaptive and generic corner detection based on the accelerated
segment test. In Computer Vision—ECCV 2010, Proceedings of the 11th European Conference on Computer Vision, Heraklion, Crete,
Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–196.

20. Calonder, M.; Lepetit, V.; Ozuysal, M.; Trzcinski, T.; Strecha, C.; Fua, P. BRIEF: Computing a local binary descriptor very fast.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1281–1298. [PubMed]

21. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. . [CrossRef]

22. Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary robust invariant scalable keypoints. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555.

23. Ortiz, R. FREAK: Fast Retina Keypoint. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Providence, RI, USA, 16–21 June 2012; pp. 510–517.

24. Weickert, J.; Grewenig, S.; Schroers, C.; Bruhn, A. Cyclic schemes for PDE-based image analysis. Int. J. Comput. Vis. 2016,
118, 275–299.

25. Grewenig, S.; Weickert, J.; Bruhn, A. From box filtering to fast explicit diffusion. In DAGM-Symposium; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 533–542.

26. Andersson, O.; Reyna Marquez, S. A comparison of object detection algorithms using unmanipulated testing images: Comparing
SIFT, KAZE, AKAZE and ORB. 2016 .

27. Karami, E.; Prasad, S.; Shehata, M. Image matching using SIFT, SURF, BRIEF and ORB: Performance comparison for distorted
images. In Proceedings of the 24th Annual Newfoundland Electrical and Computer Engineering Conference, NECEC, Halifax,
NS, Canada, 3–6 May 2015 .

28. Tareen, S.A.K.; Saleem, Z. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In Proceedings of the 2018 International
Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–10.

http://www.ncbi.nlm.nih.gov/pubmed/22084141
http://doi.org/10.1109/ICCV.2011.6126544

Sensors 2023, 23, 5798 40 of 43

29. Simon, G.; Berger, M. Pose estimation for planar structures. IEEE Comput. Graph. Appl. 2002, 22, 46–53. . MCG.2002.1046628.
[CrossRef]

30. Xu, C.; Kuipers, B.; Murarka, A. 3D pose estimation for planes. In Proceedings of the 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 27 September–4 October 2009; pp. 673–680. [CrossRef]

31. Donoser, M.; Kontschieder, P.; Bischof, H. Robust planar target tracking and pose estimation from a single concavity. In
Proceedings of the 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October
2011; pp. 9–15. [CrossRef]

32. Nistér, D.; Stewénius, H. Linear Time Maximally Stable Extremal Regions. In Computer Vision—ECCV 2008, Proceedings of the 10th
European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Forsyth, D., Torr, P., Zisserman, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 183–196.

33. Quam, D.L. Gesture Recognition With a Dataglove. In Proceedings of the IEEE Conference on Aerospace and Electronics, Dayton,
OH, USA, 21–25 May 1990; pp. 755–760.

34. Iba, S.; Weghe, J.M.V.; Paredis, C.J.; Khosla, P.K. An Architecture for Gesture-Based Control of Mobile Robots. In Proceedings
of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots
With High Intelligence and Emotional Quotients (Cat. No. 99CH36289), Kyongju, South Korea, 17–21 October 1999; Volume 2,
pp. 851–857.

35. Kahn, R.E.; Swain, M.J. Understanding People Pointing: The Perseus System. In Proceedings of the International Symposium on
Computer Vision-Iscv, Coral Gables, FL, USA, 21–23 November 1995; pp. 569–574.

36. Kahn, R.E.; Swain, M.J.; Prokopowicz, P.N.; Firby, R.J. Gesture Recognition Using the Perseus Architecture. In Proceedings of the
CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 18–20 June
1996; pp. 734–741.

37. Wren, C.R.; Azarbayejani, A.; Darrell, T.; Pentland, A.P. Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. Pattern
Anal. Mach. Intell. 1997, 19, 780–785.

38. Watanabe, H.; Hongo, H.; Yasumoto, M.; Yamamoto, K. Detection and Estimation of Omni-Directional Pointing Gestures Using
Multiple Cameras. In Proceedings of the Mva, Toktyo, Japan, 28–30 November 2000 ; pp. 345–348.

39. Kehl, R.; Van Gool, L. Real-Time Pointing Gesture Recognition for an Immersive Environment. In Proceedings of the Sixth IEEE
International Conference on Automatic Face and Gesture Recognition, Seoul, South Korea, 19 May 2004; pp. 577–582.

40. Droeschel, D.; Stückler, J.; Behnke, S. Learning to Interpret Pointing Gestures With a Time-of-Flight Camera. In Proceedings of
the 6th International Conference on Human-Robot Interaction, Lausanne, Switzerland, 8–11 March 2011; pp. 481–488.

41. Wilson, A.D.; Bobick, A.F. Parametric Hidden Markov Models for Gesture Recognition. IEEE Trans. Pattern Anal. Mach. Intell.
1999, 21, 884–900.

42. Nickel, K.; Stiefelhagen, R. Pointing Gesture Recognition Based on 3d-Tracking of Face, Hands and Head Orientation. In
Proceedings of the 5th International Conference on Multimodal Interfaces, Vancouver, BC, Canada, 5–7 November 2003;
pp. 140–146.

43. Park, C.B.; Lee, S.W. Real-Time 3D Pointing Gesture Recognition for Mobile Robots With Cascade HMM and Particle Filter. Image
Vis. Comput. 2011, 29, 51–63.

44. Rautaray, S.S.; Agrawal, A. Vision Based Hand Gesture Recognition for Human Computer Interaction: A Survey. Artif. Intell.
Rev. 2015, 43, 1–54.

45. Kollar, T.; Tellex, S.; Roy, D.; Roy, N. Toward Understanding Natural Language Directions. In Proceedings of the 2010 5th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, Japan, 2–5 March 2010; pp. 259–266.

46. MacMahon, M.; Stankiewicz, B.; Kuipers, B. Walk the Talk: Connecting Language, Knowledge, and Action in Route Instructions.
Def 2006, 2, 4.

47. Matuszek, C.; Fox, D.; Koscher, K. Following Directions Using Statistical Machine Translation. In Proceedings of the 2010 5th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), Osaka, Japan, 2–5 March 2010; pp. 251–258.

48. Cantrell, R.; Talamadupula, K.; Schermerhorn, P.; Benton, J.; Kambhampati, S.; Scheutz, M. Tell Me When and Why to Do
It! Run-Time Planner Model Updates via Natural Language Instruction. In Proceedings of the Seventh Annual ACM/IEEE
International Conference on Human-Robot Interaction, Boston, MA, USA, 5–8 March 2012; pp. 471–478.

49. Dzifcak, J.; Scheutz, M.; Baral, C.; Schermerhorn, P. What to Do and How to Do It: Translating Natural Language Directives
Into Temporal and Dynamic Logic Representation for Goal Management and Action Execution. In Proceedings of the 2009 IEEE
International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 4163–4168.

50. Kuo, Y.L.; Katz, B.; Barbu, A. Deep Compositional Robotic Planners That Follow Natural Language Commands. In Proceed-
ings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020;
pp. 4906–4912.

51. Skubic, M.; Perzanowski, D.; Blisard, S.; Schultz, A.; Adams, W.; Bugajska, M.; Brock, D. Spatial Language for Human-Robot
Dialogs. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2004, 34, 154–167.

52. Pouthier, B.; Pilati, L.; Gudupudi, L.; Bouveyron, C.; Precioso, F. Active Speaker Detection as a Multi-Objective Optimization with
Uncertainty-Based Multimodal Fusion. In Proceedings of the Interspeech 2021, ISCA, Brno, Czechia, 30 August–3 September
2021 ; pp. 2381–2385.

http://dx.doi.org/10.1109/ MCG.2002.1046628
http://dx.doi.org/10.1109/ICCVW.2009.5457639
http://dx.doi.org/10.1109/ISMAR.2011.6092365

Sensors 2023, 23, 5798 41 of 43

53. Köpüklü, O.; Taseska, M.; Rigoll, G. How to design a three-stage architecture for audio-visual active speaker detection in the
wild. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021;
pp. 1193–1203.

54. Kheradiya, J.; Reddy, S.; Hegde, R. Active Speaker Detection using audio-visual sensor array. In Proceedings of the 2014
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Noida, India, 15–17 December 2014;
pp. 000480–000484.

55. Chakravarty, P.; Zegers, J.; Tuytelaars, T.; Van hamme, H. Active speaker detection with audio-visual co-training. In Proceedings
of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016; pp. 312–316.

56. Chung, J.S.; Zisserman, A. Out of time: Automated lip sync in the wild. In Computer Vision—ACCV 2016 Workshops, Proceedings
of the ACCV 2016 International Workshops, Taipei, Taiwan, 20–24 November 2016; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 251–263.

57. Roth, J.; Chaudhuri, S.; Klejch, O.; Marvin, R.; Gallagher, A.; Kaver, L.; Ramaswamy, S.; Stopczynski, A.; Schmid, C.; Xi, Z.; et al.
Ava active speaker: An audio-visual dataset for active speaker detection. In Proceedings of the ICASSP 2020—2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 4492–4496.

58. Aubrey, A.J.; Hicks, Y.A.; Chambers, J.A. Visual voice activity detection with optical flow. IET Image Process. 2010, 4, 463–472.
59. Tao, R.; Pan, Z.; Das, R.K.; Qian, X.; Shou, M.Z.; Li, H. Is someone speaking? exploring long-term temporal features for

audio-visual active speaker detection. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24
October 2021; pp. 3927–3935.

60. Alcázar, J.L.; Caba, F.; Thabet, A.K.; Ghanem, B. MAAS: Multi-Modal Assignation for Active Speaker Detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 265–274.

61. Richter, V.; Carlmeyer, B.; Lier, F.; Meyer zu Borgsen, S.; Schlangen, D.; Kummert, F.; Wachsmuth, S.; Wrede, B. Are you talking
to me? Improving the robustness of dialogue systems in a multi party HRI scenario by incorporating gaze direction and lip
movement of attendees. In Proceedings of the Fourth International Conference on Human-Agent Interaction, Singapore, 4–7
October 2016, pp. 43–50.

62. Everingham, M.; Sivic, J.; Zisserman, A. “Hello! My name is... Buffy”—Automatic Naming of Characters in TV Video. BMVC
2006, 2, 6.

63. Li, L.; Xu, Q.; Tan, Y.K. Attention-based addressee selection for service and social robots to interact with multiple persons.
In Proceedings of the Workshop at SIGGRAPH Asia, Singapore, 26–27 November 2012; pp. 131–136.

64. Smith, B.A.; Yin, Q.; Feiner, S.K.; Nayar, S.K. Gaze locking: Passive eye contact detection for human-object interaction.
In Proceedings of the 26th annual ACM symposium on User Interface Software and Technology, Scotland, UK, 8–11 October
2013; pp. 271–280.

65. Müller, P.; Huang, M.X.; Zhang, X.; Bulling, A. Robust eye contact detection in natural multi-person interactions using gaze and
speaking behaviour. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland,
14–17 June 2018; pp. 1–10.

66. Mehlmann, G.; Häring, M.; Janowski, K.; Baur, T.; Gebhard, P.; André, E. Exploring a model of gaze for grounding in multimodal
HRI. In Proceedings of the 16th International Conference on Multimodal Interaction, Istanbul, Turkey, 12–16 November 2014;
pp. 247–254.

67. Kompatsiari, K.; Tikhanoff, V.; Ciardo, F.; Metta, G.; Wykowska, A. The importance of mutual gaze in human–robot interaction.
In Social Robotics, Proceedings of the 9th International Conference, ICSR 2017, Tsukuba, Japan, 22–24 November 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 443–452.

68. Wood, E.; Bulling, A. Eyetab: Model-based gaze estimation on unmodified tablet computers. In Proceedings of the Symposium
on Eye Tracking Research and Applications, Harbor, FL, USA, 26–28 March 2014; pp. 207–210.

69. Chen, J.; Ji, Q. Probabilistic gaze estimation without active personal calibration. In Proceedings of the CVPR 2011, Colorado
Springs, CO, USA, 20–25 June 2011; pp. 609–616.

70. Lu, F.; Sugano, Y.; Okabe, T.; Sato, Y. Adaptive linear regression for appearance-based gaze estimation. IEEE Trans. Pattern Anal.
Mach. Intell. 2014, 36, 2033–2046.

71. Sugano, Y.; Matsushita, Y.; Sato, Y. Learning-by-synthesis for appearance-based 3d gaze estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1821–1828.

72. Liu, G.; Yu, Y.; Mora, K.A.F.; Odobez, J.M. A differential approach for gaze estimation. IEEE Trans. Pattern Anal. Mach. Intell.
2019, 43, 1092–1099.

73. Park, S.; Spurr, A.; Hilliges, O. Deep pictorial gaze estimation. In Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, 8–14 September 2018; pp. 721–738.

74. Cheng, Y.; Zhang, X.; Lu, F.; Sato, Y. Gaze estimation by exploring two-eye asymmetry. IEEE Trans. Image Process. 2020,
29, 5259–5272.

75. Park, S.; Mello, S.D.; Molchanov, P.; Iqbal, U.; Hilliges, O.; Kautz, J. Few-shot adaptive gaze estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9368–9377.

76. Mora, K.A.F.; Odobez, J.M. Gaze estimation from multimodal kinect data. In Proceedings of the 2012 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 25–30.

77. ROS Noetic. Available online: http://wiki.ros.org/noetic (accessed on 30 June 2020).

http://wiki.ros.org/noetic

Sensors 2023, 23, 5798 42 of 43

78. Basic Concepts of the Homography Explained with Code. Available online: https://docs.opencv.org/3.4.0/d9/dab/tutorial_
homography.html#projective_transformations (accessed on 11 May 2019).

79. PyTorch. Available online: https://pytorch.org/ (accessed on 13 July 2022).
80. Google. Google/Mediapipe: Cross-Platform, Customizable ML Solutions for Live and Streaming Media. Available online:

https://github.com/google/mediapipe (accessed on 13 March 2022).
81. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
82. Liu, S.; Deng, W. Very deep convolutional neural network based image classification using small training sample size. In

Proceedings of the 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia, 3–6 November
2015; pp. 730–734.

83. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

84. Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, high performance convolutional neural networks
for image classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona,
Spain, 26 July 2011 .

85. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection
using convolutional networks. In Proceedings of the 2nd International Conference on Learning Representations, Banff, AB,
Canada, 14–16 April 2014.

86. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916.

87. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18
December 2015; pp. 1440–1448.

88. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

89. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

90. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

91. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

92. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

93. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [PubMed]

94. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

95. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9
October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

96. Butler, D.J.; Wulff, J.; Stanley, G.B.; Black, M.J. A Naturalistic Open Source Movie for Optical Flow Evaluation. In Computer
Vision—ECCV 2012, Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 611–625.

97. Mayer, N.; Ilg, E.; Hausser, P.; Fischer, P.; Cremers, D.; Dosovitskiy, A.; Brox, T. A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4040–4048.

98. Qiu, W.; Yuille, A. Unrealcv: Connecting computer vision to unreal engine. In Computer Vision, Proceedings of the ECCV 2016
Workshops: Amsterdam, The Netherlands, 8–10. 15–16 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 909–916.

99. Zhang, Y.; Qiu, W.; Chen, Q.; Hu, X.; Yuille, A. Unrealstereo: A synthetic dataset for analyzing stereo vision. arXiv 2016,
arXiv:1612.04647.

100. McCormac, J.; Handa, A.; Leutenegger, S.; Davison, A.J. SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet
Pre-Training on Indoor Segmentation? In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017.

101. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes. In Proceedings of the Robotics: Science and Systems (RSS), Pittsburgh, PA, USA, 26–30 June 2018.

102. Tremblay, J.; To, T.; Sundaralingam, B.; Xiang, Y.; Fox, D.; Birchfield, S. Deep Object Pose Estimation for Semantic Robotic Grasping
of Household Objects. In Proceedings of the Conference on Robot Learning (CoRL), Zurich, Switzerland, 29–31 October 2018.

https://docs.opencv.org/3.4.0/d9/dab/tutorial_homography.html#projective_transformations
https://docs.opencv.org/3.4.0/d9/dab/tutorial_homography.html#projective_transformations
https://pytorch.org/
https://github.com/google/mediapipe
http://www.ncbi.nlm.nih.gov/pubmed/28060704

Sensors 2023, 23, 5798 43 of 43

103. Brachmann, E.; Krull, A.; Michel, F.; Gumhold, S.; Shotton, J.; Rother, C. Learning 6d object pose estimation using 3d object
coordinates. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
pp. 536–551.

104. Wang, C.; Xu, D.; Zhu, Y.; Martín-Martín, R.; Lu, C.; Fei-Fei, L.; Savarese, S. Densefusion: 6d object pose estimation by iterative
dense fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20
June 2019; pp. 3343–3352.

105. Hu, Y.; Hugonot, J.; Fua, P.; Salzmann, M. Segmentation-driven 6d object pose estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3385–3394.

106. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
107. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Lecture Notes in Computer Science, Proceedings of the

9th European Conference on Computer Vision (ECCV 2006), Graz, Austria, 7–13 May 2006; Leonardis, A., Bischof, H., Pinz, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417.

108. Alcantarilla, P.F.; Nuevo, J.; Bartoli, A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. IEEE Trans. Patt.
Anal. Mach. Intell. 2011, 34, 1281–1298.

109. Muja, M.; Lowe, D.G. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. In Proceedings of
the International Conference on Computer Vision Theory and Application VISSAPP’09, Lisboa, Portugal, 5–8 February 2009;
INSTICC Press: Lisboa, Portugal, 2009; pp. 331–340.

110. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981, 24, 381–395. . [CrossRef]

111. Previc, F.H. The Neuropsychology of 3-D Space. Psychol. Bull. 1998, 124, 123.
112. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
113. Ho, S.; Foulsham, T.; Kingstone, A. Speaking and listening with the eyes: Gaze signaling during dyadic interactions. PLoS ONE

2015, 10, e0136905.
114. Ishii, R.; Otsuka, K.; Kumano, S.; Yamato, J. Prediction of who will be the next speaker and when using gaze behavior in

multiparty meetings. ACM Trans. Interact. Intell. Syst. 2016, 6, 1–31.
115. Jokinen, K.; Furukawa, H.; Nishida, M.; Yamamoto, S. Gaze and turn-taking behavior in casual conversational interactions. ACM

Trans. Interact. Intell. Syst. 2013, 3, 1–30.
116. Vertegaal, R.; Slagter, R.; Van der Veer, G.; Nijholt, A. Eye gaze patterns in conversations: There is more to conversational agents

than meets the eyes. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Seattle, WA, USA, 1
March 2001 ; pp. 301–308.

117. Google. Face Mesh. Available online: https://google.github.io/mediapipe/solutions/face_mesh (accessed on 13 March 2022).
118. Shimshoni, I.; Basri, R.; Rivlin, E. A geometric interpretation of weak-perspective motion. IEEE Trans. Pattern Anal. Mach. Intell.

1999, 21, 252–257.
119. Fang, H.S.; Xie, S.; Tai, Y.W.; Lu, C. RMPE: Regional Multi-Person Pose Estimation. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017.
120. Gao, X.S.; Hou, X.R.; Tang, J.; Cheng, H.F. Complete solution classification for the perspective-three-point problem. IEEE Trans.

Pattern Anal. Mach. Intell. 2003, 25, 930–943.
121. Robotics, R. Rethink Robotics: Baxter. Available online: https://www.rethinkrobotics.com/ (accessed on 19 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/358669.358692
https://google.github.io/mediapipe/solutions/face_mesh
https://www.rethinkrobotics.com/

	Introduction
	Related Work
	Object Detection
	Planar Pose Estimation
	Pointing Gesture Recognition
	Natural Language Understanding in HRI
	User(s) of Interest Detection
	Active Speaker Detection (ASD)
	Addressee Detection

	Gaze Estimation

	Methodology
	System Specification
	Object Detection and Pose Estimation
	Feature Extraction and Matching
	Homography Estimation and Perspective Transformation
	Finding Directional Vectors on the Object
	Planar Pose Computation

	Information Extraction from Verbal Commands
	User(s) of Interest Detection
	Dataset

	Pointing Gesture Recognition
	a Calculation from Wrist and Elbow Location
	OOI Estimation from Pointing Gesture

	Gaze Estimation

	Results and Discussion
	Object Detection and Pose Estimation
	Information Extraction from Verbal Commands
	User(s) of Interest Estimation
	Facing State Estimation
	Speaking State Estimation
	Final Experiment

	Pointing Gesture Estimation
	Gaze Estimation

	Conclusions
	References

