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Abstract: Predicting breakdowns is becoming one of the main goals for vehicle manufacturers so
as to better allocate resources, and to reduce costs and safety issues. At the core of the utilization
of vehicle sensors is the fact that early detection of anomalies facilitates the prediction of potential
breakdown issues, which, if otherwise undetected, could lead to breakdowns and warranty claims.
However, the making of such predictions is too complex a challenge to solve using simple predictive
models. The strength of heuristic optimization techniques in solving np-hard problems, and the recent
success of ensemble approaches to various modeling problems, motivated us to investigate a hybrid
optimization- and ensemble-based approach to tackle the complex task. In this study, we propose a
snapshot-stacked ensemble deep neural network (SSED) approach to predict vehicle claims (in this
study, we refer to a claim as being a breakdown or a fault) by considering vehicle operational life
records. The approach includes three main modules: Data pre-processing, Dimensionality Reduction,
and Ensemble Learning. The first module is developed to run a set of practices to integrate various
sources of data, extract hidden information and segment the data into different time windows. In the
second module, the most informative measurements to represent vehicle usage are selected through
an adapted heuristic optimization approach. Finally, in the last module, the ensemble machine
learning approach utilizes the selected measurements to map the vehicle usage to the breakdowns
for the prediction. The proposed approach integrates, and uses, the following two sources of data,
collected from thousands of heavy-duty trucks: Logged Vehicle Data (LVD) and Warranty Claim
Data (WCD). The experimental results confirm the proposed system’s effectiveness in predicting
vehicle breakdowns. By adapting the optimization and snapshot-stacked ensemble deep networks,
we demonstrate how sensor data, in the form of vehicle usage history, contributes to claim predictions.
The experimental evaluation of the system on other application domains also indicated the generality
of the proposed approach.

Keywords: breakdown prediction; optimization; deep neural networks; ensemble learning

1. Introduction

Machine Learning-based approaches for predictive modeling have become one of the
main tools in the Predictive Maintenance (PdM) strategy of the automotive industry, to
improve the overall maintenance and reliability of operations, and to reduce costs and
safety issues [1]. Such predictive models attempt to model and predict the breakdown
of an asset (e.g., truck, bus, or car) which, if it occurred within the agreed warranty time
period, could lead to a warranty claim. This set of systems is precious software technology
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that minimizes unexpected down-time which, in turn, improves safety and asset reliability.
PdM is highly valuable for reducing costs as it means maintenance is performed only when
necessary. Based on the figures reported in [2], maintenance is one of the leading vehicle
operational expenses, accounting for around 59% of overall costs. Furthermore, under
the PdM umbrella, claim or breakdown prediction of upcoming down-time significantly
decreases the risk of human life being jeopardized in, for example, heavy-duty vehicles (in
this study, the data source for the target labels is a warranty claim database and, therefore,
we interchangeably use down-time, claim, breakdown and fault, such that they all point to
the concept of a component defect leading to a claim in the dataset).

Heavy-duty vehicles are complex systems, with numerous possible specifications,
operations and driver behaviors, wherein component down-times can originate from mul-
tiple sub-components failing for various causes. The correct prediction of breakdowns is
critical and essential because failing to precisely recognize such breakdowns leads to in-
creased maintenance costs, increased customer safety risks, decreased customer satisfaction,
and lowered brand value. All of these factors add up to a significant loss for companies.
Thus, correctly predicting faults that could cause customer or company loss has become
an important goal in today’s modern industrial strategy. Under this vision, many studies
have investigated the prediction of warranty claims or component breakdowns, reliability,
and degradation in the context of the vehicle industry, utilizing machine learning and
statistical approaches, such as deep neural networks, recurrent neural networks, support
vector machines or stochastic approaches [3–5]. Diagnostic models were developed, based
on the data collected from machines (e.g, industrial machines, turbines, vehicles, trains, etc.)
to estimate the performance and condition of a component. Many of the studies utilized
stochastic approaches to estimate component failures [6,7]. Many studies have focused
on estimating the remaining useful life (RUL) of a component, utilizing optimization or
neural networks algorithms [7–10]. For example, Yang et al. [11] studied claim forecasting,
where they focused on product usage rate and introduced two predictive models. In this
study, the authors considered Weibull’s distributed time assumption to foretell the number
of breakdowns. More recently, an interesting work by Chehade et al. [12] studied the
problem of data maturation in predicting warranty claims. They utilized Gaussian Mixture
distribution of claim patterns from similar vehicles to forecast vehicle warranty claims as
early as possible [12].

From the literature, we observed that considerable progress has been made in the
context of predicting upcoming breakdowns in the automotive industry by adopting
machine learning and statistical solutions. We also noticed that most of these combine and
use the approaches with the age and lifetime of a particular component to estimate the
component’s breakdown. However, several recent studies in such areas [13,14] partially
use vehicle usage to predict the need for maintenance to avoid breakdowns. Complexity,
both in terms of formulating the problem and the high dimensionality of the usage data,
make the task challenging, requiring further investigation.

Although the works mentioned vary widely in terms of the application context, prob-
lem to solve, and technique developed to tackle the challenge, machine learning has proved
to be successful, particularly in the automotive industry [15]. However, there is still room
for improvement (in terms of prediction accuracy and explainability) in existing claim
prognostic systems. We believe that such forecasting operations can be improved by
incorporating AI and advanced deep neural network approaches.

This motivated us to develop an ensemble solution taking advantage of hundreds of
sensor signals to predict breakdowns (which often lead to warranty claims, the source of
our target variable). However, the challenge of high-dimensional data needs to be dealt
with. Thus, in this study, we propose an ensemble method to extract and select the best
representation of the data–the most informative features–to build the predictive models
for warranty claim prediction (WCP). The approach includes three modules. In the first
module, that of “Data pre-processing”. we developed a set of practices to integrate various
sources of data, to extract relevant information and to segment the data into various time



Sensors 2023, 23, 5621 3 of 32

windows. In the second module, that of “Dimensionality Reduction”, we designed an
optimization procedure, using a Genetic Algorithm (GA) coupled with Elastic Net, to
translate high-dimensional data into a representation with lower dimensionality without
compromising prediction performance. GA is a method inspired by the evolutionary
process and is used for solving constrained or unconstrained optimization problems [16].
The method runs several GA operators that frequently change individuals to reach the best
solutions through several generations.

In the third module, that of “Snapshot-stacked Ensemble”, which contains two phases,
we developed an ensemble deep neural network to use the measurements (predictors,
measurements, and features all refer to the same concept of sensor data) to map vehicle
usage to claims. This module was developed by means of a Snapshot-stacked Ensemble
method to increase the performance of the predictive model. In this fashion, several training
learners are built from different perspectives to solve a complex claim prediction using
vehicle usage. This is achieved by horizontally aggregating the outputs of several snapshot
models, utilizing a Cyclic Cosine Annealing Schedule (CCAS) [17] concerning the principle
of diversity, to improve predictive model performance. Indeed, each snapshot refers to
a separate deep neural network, generated over one training process and saved, which
is then used to build an ensemble model. These snapshots result in meta-learning that is
capable of learning from various models (deep neural networks) to increase the accuracy of
the claim prediction. In other words, we exploit the outcome of each snapshot to build an
ensemble of networks for better prediction.

To the best of our knowledge, this study is the first to investigate the performance
of ensemble optimization and snapshot-stacked deep neural networks to translate higher
dimensional data into a lower dimension to be utilized for claim prediction. Earlier fault
estimation was done through manual inspection and statistical approaches. Applying
artificial intelligence techniques on sensor data automates fault detection, requiring less
effort and achieving more accuracy in a timely fashion [18].

The following research questions (RQs) further elaborate the investigative objectives
of our proposed approach:

• RQ1—Measurement selection: How could vehicle usage best be extracted for use in
claim prediction, and to what extent could the extracted features contribute to the
predictive model?

• RQ2—Claim prediction, based on vehicle usage: To what extent could ensemble
deep neural networks contribute to, and improve, claim prediction in the automo-
tive industry?

Our study aimed to address claim prediction by mapping vehicle usage to future
breakdowns. First, we concentrated on selecting a subset of features that would best
represent vehicle usage. Since heuristic and optimization solutions have demonstrated
their capabilities to tackle np-hard problems in various domains [19,20], we hypothesized
that the genetic method would be able to address this issue. Thus, to answer RQ1 we
adapted the evolutionary approach to feature selection so as to select the sub-optimal
features. The evaluation was performed over several generations and compared with other
standard deep neural network and ensemble approaches. The contribution of the extracted
features to the predictive model was evaluated by means of an A/B test, guided by the
aforementioned RQ1. We report on the results of that optimization and A/B test, to show
how the selected and extracted features positively affect the performance of the model.
Second, we maintained that the optimization could perform better by coupling it with an
ensemble learning approach. Hence, to answer RQ2, we developed a Snapshot-stacked
ensemble learning system through two phases of generating multiple diverse models, which
were used to build meta-learning. The meta-learning was then utilized for the final claim or
breakdown prediction. The reported figures confirm that this development improves claim
prediction performance compared with other ML approaches. The integration of these two
methods in predictive maintenance strategy, which our research outlines, constitutes this
paper’s main contribution. The following are our contributions in this study:
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• Whereas previous studies mostly used limited features in their prognostic systems,
we used hundreds of real sensors’ data (LVD) from heavy-duty trucks to model and
map vehicle usage to component breakdown.

• Taking into consideration the high dimensionality of sensor data, an optimization ap-
proach was introduced to extract the best representation of the data characterizing vehicle
usage in order to build an accurate predictive model for warranty claim forecasting.

• Taking into consideration the low classification accuracy of claim prediction using
vehicle usage, a snapshot-stacked ensemble deep learning approach is proposed in
this paper. Compared with existing algorithms, our method effectively improves
classification performance.

The rest of the paper is organized as follows. Section 2 presents related studies. In
Section 3, we describe the data used. In Section 4 we explain the proposed approach.
Section 5 covers experimental evaluation and results, followed by a discussion and sum-
mary of the work in Section 6.

2. Related Works

Predictive maintenance techniques have previously been investigated and developed
to examine and monitor the condition of tools and equipment to estimate when maintenance
needs to be performed. In this regard, identifying component failures proffers opportunities
for companies to take preemptive action, in the form of predictive maintenance, to minimize
breakdowns and prevent more significant issues in the long term. This mitigates safety
risks, lowers costs and even supports sustainable production in smart cities [21,22]. Many
attempts have been made [23–25] to develop various statistical and machine learning
solutions to predict component failures in a wide range of applications such as the following:
manufacturing [26,27], automotive [28–31], and energy [32]. Prognostic models have been
based on data collected from machines, social networks, and other sources to estimate the
performance and condition of components or the number of upcoming warranty claims [33].
These models widely used statistical approaches to estimate component failures [6,7,34,35].
For example, in the early 1990s, in [34], a log-linear Poisson model was utilized to build
a forecasting system based on the dates of warranty claims to predict failures. Later,
Fredette et al. [5] developed a mixed Non-homogeneous Poisson Process (NHPP) to tackle a
similar problem, that of component down-time prediction. An interesting remaining useful
life (RUL) forecasting approach was introduced in [7], in which the Wiener process [36]
with drift was utilized to model degradation in component sensors. Recently, in [33],
social media data was used to improve performance in daily warranty claim prediction.
To tackle the challenge of warranty data maturation, an intriguing study was developed
by Chehade et al. [12]. This investigation used warranty claim data to devise a Gaussian
mixture distribution of claim patterns at current and future maturation levels. They took
advantage of Bayesian theories to assess the conditional posterior distribution of warranty
claims at future maturation based on the available data at the current maturation level.

To the best of our knowledge, the larger part of studies focusing on forecasting
problems widely use neural networks to estimate the RUL of components and the state of
complex machines [37]. One example is in the context of energy production [38], wherein
a self-evolving maintenance scheduler technique was proposed to detect damage in the
gearbox bearings of wind turbines. The technique uses an ANN to establish a condition
monitoring system (CMS) based on supervisory control and acquisition data. To tackle a
similar problem, in [39] a Sparse Autoencoder-based Deep Neural Network (SAE–DNN)
approach was developed to detect bearing breakdowns in multi-component systems.

A typical optimization approach was introduced in [9], using Relevance Vector Ma-
chine, with the support of ant colony optimization (ACO), to detect gearbox fault detection.

To tackle a similar problem, a neural network-based forecasting system was introduced
in [40], based on a dynamic Cuckoo search optimization algorithm. Such forecasting
is crucial, since it can help manufacturers lower maintenance costs, increase customer
satisfaction, and safety, etc.
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Lifetime distribution estimation as a practical solution has gone a long way in com-
ponent fault estimation. For instance, a probabilistic model was developed by Singpur-
walla et al. in [41], wherein time, and time-dependent quantity, were utilized to build a
forecasting model. Later, Kaminskiy et al. [42] proposed a component failure prediction
approach, based on piece-wise application of the Weibull and exponential distributions, to
predict intrinsic failure period and early failure period. Similarly, in [43] two variables of
age and mileage of the vehicle were considered to estimate the mean cumulative number
of breakdowns.

Among the vast numbers of approaches introduced and developed for various predic-
tion tasks in many applications, ensemble techniques have been quite successful. Ensemble
machine learning approaches are techniques that integrate several base ML models to
provide improved performance [44–48]. As illustrated in Figure 1, these techniques can be
divided into three categories: Stacking, Bagging, and Boosting. The Stacking, or Stacked
generalization, technique [49] uses and combines predictions from multiple predictive
models to build a new model on the training data. Then the model is utilized for the
final prediction of the test data. Bagging is a technique that seeks a mixed group of en-
semble predictive models built by various parts of the training data [50]. Then, statistical
approaches, such as averaging or voting, are used to combine prediction results from
members. Boosting is another ensemble approach that creates a strong predictive model
from several weak classifiers [51]. In this approach, the training data is used to build
a predictive model. The second model then tries to correct the mistakes from the first
classifier. This process continue until the maximum number of predictive models is reached
or the perfect prediction acquired.

Ensemble
Approaches

(a) AdaBoost
(b) GBM
(c) XGBM
(d) Light GBM
(e) CatBoost
(f) Etc.

(a) Bagging meta-   
    estimator
(b) Random forest
(c) Etc.

Boosting Stacking Bagging
(a) Canonical stacking
(b) Blending
(c) Super Ensemble
(e) Etc.

Figure 1. Taxonomy of ensemble approaches.

Researchers working on applications from different sectors also took advantage of
ensemble methods [52]. In the context of claim and fault detection, we observed interesting
studies in different sectors [53,54]. For example, a bagging ensemble-based approach was
developed in [55] to forecast faults in a single-shaft industrial gas turbine. In this approach,
the fault prognosis was based on weighted voting to improve the robustness of the fault
detection technique. To tackle the same problem in a similar domain, in [56] a deep neural
network ensemble approach was developed and applied to a wind turbine data series.
This work trained the network offline based on a training set of the imagination matrix
that transformed the data series through segmentation technology. Then, the network was
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retrained by transferring learning, based on the renewed training set, to achieve enough
knowledge to forecast the fault. In [57], an ensemble approach was introduced to predict
the degradation of track geometry, wherein different models were developed by means of
regression, deterioration, and classification. In the context of an electrical system, ref. [54]
introduced an arc series ensemble fault detection approach, wherein they developed a
boosting converter CPL and a buck convertor constant power load (CPL) to study different
arc fault behaviors.

All in all, two main limitations can be observed in the related works presented: (1) most
are limited to models based on only a few input parameters to predict warranty claims;
(2) lack in use of complex real-world operational data from thousands of deployed products,
which come with the challenges of noisy and missing data. Our study addresses these
issues by deploying a complex ensemble-based system on high-dimensional data collected
from thousands of heavy-duty trucks.

To our knowledge, the combination of evolutionary technique and ensemble deep
neural network as an approach to increase warranty claim prediction accuracy, is novel. Our
approach addresses the fault detection problem in the automotive industry, which is generic
and applicable to a variety of fault and claim predictions in different sectors. Borrowing
from the taxonomy in [56], our warranty claim prediction can be characterized as a stacked
ensemble approach, since it takes into consideration the prediction of several diverse
snapshot models to build meta-learning, and then the model is used for a final prediction. In
the remainder of this paper, we describe the data, our proposed solution and the evaluation
of its potential, both for warranty claim data and datasets from other applications.

3. Data Presentation

In this section we present the following two data sets which were used to test the pro-
posed forecasting method: Logged Vehicle Data (LVD), including specifications, and usage,
of vehicles aggregated in a cumulative fashion; Warranty Claim data (WCD), consisting
of claim information reported over the vehicles’ life-times during their warranty periods
(24 months).

3.1. Logged Vehicle Data

The LVD used in this study were collected from commercial trucks over a four-year
period, from 2016 to 2019. The LVD consisted of the aggregated usage information for a fleet
of heavy-duty trucks operating in Europe. The parameters were collected using telematics,
as well as through manual inspection when a vehicle visited an authorized workshop for
repairs and service. In general, two types of parameters are logged in the LVD. The first
type describes the configuration of the vehicles, e.g., engine type, gearbox specification,
or type of pumps. The second type logs the usage of the vehicle during its operation. This
data is logged in histogram and scalar formats, continuously aggregated and contains a
number of different parameters, such as fuel consumption, compressor usage, gear usage,
cargo load, engine ambient temperature vs. ambient pressure log, coolant temperature vs.
oil temperature log, etc. An example of cumulative scalar features and its structure over
one year are illustrated in Figure 2.
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Figure 2. Illustration of the vehicle sensor data logged as scalar features. The scalars indicate the
vehicle usage over one year in 2019. As is clear, the parameter was cumulative and monotonous–in
feature1 and feature3–and increased over the year.

3.2. Warranty Claim Data

Claim data contains information regarding a vehicle’s warranty claims logged during
its operation, collected by OEM authorized workshops in Europe. In particular, the claim
database stores information about which part or component of a vehicle was repaired or
changed (due to a failure) along with the date. The parts and components are identified
by the normalized identification codes using four different levels of detail. This claim
dataset contains various parameters, such as names of components, codes, descriptions,
and dates, etc.

4. Proposed Approach
4.1. Problem Formulation

This section represents the formulations determined to tackle the claim forecasting
problem. Our approach considers the WCD and LVD as the system’s inputs and employs
optimization and ensemble-based deep neural networks. This study attempted to predict,
one month beforehand, defects related to the power train in heavy-duty vehicles, during
their warranty period of 24 months from when they started operating in service. Thus,
our intention in this claim prediction investigation could be divided into two problem
formulations, as follow:

• First, we formulated the process of dimensionality reduction as an optimization
task, and developed an optimization approach to extract a better set of features
characterizing vehicle usage over time. The approach was carried out in a time-series
fashion based on the hypothesis that vehicle behavior changes over time, so different
predictors might have different impacts on claims/failures and, consequently, on
performances of predictive models.

• Second, we investigated the design of an ensemble machine learning approach, for-
mulating the task as a classification to predict the claim/defect related to a power
train. Given the selected predictors from the optimization step, the ensemble ap-
proach mapped the usage to the upcoming claims one month ahead during the
warranty period.

Figure 3 shows the high-level structure of the proposed claim prediction approach for
the automotive industry. It contains three main modules: Data pre-processing, Feature Se-
lection Optimization and Ensemble Modeling. The data pre-processing module consists of
three processes: data integration, feature extraction, and data segmentation. The optimiza-
tion module is then employed to choose the measurements in a time-series fashion. Here,
the best representation of data in each segment is transferred to the ensemble modeling
module. Subsequently, the ensemble method builds the predictive model over two phases
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to forecast warranty claims, given the vehicle usage. These modules and sub-modules are
described as follow:

Data Pre-processing

Module 1

Data Integration Feature
Extraction

Data
Segmentation

Segment 1

Segment 2

Segment 3

Segment 4

Optimization

Module 2

Snapshot-Stack Ensemble Modeling

Measurement Selection

Module 3
Data

Collection

First Deep & Snapshot
Generation 

Phase 1

Second Deep 
& Stacked Ensemble 

& Final Prediction 

Phase 2

WCD

LVD

Training Process

Test the Model

Historical
Data

New Vehicle

Figure 3. The conceptual view of the proposed breakdown prediction approach.

4.2. Module 1: Data Pre-Processing

Data preparation is an integral part of any machine learning problem and our fault
diagnosis task is not an exception. In this section, we describe how we prepared the data to
use in our optimization process.

4.2.1. Data Integration

This module aimed to merge the LVD and WCD to create an integrated dossier with
the usage and failure information. We combined two data sets based on the vehicle’s
“Chassis id”, “Date of readout, which is logged”, and “Date of failure report”. To merge
these two datasets, we borrowed the method that we used in our previous study [18], where
we took advantage of a Volvo expert’s knowledge to determine a time window of one
month as an interval where the symptoms of failures are most likely to be visible. Therefore,
the prediction horizon was set to 30 days for the developed model. In this way, the merged
data-set included a new attribute named “Target” as the target feature T. This parameter
has a value of 1 for a given sample (ri) if, and only if, failure of a specific component
of interest is reported. Therefore, each vehicle may have multiple failures (for the same
component) during its operational life. However, only one failure (for the same component)
is considered during the desired time window. More formally, each time-window/time
span is assigned a binary label according to Equation (1), where tw refers to the length of
the time window that has the highest impact on failures in trucks and where τ is the current
time (end of time window). Note: tw is determined based on a Volvo expert’s knowledge,
which differs from one type of failure to another. Thus, in this study, tw was set to one
month which was considered large enough to overcome the effects of choosing a window
that is too small, e.g., having a prediction horizon that is too tight or not being able to cover
the whole chain of events leading to a failure. If a shorter time window would have been
chosen, the target feature would have made more sense to be continuous, due to gradual
transitioning into the chain of events.

Tri =

{
1 if a fault happened in [τ − tw, τ]

0 if no fault happened in [τ − tw, τ]
(1)

4.2.2. Feature Extraction

This sub-module computes the differences between consecutive measurements of each
sensor signal accumulator and quantizes the features. Indeed, this process was used due to
the accumulative nature of data. It is essential to extract the actual usage in each timestamp,
so that an abnormality estimating a breakdown in the near future might be indicated.

Equation (2) shows how a new feature (from each original feature) is calculated:

finew = firi+1
− firi

(2)
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Quarterlies =


Q1 (n + 1)/4
Q2 (n + 1)/2
Q3 (3(n + 1)/4))

(3)

Cat =


low if finew < Q1
medium if Q1 < finew < Q3
high if finew > Q3

(4)

where finew denotes the extracted feature, and ri and ri+1 represent the readouts that are
collected over the time and n points to the number of samples or readouts. Basically, in the
feature extraction module, we calculate the delta between subsequent readouts, and exploit
them as new features in training the models. Indeed, these extracted features demonstrate
the actual usage (and their changes) of vehicles in a bi-weekly fashion. The anomaly
behavior of the vehicle hidden in the data is revealed from these changes, which might
indicate potential faults in the near future. In addition, information related to each season
(spring, summer, autumn and winter) is added as a new feature in the data.

Figure 4 depicts only the usage change of 10 vehicles considering 8 new features ( finew )–
out of more than 600 features in total. Furthermore, we quantified the level of usage change
finew into low, medium, and high changes. This quantization was done with the support of
expert knowledge from Volvo engineers in the field. Equations (3) and (4) explain how the
quartiles, and accordingly the level of changes in vehicle usage, are defined. In this way,
we assume that substantial change (reduction or raise finew > Q3) in the usage of vehicles
leads to performance degradation and component failure in the future.

(a) feature1 (b) feature2 (c) feature3

(d) feature4 (e) feature5 (f) feature6

Figure 4. Illustration of the extracted features ( finew ) from ten vehicles. The subplots (a–f) show
significant (formulated in Equation (2)) and gradual changes bi-weekly in each parameter over one
year. This means the original LVD data were logged every two weeks and collected by the authorized
OEM workshops when the vehicles visited the workshops anywhere in Europe.

To show how the changes might relate to failures, we grouped the vehicles into two
categories of Healthy and Unhealthy vehicles. A healthy vehicle is one that has no faults
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during its operational life, while an unhealthy vehicle has at least one reported claim in
its history.

Figure 5 demonstrates how the changes are related to the groups of vehicles, where
the y-axis explains the relative frequency of usage change in four different categories.
The vehicles with high, medium and low or no numbers of significant changes are shown
on the x-axis. It can be observed from the usage pattern, plotted through the sub-figures,
that the proportion of significant changes in unhealthy vehicles was higher than in healthy
vehicles during their life histories (except one depicted in Figure 4f). Likewise, the pro-
portion of healthy vehicles was more than that of unhealthy vehicles once we considered
no-changes to evaluate the association between them. Through this experiment, we con-
cluded that healthy vehicles had less usage deviation than unhealthy vehicles. Thus,
exploiting this information contributed to building a better predictive model to result in
more accurate predictions.

(a) feature1 (b) feature2

(c) feature3 (d) feature4

(e) feature5 (f) feature6

(g) feature7 (h) feature8

Figure 5. Illustration of significant usage changes in healthy and unhealthy vehicles. These subplots
show how the significant usage changed in eight different features (extracted features), related to the
health of the vehicles. Note: we used more than 600 features in our study, and these were just eight
features we randomly selected for the purpose of plotting.
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4.2.3. Data Segmentation

The segmentation was conducted by having hypotheses in which vehicle demeanor
differs from context to context, and the context has a certain impact on the vehicle’s
performance. In the domain of the automotive industry, context can be characterized
as location, application domain, time, specific road conditions, etc. Furthermore, this
segmentation might aid to increase the performance of the predictive model. Thus, in this
study, with this low-resolution data, the operational time of the vehicles over different
seasons was considered to segment the data. Basically, we partitioned the whole time-series
data into four segments representing the four seasons in a year.

This time-series data set contained 337,573 samples with 375 original features (parame-
ters/measurements), characterizing the usage style of 2412 unique vehicles over four years
of operation. In addition, information related to each season was added as a new feature
in the data. In this way, in each segment of time we defined three months as a season
over a year, and each time segment contained the vehicles which operated in that period
of time in different years (regardless of their ages or production months). Since vehicles
have different ages and operational patterns over the year, each segment contained various
numbers of samples/readouts as follows: Segment1 contained 86,768 readouts; Segment2
included 90,709 readouts; Segment3 held 61,364 readouts, and, finally, Segment4 contained
98,732 readouts.

Bearing in mind the assumption raised in the integration section (Section 4.2.1), to label
the LVD (one-month operation may have the highest impact on component down-times),
we took account a very rare case of failure on the first day of each season, so each segment
also contained one-month operation from the previous season. This allowed the model to
map the usage to a failure if the failure happened on the first day of the season.

4.3. Module 2: Optimization: Measurement Selection

This section describes the module developed to conduct the measurement selection
process. We formulated this process as an optimization task, wherein we aimed to find
the best representation of vehicle usage (a subset of measurements/features) to increase
the predictive model’s performance in forecasting component failure. In other words,
our objective was to discover the optimal subset of measurements that could characterize
vehicle usage and map these to failures. Thus, to this end, we constructed this module by
modifying the original Genetic Optimization [58], which was successfully applied in a wide
range of applications [59,60], just to cite a few. As the main contribution in this module, we
utilized the Elastic Net [61] technique, by adding simple penalties (a combination of L1 and
L2 regularization) into the optimization techniques (we call this ELSGA), which acted as a
generation component to initiate a decent population in the first step for the optimization
process. Although, data dimensionality reduction approaches, such as PCA [61,62] or
LDA [63], could be implemented for this problem, in order to maintain interpretability,
using such methods was avoided in this dimensionality reduction step. The optimization
module itself consists of three main sub-modules: Initialization component (IC), Evaluation
component (Objective function) and Criterion. These sub-modules are described as follows:

4.3.1. Initialization Component (IC)

Given the desired segment (Segi) from the segmentation module, IC initiates the first
generation of the population (rather than randomly select the first generation of features,
which is the fundamental process in the GA algorithm, we aimed to start the optimization
process with better population of the measurements) using a convex integration of lasso [64]
and ridge [65] methods called Elastic Net (LS) [66]. We took advantage of the LS capability,
that uses L1 and L2 penalties to shrink and select features, to generate the first population
of predictors. Let us suppose we have R = (r1, . . . , rn) readouts in the given time series Segi
data-set with F = ( f1, . . . , fm) features/predictors (measurements), and T = (t1, . . . , tn) as
the target variables.The value ai,j refers to the value of feature fi in readout ri.
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R =


f1 · · · fm

r1 = a1,1 · · · a1,m
r2 = a2,2 · · · a2,m

...
...

. . .
...

rn = an,2 · · · an,m

× T =


T
t1
t2
...

tn


Thus, R and T are our model matrix, and prediction of target variable t̂ can be described as:

t̂ =
m

∑
j=1

βi f j = βT F (5)

where the input function is the dot product of the predictors and coefficients β:

m

∑
j=1

= β1 f1 + β2 f1/2 + · · ·+ βm fm (6)

Thus, in our initialization process, the task is defined as a classification problem, so β
can be calculated by Equation (7):

Elastic(β̂) = (t f ) + λ
[
(1− α)‖β‖2 + α‖β‖1

]
(7)

(t f ) = argmin
n

∑
k=1

(ykPT
k β) (8)

‖β‖1 =
m

∑
j=1
|βm| (9)

‖β‖2 =
m

∑
j=1

β2
m (10)

where is a margin-based loss function and y ∈ {0, 1}. Using ‖β‖1 and ‖β‖2, which are the
norm l1 and euclidean norm, we measure the largeness of the coefficient.

λ and α are the two parameters to tune. α controls the integration of the two penalties
and λ manages the amount of penalization, where α can take values between [0–1], and λ
could be a positive number.

There are two alternatives for the LS: LS turns to ridge method once α gets close to
0, while LS serves as lasso when α reaches 1. Thus, to find the best α and l1, we tuned
these parameters through walk-forward cross-validation by the learning process. This
means we trained different models exploiting various values in an optimization manner to
find the best setting. In this way, the algorithm overcame the drawbacks of the Lasso and
Ridge functions [67] to select the best predictors. Thus, in IC we used an agent to perform
Equation (11) to initialize the first population to be delivered to the Evaluation component
and kept generating such decent populations to inject from the GA sector over the process.

IC =



Rand( 1
2 ∗ LS(segi

xj f1,...,m
), pop)

i = 1, . . . , m
j = 1, . . . , n
p = 1, . . . , m
pop = [6, 8, 10, 12, 14]

(11)

where Rand() is a random selection of decent initiated predictors by LS(segi) and Rand() is
designed to keep the diversity within the decent selected predictors. The value pop denotes
the size of the population that should be initialized at the first generation. The value of pop
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was tuned with the above five numbers to find the optimal number for the population. The
reasons for developing such an initialization component, rather than random generation,
are as follows: (a) we hypothesized that good parents most likely generate better children
than bad (or random) parents. This means randomly initializing the parent may lead to
non-satisfying predictive performance in the fitness function, ignoring the cross-over step,
and, accordingly, terminating the Genetic process; (b) in any optimization process, it is
crucial to reach the optimal solution in the early stages (generations), particularly when the
system needs to deal with a huge amount of streaming data. Thus, the random selection
may lead to post-bonding to the late generations; (c) the nature of the GA approach is
based on random generation and selection of a population to obtain the best solution;
therefore, the approach does not concern the correlation between the features and the
predictive performance. There might be highly correlated features that can contribute
together to performance. Hence, the design and integration of IC support the GA operators
by injecting such information to generate a better population over the optimization process.
For this reason, we employed LS in this initialization component since there might be
highly correlated predictors in the high dimensional data; thus, LS automatically included
all the highly related predictors in the population if one of them was selected. However,
it needs to be remarked that there might be cases among these highly related features
wherein only one is sufficient and contributes to the predictive performance, and so GA
solves such an issue.To summarize, this design with LS and GA allows the inclusion of
the many correlations expected, since features coming from sensors measure correlated
processes. However, the GA-enabled part of the algorithm tries to select the best subset
out of such correlations and does not necessarily keep all of them. The ensemble of these
two algorithms overcomes the raised concerns, particularly as the automotive sector deals
with high-dimensional streaming data over time. This enables the system to decrease
dimensionality and, at the same time, increase the performance of the predictive model.

4.3.2. Evaluation Component (Fitness Function)

At the core of this component, and of the GA process, a decision tree-based ensemble
method [68] (XGBoost) was used as a classifier to evaluate the importance of the individuals
and their impacts on the predictive model. This objective function of claim prediction L(θ),
can be expressed as follows [68]:

L(θ) = yilog(logistic(yi(ŷt−1
i + ft(ri))) + (1− yi)log(1− logistic(ŷt−1

i ) + ft(ri)))

where L is the log-likelihood function, and, thus, logistic(yi(ŷt−1
i )) is the probability. ft

denotes the tth tree, and yt−1 shows the prediction of ri sample, at t− 1 iteration. In this
experiment, we used the logistic function, as our problem was formulated as a binary
classification. Indeed, the merit of each population represented as solutions are evaluated
as fitness value, so the best chromosomes are ranked and selected for the next generation.
We formulated our fitness function as an optimization, where individuals with higher
performance are considered for the next generation. In a parameterized fashion, the four
top best populations were selected, in the selection process to be given to GA operators for
cross-over and to generate a new solution (offspring).

A typical crossover method, called Partially Mapped (PMX) [69], was used in this
optimization problem. The main idea behind this decision was to support the GA process
by having a better convergence rate and diversity and to reduce stagnation during the
optimization process [70].

4.3.3. Criterion Component

Three criteria were incorporated into a composite optimization approach as follows:
(1) poor fitness value (Tr1), (2) maximum fitness value (Tr2), and (3) maximum generation (Tr3).
The first criterion talks about the poorness of generated predictors by the IC component



Sensors 2023, 23, 5621 14 of 32

at the first generation. The IC is called if, and only if, the fitness value could not pass the
minimum threshold.

Cr =


Tr1 is met if f(x) ≥ 0.5, otherwise call IC
Tr2 is met if f(x) ≥ 0.95, then terminate GA
Tr3 is met if itr = max gen, then terminate GA

(12)

This criterion was established to ensure the first population has the potential for
further generation during the optimization process. The second criterion indicates that the
fitness output has been sufficiently reached for the optimization process to be terminated
once it is met. As the third proxy Tr3, we defined a maximum generation. Taking into
account the first criterion Tr1, once one of Tr2 or Tr3 is met, the selected operators/features
are injected into the ensemble modeling (in the third module) to build a complex and
general predictive model for the final claim forecasting.

4.4. Module 3: Snapshot-Stacked Ensemble Modeling (Network Construction and Training)

In this section, we describe the third module of the proposed approach that contains
two main phases. In the first phase, we constructed an ANN, which was used to generate
several snapshot models from a single training process. Then, we took those snapshots
(models) for validation, and, in the second phase, the prediction output (class probabilities)
of each snapshot model was added to the dataset for final training and prediction. Indeed,
the second phase acts as a meta-learning process, where it attempts to learn from the output
of the snapshots to reduce the classification errors obtained from the first network.

4.4.1. Snapshot Ensemble on Vehicle Usage

The ensemble technique and its modeling is a process in which several models are
generated to forecast the outcome. This can be done by utilizing different predictive models
or different training data sets. The ensemble model then combines each model’s output
to obtain the final prediction for the test data. The method highly supports the network
to increase the predictive model’s performance compared to the individual model by de-
creasing the generalization error. Since training multiple deep networks is computationally
expensive, we utilized Snapshot Ensemble to train multiple models by a single training
process [71]. We utilized this approach, which we introduced in [71], and adapted and
integrated it into the optimization technique for the breakdown prediction. However,
this technique has the challenge of generating similar models, resulting in similar predic-
tion performances. This does not contribute to the predictive model at the output level
unless the network generates diverse models during the training process. One way to
overcome this challenge and build diverse models is to change the learning rate during the
learning process. Thus, to this end, we exploited the Cyclic Cosine Annealing Schedule
(CCAS) [17], that splits the training process into N cycles, each starting with a large learning
rate and relatively rapidly decreasing to the minimum value before increasing quickly
again. Equation (13) shows the learning rate over the iterations.

α(t) =
α0

2
(cos(

π mod(t− 1, dT/ne)
dT/Ne ) + 1) (13)

where, α denotes the learning rate at iteration t, α0 is the initial learning rate (maximum
rate), and T refers to the total number of the training iterations. Thus, the function anneals
the learning rate from α0 to f (T/C) which is ≈0 over the course of a cycle [72]. Value N
is the number of cycles in which the network is trained throughout the training process,
and in which the best weights at the end of each cycle are saved as the snapshot of the
model. This results in N model snapshots. In fact, in this process, the learning rate is
raised periodically, reinforcing the model’s convergence at the global minimum, rather
than at the local minimum, over the snapshot ensemble. This leads to elimination of the
need to manually find the optimal maximum learning rate. The overall snapshot process
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is illustrated in Figure 6, where at the end of each iteration the model with the maximum
performance is saved as the snapshot. All the models are then used to predict the outcome
in the first phase. The use of CCAS does not ensure diversity of the produced models, due to
the stochastic nature of the algorithm. Therefore, the diversity of the snapshot models were
carefully studied by computing and investigating any dissimilarities between prediction
outputs. In short, in this step, we generated multiple diverse deep neural networks to build
an ensemble of predictive models. This ensemble of models was then used to construct
meta-learning (in the second phase) for the final breakdown prediction.

4.4.2. Training the Network

Table 1 shows the construction of the network in the first phase, wherein we trained the
ANN network by incrementally creating a Sequential model. The network parameters were
initialized using “He” initializer [73] (shown in Equation (14)), where G is the Gaussian

probability distribution with a zero-centered and standard deviation of
√

2
nl

. In this
initialization form, biases are initialized at 0 and nl is the number of inputs to that node in
layer l.

wl = G(0,

√
2
nl
) (14)

In order to use stochastic gradient descent to train the deep neural networks, rectified
linear unit (ReLU) [74] as the–active function–was utilized to transfer the summed weighted
input from the nodes into the output of the node.

f (x) = max(o, x) (15)

In Equation (15), f (x) is the ReLU function, where it outputs 0 for ∀ x < 0, while for
positive inputs x ≥ 0, it returns the same value f (x) = x. The Batch Normalization [75]
technique is used to normalize the input of each layer to reduce the internal covariate shift
problem leading to stabilizing the learning process. This is followed by a stochastic gradient
descent technique called “Adam” optimization, which iteratively updates network weights
during the training process [76].

We used a regularization method called “Dropout” to reduce the over-fitting issue.
Basically, this led to the provision of different neural network architectures when training
the networks. In the output layer, we utilized the Soft-max activation function–depicted in
Equation (16)–for the probability distribution of the target variables.

σ(zi) =
ezi

∑K
j=1 ezj

(16)

where σ(zi) are the elements of the input vector to the softmax function, K is the number
of classes and ∑K

j=1 ezj is the normalization term, which ensures all the output values of
the function sum to 1 (each class probability is in the range (0, 1)). Finally, the output of
Equation (16) is injected to the Argmax function–defined in Equation (17) to predict the
hard label.

hpri = argmax(σ(zi)) (17)

where hpri carries the hard label prediction of the readout ri in the test set, expressing
whether the usage corresponds to a claim/breakdown (1) or not (0).
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Table 1. The architecture of the first deep networks–deep1–(left side) and the second deep network (right side). The values of the model hyper-parameters were
selected experimentally in a systematic fashion.

Layers (Type) Output Shape # of Parameters Layers (Type) Output Shape # of Parameters

Sequential() – Sequential() –
batch00 (BatchNormalization) (None, 160) 640 batch00 (BatchNormalization) (None, 214) 856
layer00 (Dense) (None, 160) 25,760 layer00 (Dense) (None, 214) 46,010
batch10 (BatchNormalization) (None, 160) 640 batch10 (BatchNormalization) (None, 214) 856
layer10 (Dense) (None, 40) 6440 layer10 (Dense) (None, 53) 11,395
batch20 (BatchNormalization) (None, 40) 160 batch20 (BatchNormalization) (None, 53) 212
layer20 (Dense) (None, 13) 533 layer20 (Dense) (None, 17) 918
batch30 (BatchNormalization) (None, 13) 52 batch30 (BatchNormalization) (None, 17) 68
dropout (Dropout) (None, 13) 0 dropout (Dropout) (None, 17) 0
layer30 (Dense) (None, 8) 112 layer30 (Dense) (None, 10) 180
batch40 (BatchNormalization) (None, 8) 32 batch40 (BatchNormalization) (None, 10) 40
layer40 (Dense)–softmax() (None, 2) 18 layer40 (Dense) (None, 2) 22

Total parameters: 34,387 Total parameters: 60,557
Trainable parameters: 33,625 Trainable parameters: 59,541
Non-trainable parameters: 762 Non-trainable parameters: 1,016



Sensors 2023, 23, 5621 17 of 32

4.4.3. Stacking and Horizontal Ensemble

Each snapshot model provides two types of outputs; Soft prediction (Equation (16))
and Hard label (Equation (17)). The former returns two values: the predicted probability
of the readout belonging to a vehicle not having a claim and the predicted probability
indicating the usage corresponding to a claim/fault. The second output is the hard label
representing whether the component is healthy (0), given the vehicle usage, or faulty (1).
Accordingly, Equation (18) shows the numbers of the new features which are generated by
the Snapshots models.

f eaturenew = NSn ×
f

∑
k=1

(Ck + 1) (18)

where NSn refers to the snapshot numbers, and f is the number of features. Ck points to the
binary class of the vehicle status (healthy–0– or unhealthy–1–) which is summed by “1” as
the hard-label of that prediction. Table 2 illustrates the snapshot and stacking horizontal
ensembles calculations, which are described in detail as follow:

– r1, . . . , rn: refers to the vehicle non-stationary readouts/samples, which are collected
over time.

– f1, . . . , fm: represents the LVD parameters characterizing a vehicle’s behavior in ri.
– Pr1(sp1)

. . . Pr1(spm), indicates the output of the snapshot models–in the first phase–for
the given readouts.

– pc1 , pc2 , represents the predicted probability of class 0 (healthy) and class 1 (unhealthy),
for the given readout ri.

– hpri refers to the hard prediction of the given readout ri (0 or 1).

The output of the soft predictions and the hard labels are horizontally combined
with the original features (validation set, see Figure 7). This means that, by considering
Equation (18), each snapshot model could add three extra parameters carrying knowledge
of the previous model’s performance on that specific readout. The new data–as the new
training set–is then passed to the second deep net to build the meta-learning to reduce
the forecasting errors obtained from the previous phase. Indeed, meta-learning is built by
stacking the outputs of the snapshots, which are diverse deep neural networks and able to
capture the expected complex signal relations, as compared to learning algorithms with
less capacity, see Tables 5 and 6. As is described above, CCAS is utilized to construct 20
different predictive deep network models in this stacking process. To obtain the final fault
prediction, we injected the test set, which was held out, into the same generated snapshots
to translate the test set’s structure to the new one with more dimensions, similar to the
new training set (see Figure 3 left-bottom). Finally, the performance of the meta-learning is
assessed by the test set. Table 1 (right side) describes the architecture of the second deep
network, and Algorithm 1 shows the pseudo code of the whole process in this complex
claim prediction.

Table 2. Illustration of the snapshot and stacked ensemble output.

Readouts Original Features Snapshot Models’ Predictions

f1 ... fm Pr1(sp1) = (pc1, pc2, hpr) ... Pr1(spm) = (pc1, pc2, hpr)

r1 r1 f1
... r1 fm

r2 . ... .
. . ... .
. . ... .

rn rn f1
... rn fm

Prn(sp1) = (pc1, pc2, hprn ) ... Prn(spm) = (pc1, pc2, hpr)
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Figure 6. Visualization of the standard loss (red) and cosine annealing learning and cycles (blue).
In this practice, N = 20 snapshot models were generated and saved to be used in the first and the
second phases of the networks.
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Figure 7. The schematic representation of the third module starts by partitioning the LVD data
(injected from Module2) into three parts: training data, validation data, and test data. The training
and validation are used in the first phase to generate the snapshot (SPs) models. In this process,
CCSA is utilized to construct the snapshots where the function periodically decreases the learning
rate from α0 to ≈ 0 in a cycle; in this study, it was every 20 snapshots (see Figure 6). Then, at the end
of each cycle, the model with the maximum performance is saved as the snapshot. In the second
phase, the output of the SPs is horizontally added to the original set (validation data) to make a
new dataset. Accordingly, the new dataset is used to build the meta-learning (with the training part)
for the final prediction. Finally, the test part is utilized (with the new dimensions) to validate the
meta-learning performance.
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Algorithm 1 The proposed SSED approach, Module 1, 2 and 3

Input: R . readouts R={r1, . . . , rn}
Output: Fp . final claim prediction

1: Trd ∈ R . training data
2: Vld ∈ R . validation data
3: Tsd ∈ R . test data
4: S . Snapshot
5: Ls← {} . list of snapshots
6: Lseg← {} . list of segments
7: Lin f ← {} . list of informative features
8: Dtr ← {} . new dataset for training
9: Dts← {} . new dataset for test

10: CCAS . cosine annealing function (Equation (13))
11: N . number of cycles, (Equation (13))
12: Deep1 . 1st network to generate snapshots (Table 1-left side)
13: Deep2 . 2nd network for final prediction (Table 1-right side)
14: Module 1 is started:
15: R ← label (R) . label R, Equation (1)
16: Lseg ← Segment(R) . partition R into four segments
17: Module 2 is started:
18: for Sgi ∈ Lseg do
19: while Cr is not met do
20: Lin f ← Optimization(Sgi) . select informative features
21: end while
22: end for
23: Rnew ← Union(Lin f ) . union the informative features
24: Module 3-phase 1 is started:
25: Train (Deep1 with CCAS | Rnew)
26: while i ≤ E do
27: if mod (i\N) == 0 then
28: Ls ← S . save the snapshot in Ls
29: end if
30: end while
31: Load Ls . load all snapshots
32: for Si ∈ Ls do
33: p = Si.predict(Vld) . validate Si with validation set
34: end for
35: Module 3-phase 2 is started:
36: Creating a new data set
37: for Si ∈ Ls do
38: Dtr ← stack(p, Vld) . stack the prediction to Vld
39: end for
40: for Si ∈ Ls do
41: Dts← stack(p, Tsd) . stack the prediction to Tsd
42: end for
43: Mm ← Train (Deep2 | Dtr) . building meta-learning
44: Fp ← Mm.predict(Dts) . final prediction

5. Experimental Evaluation and Results

To facilitate the implementation of the approach, we recall the two research questions,
introduced in Section 1, on which we based the evaluation of the proposed approach
as follows:

5.1. RQ1—Feature Selection with Optimization Results

Bearing in mind RQ1, we constructed two evaluation tracks. Firstly, the proposed
optimization approach (ELSGA) was evaluated over several generations and compared
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with the standard genetic algorithm (without the IC component). Secondly, the selected
features (using ELSGA) were used to build models through a type of time-series k-fold
cross validation called “walk-forward cross validation (WFCV)” [77] and compared with
other ML, deep learning and ensemble based approaches.

The optimization process was carried out as feature selection by selecting the most
informative parameters to predict a vehicle’s component failures (a component related
to the turbocharger). We built a forecasting system in which a supervised ML algorithm
examined the contribution of the parameters to the claims. Considering results from our
previous study [18], in which vehicle usage changed over time, we segmented the data
into different parts. This segmentation process was done by assuming that the distribution
of the vehicle usage logged in the same season over the years was relatively similar with
respect to the other seasons. Thus, in each segment there might be a set of parameters
that had more impact on the failures, and, accordingly, more pertinent to the prediction of
failure. We designed the optimization process to be implemented in each segment in order
to identify the most informative features. However, in the second tier of the evaluation,
the union of the selected features (from all segments) built the predictive models, and
was compared with other algorithms.

Since there is no universal configuration for such a heuristic optimization algorithm
that is considered to be the best setting, GA parameters, including population size, mutation
rate, number of parents inside the mating pool, and number of elements to mutate, were
selected in an optimization manner. This meant the implementation code was constructed
in a parameterized fashion to find the best configuration of the GA settings. Table 3 lists
the parameters that our optimization system tuned to obtain the best performance.

Table 4 describes the output of the IC at initiating the first population on the whole
and segmented data. The values α and l1− norm were selected through the WFCV (as the
optimal values) to train the elastic model.

Table 3. The tuned parameters in the proposed optimization approach.

Tested Parameters Best Parameter

# of Generation — 100

# of items to mutate 1–10 3

# of parents in mating pool 2, 4, 6, 8 4

Population size 6, 8, 10, 12, 14 10

Table 4. The Output of the Initialization Component.

α L1-Norm Reduction % # of Decent Predictors

Total Data 7.1 × 10−7 0.050 29.79% 410

Seg1 1.1 × 10−5 0.99 86.3% 80

Seg2 1.4 × 10−5 0.70 82.3% 103

Seg3 2.2 × 10+5 0.50 77.5% 131

Seg4 3 × 10−5 0.10 46.4% 313

The whole data-set with the lowest feature reduction (FR = 0.29%) resulted in the
highest number of predictors in the first population, with 410. Among the segments,
313 predictors were selected with coefficients larger than 0 in Seg4, which also indicated the
lowest reduction proportion within the segments. Likewise, the IC initiated 80 predictors
out of 577 as being decent parents for further generation in Seg1. The figures indicated
that the IC delivered different numbers of predictors to GA operators–meaning that, in
each segment/season, different parameters had different impacts on failure of further
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generations in each segment. It was observed the value of α in all cases was close to zero,
which meant that the LS almost turned into the ridge method to initiate the first generation.

To evaluate the performance of the selected features, we formulated the objective
function as a classification task, wherein the function seeks the optimal performance of
the breakdowns forecasting, taking into account vehicle usage. Thus, given the vehicle
usage with n readout samples and the selected predictors/features m, which were injected
by GA operators, D = (ri, ti)(|D| = n, ri f 1..., f m , ti ∈ (0, 1)) in each generation, the function
predicted whether the usage led to a failure or not.

In this stage of the experiment, the data was partitioned into training and test data.
More to the point, in each segment of the data “throughout the optimization process”,
we took three months of vehicle operation, with one month from the previous season,
into account to train the model, and the last month was used to test the model. The statistical
information of the training and test data in each segment is listed as follows:

• Segment1 (Seg1) contained 86,768 readouts, where 52,060 were considered for training
and 34,708 for testing the model.

• Segment2 (Seg2) contained 90,709 readouts, where 54,421 were considered for training
and 36,288 for testing the model.

• Segment3 (Seg3) contained 61,364 readouts, where 38,045 were considered for training
and 23,319 for testing the model.

• Segment4 (Seg4) contained 98,732 readouts, where 75,036 were considered for training
and 23,696 for testing the model.

As is mentioned in the Segmentation section, in each segment, the readout time-series
samples were placed in the time order, in order to use the past data to build the model,
and future data to test the model. Since these data were cumulative, and the scale of the
readouts differed from year to year, data normalization–using Equation (19)–was conducted
to form the data on the same scale.

normalize_value =
value−min
max−min

(19)

The three criteria, tr1, tr2 and tr3, were set to 0.5, 0.95 and 100 to recall the IC or
terminate the optimization process so as to provide the best predictors, respectively.

The plots in Figure 8 illustrate the superiority of the ELSGA approach in all segments
compared with the GA approach without the IC component over the whole optimization
process. We noticed a considerable jump in the performance provided by ELSGA that
describes how well the IC adapted to the optimization process to generate decent indi-
viduals in the first population. The increase at the early stages assured that the whole
optimization process could be terminated before the criterion tr3 was met (maximum 100
generation). However, tr2 ≥ 95% was not passed due to the complexity of the problem.
ELSGA performed better by reporting around 80% AUC in all segments with 3% higher
than GA over the process. It was also noticeable that the AUC value obtained by ELSGA in
Segment4 was higher among the other segments, with 82% AUC vs. 79% obtained by the
basic optimization. The statistical assessment of the data revealed that Segment4 contained
vehicles which had more claims compared to the vehicles located in other segments in this
highly unbalanced data. This might be the reason why our model performed better, since
more data and positive samples were available to build the predictive model.

The overall results suggest the segmentation formulation is compatible and posi-
tively contributes to better claim prediction performance with optimization approaches,
particularly the ELSGA approach.

In the second track of the evaluation, the output of the ELSGA was taken into consid-
eration to build the model using the XGBoost classifier [68]. In this experiment, the selected
predictors, due to ELSGA, were exploited to build the predictive models and to compare
with models trained with several classifiers by injecting the data. In fact, multiple classifier
(including deep learning and ensemble approaches) results were selected as the baseline
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to compare with ELSGA. The similar WFCV method was used to build and evaluate the
models with various portions of the data in a time-series fashion (this decision was made
since our data was time-series data and the folds could not be randomly selected by normal
k-fold cross-validation).

(a) Segment 1. (b) Segment 2.

(c) Segment 3. (d) Segment 4.

Figure 8. The performance of the proposed ELSGA and GA in each segment.

Table 5 shows the comparison of our proposed ELSGA method and multiple classifiers.
The figures obtained from different predictive models demonstrate how complex the task
is to predict claims by taking vehicle usage into account. As can be seen, most of the
classifiers performed poorly, providing low auc ≈ 0.50 values. Practically, these results
showed that most of the linear classifiers had no discriminatory capacity in regard to this
complex problem, and could not map the usage to breakdowns. In contrast, deep learning
models (such as CNN, LSTM and biLSTM) showed much better performance compared to
the linear classifiers, by auc = 0.70± 2.

Among the examined predictive models, Boosting and Stacking performed close to
the proposed approach by auc = 0.75 and 0.74 vs. auc = 0.76, respectively, when total data
was considered. Concerning the segmentation, we can clearly observe that the proposed
approach (Module2-ELSGA) significantly outperformed the other classifiers, except for
Bagging. It is necessary to remark that, within deep learning approaches, CNN worked well
on the last segment by providing auc = 0.77. To go beyond this performance assessment,
we applied a 5× 2cv paired statistical t-test to evaluate how significant the results of the
classifiers were. In almost all cases, the p-values were smaller than the critical value α = 0.05,
so this rejected the null hypothesis, by stating that there was a significant difference between
the outcomes. The statistical tests showed that only the performance of the ensemble-based
approaches were relatively close to that of the proposed approach in most cases. It is also
fair to remark that the statistical test on the performance of the CNN model, in the last
segment, indicated that the difference was not significant. It can be observed that in one
case even Bagging performed slightly better than the proposed approach in Segment 3;
however, the difference was not significant. In Segment 1, the figures indicate Stacking
performed quite similarly to our proposed ELSGA approach by reporting auc = 0.81.
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Table 5. The comparison between Module2 (ELSGA (XGB)) and different approaches (standard machine learning, Gaussian Process (GP), deep neural networks,
and ensemble-based approaches, such as Bagging, Boosting and Stacking approaches) for RQ1. We used a 5× 2cv paired t-test to examine how significant the
differences were between the performances of the two models. This meant that every time we compared only two models, one ELSGA vs. one classifier.

All Data Segment1 Segment2 Segment3 Segment4
Classifiers auc p auc p auc p auc p auc p

Logreg 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05

Kneig 0.52± 0.02 <0.05 0.544± 0.01 <0.05 0.52± 0.01 <0.05 0.54± 0.04 <0.05 0.52± 0.02 <0.05

SGD 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05

QdA 0.53± 0.02 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05

SVM 0.55± 0.05 <0.05 0.56± 0.02 <0.05 0.53± 0.03 <0.05 0.57± 0.04 <0.05 0.57± 0.06 <0.05

DT 0.54± 0.01 <0.05 0.58± 0.01 <0.05 0.59± 0.02 <0.05 0.58± 0.02 <0.05 0.60± 0.03 <0.05

Ridge 0.71± 0.07 <0.05 0.73± 0.04 <0.05 0.70± 0.06 <0.05 0.71± 0.05 <0.05 0.71± 0.07 <0.05

SVC 0.52± 0.01 <0.05 0.52± 0.01 <0.05 0.51± 0.001 <0.05 0.51± 0.001 <0.05 0.53± 0.02 <0.05

GP 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.00 0.50± 0.00 <0.05

CNN 0.65± 0.08 <0.05 0.67± 0.07 <0.05 0.70± 0.06 <0.05 0.71± 0.041 <0.05 0.77± 0.11 0.14

LSTM 0.69± 0.05 0.2 0.74± 0.02 <0.05 0.71± 0.06 <0.05 0.71± 0.06 <0.05 0.72± 0.05 <0.05

biLSTM 0.70± 0.05 0.2 0.74± 0.03 <0.05 0.70± 0.07 <0.05 0.72± 0.05 <0.05 0.72± 0.10 <0.05

Blending 0.58± 0.01 <0.05 0.58± 0.004 <0.05 0.59± 0.03 <0.05 0.58± 0.01 <0.05 0.58± 0.01 <0.05

Bagging 0.71± 0.06 <0.05 0.80± 0.04 0.24 0.78± 0.06 0.30 0.81± 0.06 0.41 0.79± 0.09 0.35

Boosting 0.75± 0.05 0.38 0.75± 0.05 <0.05 0.76± 0.06 0.19 0.76± 0.04 0.21 0.75± 0.09 0.15

Stacking 0.74± 0.14 <0.05 0.81 ± 0.01 0.16 0.79± 0.06 0.6 0.78± 0.04 <0.05 0.81± 0.08 0.3

Module2 ELSGA (XGB) 0.76± 0.06 0.81± 0.04 0.80± 0.07 0.80± 0.07 0.82± 0.09
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In addition, we conducted an A/B test by comparing the performance of the models
trained by the original predictors (MORGP) vs. the models built by the extracted predictors
(MEXP). Both groups of predictors (original and extracted) were selected by the optimiza-
tion approach. Indeed, we aimed to reveal the contribution of the extracted features and
original features to predictive models.

From Figure 9, we can observe that more than 50% of the selected predictors (except
in the last segment) were extracted from the extraction process, which translated to the
importance of such predictors in the prediction task (Orange vs. purple bars). In fact, we
considered this proportionate comparison mainly as a sanity check. However, to quantify
the impact of the extracted features, several models were built through WFCV to construct
and evaluate the models. The figures suggest the MEXP outperformed the MORGP by
3%, 1%, 7%, and 10% in segments one, two, three, and four, respectively (green vs. pink
bars). The statistical tests also indicated how significant the differences were in segments
two, three, and four by rejecting the null hypothesis (α is set to 0.05 as critical value).
Although the test failed to reject the null hypothesis (by p-value = 3.32), and concluded the
difference between the two models was not significant in the first segment (green and pink
bars), the Extracted predictors (green) showed their valuable impacts by providing almost
the same performances 0.66 with respect to the models trained by the mixed predictors
(blue bar). The information extracted and used as extracted predictors in the models had
greater, and more significant, impact on the predictive model’s performances, compared to
the original predictors.

Figure 9. The outcome of the models built by different predictors. “ORGP” denotes the original
predictors percentage, and “EXP” shows the proportion of the extracted predictors obtained after the
optimization process.

5.2. RQ2—Snapshot-Stacked Ensemble Results

To answer RQ2, we took the output of the optimization process as the input of the
ensemble module. We aimed to build a general model that could be used to predict the
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claims over the year, given vehicle usage. Thus, identical features from all segments were
combined and injected into the first deep network to build and generate several diverse
snapshot models. In addition, each season, as one additional feature, was added to the
identical features to support generalization.

Given Equation (13), the number of cycles were set to N = 20 to generate 20 different
snapshot models over the 400 epochs. Of the data, 60% were considered to train the
snapshots and 30% to be the validation set to obtain the hard labels and soft predictions.
Accordingly, 10% of the data was held out to test the meta-learning model at the final stage
(see Figure 7 for visualization purposes). To quantify the diversity in the generated models,
we used a disagreement measure, defined in Equation (20). This metric calculated the
relation between the number of times the base classifiers predicted the same label, in terms
of the total number of instances [78].

disi,j =
1
N

N

∑
k=1

f n(Sni(rk) 6= Snj(rk)) (20)

where Sni(rk) refers to the label assigned by the snapshot (Sni) to readout rk. Value f n()
is the function of truth predicate that counts the cases where Sni was correct and the Snj
was wrong and vise-versa. Figure 10 illustrates the disagreement between the 20 snapshots.
In the first phase, the hard labels predicted by the 20 snapshot models (here we took the
average of the models’ performances) was compared with the performance of the same
algorithms used in the second module (Module2) evaluation, depicted in Table 6. The AUC
values obtained over the 5-fold WFCV showed that, in almost all cases, our approach was
superior in the first phase (Module3 First phase–Snapshots–, see Table 6), compared to the
other approaches. This was not the case when it came to comparing the ensemble-based
and Module2 performances. The classification results from all segments (0.81 vs. 0.79
in Segment 1, 0.80 vs. 0.75 in Segment 2, 0.82 vs. 0.80 in Segment 3 and 0.82 vs. 0.78 in
Segment 4) and union of the features (0.76 vs. 0.75) suggested the first module performed
better with respect to the first deep net (first phase). A similar observation was obtained
when the first phase was compared with other ensemble approaches, such as Bagging,
Boosting, and Stacking. This meant we did not see any improvement from the snapshot
models in the first deep neural networks.

This motivated us to construct meta-learning with the aim to learn from the errors
received in the first phase and improve the prediction in the second phase, that being the
final prediction. The results of the snapshot models (20× 3) were horizontally added to the
data-set (the validation set in the first phase) to be trained and tested again in the second
phase. This resulted in 60 extra new features in the data set. This meant the data considered
as the validation set in the first deep networks (first phase/layer) became a new data set by
carrying 60 extra features (in the second phase). Accordingly, the test set (10% of the whole
data), which was held out, was used to assess the model. It is necessary to remark that, in
each phase, we trained the deep neural network separately in one training shot. This meant
that, in the first phase, we constructed 20 models in one training process using CCAS,
and, in the second phase, we built a meta-learning model through one training process.

The result of the second phase is shown in Table 6 (last row), which was compared with
other approaches. The figures represented in the table confirm significant improvement
due to the stacking and ensemble snapshots performances generated in the first phase.
We almost obtained auc > 0.80 in all experiments, with the exception of one in Segment 2
(auc = 0.75). The meta-learning built by the snapshot models could learn the errors
obtained from the previous training and prediction phases. This resulted in a general
predictive model that could be potentially used for claim/fault prediction in all seasons.
Indeed, the diversity of the snapshots, illustrated in Figure 10, highly supported the
second phase to build a generalized meta-learning model for the final prediction. Taking
into account the results obtained from the above experiments, the ensemble approaches
performed well, compared with other classifiers, including linear and deep networks.
However, the superiority of our approach in this complex problem was very evident. This
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led us to examine these approaches in a different context. Thus, we conducted the proposed
approach with the other three ensemble approaches on several different datasets to assess
the generality and to ascertain whether the SSED performed equally to, or better than, its
performance in other application domains. This is an important consideration, since it
assesses the generality of the approach to deal with data from different contexts (see Table 7
for the details information of the data sets).
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Figure 10. The disagreement of 20 snapshot models generated by cosine annealing in different
segments. The heat-map shows how the generated snapshots were diverse in the first phase of
Module2. In these plots, each cell under the orthogonal represents the disagreement between two
snapshots–e.g., SP1 vs. SP2–. The more div (Equation (20)) value close to 1 the more diverse the
models. From the heat-maps we observed that the snapshots in Segment 2 and Segment 3 were more
diverse than in Segment 1 and Segment 4.

The observations obtained from Table 8 show that SSED, in most cases, took the first
rank, in terms of accuracy of performance, and outperformed other ensemble approaches.
Individual comparison between SSED Vs. Bagging and Boosting indicated that the SSED
almost consistently outperformed the two approaches on all datasets. However, this consis-
tency was violated on dataset 7, where the figures show that Boosting provided slightly
better results (%2). In contrast, the comparison between SSED vs. Stacking suggests that
Staking had better generalization on the datasets. However, the statistical tests on the results
(datasets 3, 7, 9, and 10) described the differences as not being statistically significant, when
considering the critical value at α = 0.05. Concerning the same comparison, we observed
the value of the t-test on the figures obtained on datasets 1, 4, 6, 10, 11, where the SSED
performed better, confirmed the differences were statistically significant, and concluded
that SSED outperformed the Stacking approach.
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Table 6. The comparison between Module 3 (SSED)-first phase, Module3 (SSED)-second phase and different approaches (standard machine learning, Gaussian
Process (GP), deep neural networks, and ensemble based approaches, such as Bagging, Boosting and Stacking approaches) for RQ2. We used 5× 2cv paired
t-test to examine how significant the differences were between the performances of the approaches. In this statistical test, only “Module3 (SSED)-second phase”
was compared with other algorithm performances. Every time we compared only two models; e.g., Module3 (SSED)–second phase vs. Boosting, or Module3
(SSED)–second phase vs. Module3 (SSED)–first phase, or Module2–ELSGA (XGB).

Union of the Features Segment1 Segment2 Segment3 Segment4
Classifiers auc p auc p auc p auc p auc p

Logreg 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05

Kneig 0.52± 0.02 <0.05 0.544± 0.01 <0.05 0.52± 0.01 <0.05 0.54± 0.04 <0.05 0.52± 0.02 <0.05

SGD 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05

QdA 0.53± 0.02 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05

SVM 0.55± 0.05 <0.05 0.56± 0.02 <0.05 0.53± 0.03 <0.05 0.57± 0.04 <0.05 0.57± 0.06 <0.05

DT 0.54± 0.01 <0.05 0.58± 0.01 <0.05 0.59± 0.02 <0.05 0.58± 0.02 <0.05 0.60± 0.03 <0.05

Ridge 0.71± 0.07 <0.05 0.73± 0.04 <0.05 0.70± 0.06 <0.05 0.71± 0.05 <0.05 0.71± 0.07 <0.05

SVC 0.52± 0.01 <0.05 0.52± 0.01 <0.05 0.51± 0.001 <0.05 0.51± 0.001 <0.05 0.53± 0.02 <0.05

GP 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.05 0.50± 0.00 <0.00 0.50± 0.00 <0.05

CNN 0.65± 0.08 <0.05 0.67± 0.07 <0.05 0.70± 0.06 0.12 0.71± 0.041 <0.05 0.77± 0.11 0.2

LSTM 0.69± 0.05 0.06 0.74± 0.02 <0.05 0.71± 0.06 0.19 0.71± 0.06 <0.05 0.72± 0.05 <0.05

biLSTM 0.70± 0.05 0.2 0.74± 0.03 <0.05 0.70± 0.07 <0.05 0.72± 0.05 <0.05 0.72± 0.10 <0.05

Blending 0.58± 0.01 <0.05 0.58± 0.004 <0.05 0.59± 0.03 <0.05 0.58± 0.01 <0.05 0.58± 0.01 <0.05

Bagging 0.71± 0.06 0.10 0.80± 0.04 0.10 0.78± 0.06 0.25 0.81± 0.06 0.37 0.79± 0.09 0.25

Boosting 0.75± 0.05 0.21 0.75± 0.05 <0.05 0.76± 0.06 0.43 0.76± 0.04 0.09 0.75± 0.09 0.09

Stacking 0.74± 0.14 <0.05 0.81± 0.01 <0.05 0.79± 0.06 0.14 0.78± 0.04 <0.05 0.81± 0.08 <0.05

Module2 ELSGA (XGB) 0.76± 0.06 0.28 0.81± 0.04 0.26 0.80± 0.07 0.12 0.80± 0.07 0.30 0.82± 0.09 0.38

Module3 SSED First
phase (Snapshots) 0.75± 0.04 0.21 0.79± 0.03 0.05 0.75± 0.07 0.46 0.80± 0.05 0.30 0.78± 0.10 0.20

Module3 SSED Second phase
(Stacked Ensemble) 0.80± 0.11 — 0.83± 0.04 — 0.75± 0.04 — 0.82± 0.07 — 0.84± 0.08 —
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Table 7. The detailed information of the datasets.

# Database # of Samples # of Features # of Classes

1 VBS-fault 8712 4 2

2 Car insurance claim 10,302 27 2

3 Covtype 581,012 55 3

4 Cmiyc 27,297 22 2

5 Kdd 494,021 42 17

6 Building permit 198,900 43 8

7 Diabetes 768 9 2

8 Mnist 9271 787 10

9 Musk 6598 168 2

10 Parkinson 756 757 2

11 Spam 4400 59 2

12 Waveform 5000 41 3

13 Australia 142,193 24 2

Table 8. The comparison between SSED and three ensemble approaches on various datasets. The sta-
tistical t-test was applied to the performances of the approaches. Each time, SSED and one approach
(e.g., Bagging) was compared, and the p-value reported.

# Datasets
Accuracy

SSED Bagging p-Value Boosting p-Value Stacking p-Value

1 VBS fault 0.95 ± 0.02 0.93± 0.01 <0.05 0.75± 0.35 0.14 0.93± 0.01 <0.05

2 Car insurance claim 0.77± 0.01 0.73± 0.006 0.069 0.74± 0.004 0.27 0.73± 0.001 0.067

3 Covtype 0.81± 0.1 0.68± 0.009 <0.05 0.63± 0.002 <0.05 0.84± 0.005 0.32

4 Cmiyc 0.98± 0.01 0.91± 0.01 <0.05 0.93± 0.006 <0.05 0.91± 0.004 <0.05

5 Kdd 0.80± 0.23 0.36± 0.34 <0.05 0.78± 0.001 0.480 0.62± 0.43 0.288

6 Building permit 0.93± 0.02 0.89± 0.003 <0.05 0.94± 0.004 <0.05 0.91± 0.002 <0.05

7 Diabetes 0.73± 0.11 0.75± 0.03 0.35 0.74± 0.04 0.41 0.75± 0.03 0.35

8 Mnist 0.93± 0.04 0.85± 0.004 <0.05 0.86± 0.008 <0.05 0.99± 0.004 <0.05

9 Musk 0.97± 0.01 0.98± 0.002 0.28 0.84± 0.3 0.19 0.99± 0.01 0.282

10 Parkinson 0.94± 0.02 0.73± 0.05 <0.05 0.82± 0.04 <0.05 0.77± 0.02 <0.05

11 Spam 0.87± 0.15 0.82± 0.21 0.46 0.91± 0.17 0.35 0.98± 0.003 0.10

12 Waveform 0.88± 0.02 0.86± 0.003 0.34 0.82± 0.01 <0.05 0.86± 0.01 0.23

13 Australia 0.99± 0.003 0.81± 0.003 <0.05 0.99± 0.007 0.42 0.99± 0.01 0.29

6. Discussion and Conclusions and Future Work

This paper presents a two-phase snapshot-stacked ensemble approach to predict
warranty claims/breakdowns in the automotive sector. The experimental evaluation,
using the logged data from thousands of heavy-duty trucks, showed that the proposed
approach could properly predict failures based on vehicle usage. Regarding the research
questions introduced in Section 1, we evaluated the key aspects, which expressed our
approach’s efficiency, effectiveness, stability and generality. Considering the first objective
(RQ1), figures obtained in model performance experiments showed a significant difference
between the optimization and other classifiers. The results in terms of feature contribution
were auspicious. Our A/B test experiments, illustrated in Figure 9, explain how effectively
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the extracted features contributed to the predictive model. Statistical tests also indicated the
improvement induced by the extracted features was significantly different from the original
features. It was also observed that the model constructed by the extracted features in the
first segment provided similar performances compared to the model trained by both the
original and extracted predictors. Therefore, we answer RQ1 by stating that: our proposed
adapted heuristic approach outperforms the other approaches to extract the best representation of
vehicle usage in order to build a complex ensemble deep network for final claim prediction.

Concerning the second objective (RQ2), the results explained how meta-learning could
learn from the errors received by the snapshot models in the first phase of the ensemble
approach to predict warranty claims. Indeed, the results in the second phase confirmed the
stability of the meta-learning performance over the course of the year, taking into account
different distributions of vehicle usage. The SSED could produce a generic predictive
model that performed well on data from different seasons for claim predictions but was
also promising for other less complex datasets comparable to the performance of Stacking.
Therefore, we answer RQ2 by stating that: the snapshot-stacked ensemble deep neural networks
approach can successfully map usage to claims and outperforms the other compared algorithms.
The figures obtained in the last phase also showed the potential in building a general forecasting
model for this complex claim prediction problem. In addition, the results obtained on various datasets
confirmed this claim.

The findings of this work also reveal limitations of the proposed approach, which
suggest new directions for future research. The first limitation pertains to the issue of
modeling vehicle usage by taking into account various contexts. In this work, our concerns
were time and vehicle usage to formulate the claim prediction. However, we did not
include other contexts, such as location (where the vehicles were driven), which highly
affect usage and predictive models. This limitation strongly motivates us to extend our
approach by incorporating context knowledge (e.g., location) for a better mapping between
usage and breakdowns. An interesting extension of our work could focus on vehicle
profiling. We could utilize segmentation to model vehicles’ behaviors in different contexts,
leading to identification of good and bad driving styles as an important factor in vehicle
performance. Thus, in this matter, driver behavior as an extra knowledge input could be
used to characterize the style of vehicle usage in different contexts. Regarding contexts,
we hypothesize that climate could impact snapshot diversity. This could also explain the
dissimilarities shown in the results, which could be subject to further investigation.
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