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Abstract: The affective state of a person can be measured using arousal and valence values. In this
article, we contribute to the prediction of arousal and valence values from various data sources. Our
goal is to later use such predictive models to adaptively adjust virtual reality (VR) environments
and help facilitate cognitive remediation exercises for users with mental health disorders, such as
schizophrenia, while avoiding discouragement. Building on our previous work on physiological,
electrodermal activity (EDA) and electrocardiogram (ECG) recordings, we propose improving prepro-
cessing and adding novel feature selection and decision fusion processes. We use video recordings as
an additional data source for predicting affective states. We implement an innovative solution based
on a combination of machine learning models alongside a series of preprocessing steps. We test our
approach on RECOLA, a publicly available dataset. The best results are obtained with a concordance
correlation coefficient (CCC) of 0.996 for arousal and 0.998 for valence using physiological data.
Related work in the literature reported lower CCCs on the same data modality; thus, our approach
outperforms the state-of-the-art approaches for RECOLA. Our study underscores the potential of us-
ing advanced machine learning techniques with diverse data sources to enhance the personalization
of VR environments.

Keywords: affect recognition; affective state; signal processing; image processing; face detection;
machine learning; deep learning

1. Introduction

Affect recognition (AR) is a signal and pattern recognition process that plays a major
role in affective computing [1]. Affective computing inspires the development of devices
that are capable of detecting, processing, and interpreting human affective states. As such,
AR is an interdisciplinary research area which includes signal processing, machine learning,
psychology, and neuroscience. The affective state refers to the emotional condition or mood
of an individual at a given time [1,2]. The prediction of affective states can help researchers
in a variety of fields. For example, various systems can be optimized based on the affective
state of the user for a better experience. AR can also aid psychologists in the diagnosis
of mental disorders. AR can detect the affective state of a person by monitoring their
activity and vital signs through sensors. AR can then classify affective states by analyzing
physiological data, and/or visual data [3,4].

Wearable sensors are sensors that can be worn on the human body or inserted into
clothing. Most state-of-the-art AR studies rely on wearable sensors for their low-cost, rich
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functionality, and valuable insights [1]. Integrated wearable sensor applications can be
used in daily lives as they are portable and non-intrusive. They can be used to measure
physiological data such as electroencephalography (EEG), electrooculography (EOG), elec-
trocardiography (ECG), electromyography (EMG), respiratory inductive plethysmography
(RIP), blood oxygen, blood pressure, photoplethysmography (PPG), temperature, electro-
dermal activity (EDA), inertia, position, voice, etc. Wearable-based AR systems can be used
in various healthcare applications to monitor the affective states of individuals [1].

AR can also be based on visual data, which depend on multimodal features. These
features are extracted from images or video. The visual features used for AR include infor-
mation about facial expressions, eye gaze and blinking, pupil diameter, and hand/body
gestures and poses [4]. Such features can be categorized as appearance or geometric fea-
tures. Geometric features refer to the first and second derivatives of detected landmarks,
the speed and direction of motion in facial expressions, as well as the head pose and eye
gaze direction. Appearance features refer to the overall texture information resulting from
the deformation of the neutral expression. They depend on the intensity information of an
image, whereas geometrical features determine distances, deformations, curvatures, and
other geometric properties [3]. There are three common data modalities currently being
considered for visual AR solutions: RGB, 3D, and thermal.

Such AR solutions may be geometric-based or appearance-based. Visual AR systems
that are based on images of faces usually consist of four main stages: face localization, face
registration, feature extraction (predesigned or learned), and classification/regression [3].
Multimodal fusion is an additional step that is usually performed to combine multiple
data modalities [3]. There are three types of multimodal fusion: early, late, and sequential
fusion. Early fusion combines the modalities at the feature level, while late fusion com-
bines the modalities at the decision level. Sequential fusion combines different modality
predictions sequentially.

The circumplex model [5] (see Figure 1) is widely used in AR studies [6–9] to predict
affective states. In this dimensional model, affective states are characterized as discrete
points in a two-dimensional space of valence and arousal axes. Valence is used to rate
the positivity of the affective state. Arousal is used to rate the activity/energy level of
the affective state. There are four quadrants in the circumplex model: low arousal/low
valence, low arousal/high valence, high arousal/low valence, and high arousal/high
valence. The four quadrants are attributed with the sad, relaxed, angry, and happy affective
states, respectively.
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In the remainder of this article, we will provide a brief background about the source
of data and a literature review in Section 2. In Section 3, we will discuss our methodology
and solution. We will then report our results in Section 4. Finally, we will end this article
with a Conclusions section (Section 5).

2. Background

The application of AR requires a large amount of data, collected from a diverse
group of participants. Researchers have published datasets to enable the validation and
comparison of results. The data sets can consist of posed, induced, and/or natural emotions.
Datasets can be grouped based on content, data modality, and/or participants [3]. Such
datasets are composed of posed or spontaneous facial expressions, primary expressions or
facial action units as labels, still images or video sequences (i.e., static/dynamic data), and
controlled laboratory or uncontrolled non-laboratory environments.

2.1. Source of Data

The remote collaborative and affective interactions (RECOLA) dataset was recorded at
the University of Fribourg, Switzerland, to study socio-affective behaviors from multimodal
data in the context of computer-supported collaborative work [6,10,11]. Spontaneous
and naturalistic interactions were collected during the resolution of a collaborative task
that was performed in pairs and remotely through a video conference. This consists of
twenty-seven 5 min synchronous audio, video, ECG and EDA recordings. Even though
all participants speak French fluently, they have different nationalities (i.e., French, Italian
or German), which provides some diversity in the expression of emotion. The data were
labelled in the arousal and valence affective dimensions, and manually annotated using
a slider-based labelling tool. Each recording was annotated by six native French speakers.
A combination of these individual ratings is used as ground truth label. The RECOLA
data set is obtained, from [12], to assist in the analysis of continuous emotional dimensions,
such as arousal and valence. The RECOLA dataset includes recordings of 27 participants,
from which the recordings of 18 participants contain all types of data modalities (i.e., audio,
video, ECG, and EDA).

2.2. State of the Art of RECOLA for Affect Recognition

In this section, we present relevant work from the literature on the prediction of arousal
and valence values from physiological, visual, and multiple sensor sources, particularly
focused on the RECOLA dataset. Table 1 further reports the results from the literature we
will discuss in this section. In our previous work [13], we used physiological data (EDA and
ECG recordings and their features) from the RECOLA dataset to predict the arousal and
valence emotional measures. The EDA and ECG signals were processed and labelled with
arousal or valence annotations and a series of regressors were tested to predict arousal and
valence values. The optimizable ensemble regressor achieved the best root mean squared
error (RMSE), Pearson correlation coefficient (PCC), and concordance correlation coefficient
(CCC). The baseline results achieved by the individual models for the gold-standard
emotion sub-challenge (GES) in 2018’s audio/visual emotion challenge (AVEC) [14] are
reported in terms of CCC. Their physiological results were obtained through an emotion
recognition system based on support vector machines (SVMs), used as static regressors.
For visual data, the authors of [14] achieved the best CCC on arousal predictions, using
a multitask formulation of the Lasso algorithm. They obtained the best results on valence
predictions, using an SVM. Hierarchical fusion over the different data modalities was
then applied via Lasso and multitask Lasso to improve the predictions of arousal and
valence values.

Amirian et al. [10] used random forests along with various schemes of fusion to predict
arousal and valence values from RECOLA’s audio, video, and physiological data. Their
best results were obtained by a combination of random forests and linear regression fusion
over all modalities (audio, visual, and physiological). The End2You tool [15] is a toolkit
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for multimodal profiling that was developed by the Imperial College of London to per-
form continuous dimensional emotion labels of arousal and valence values. It uses raw
audio, visual information (i.e., video), and physiological ECG signals as input. The authors
of [15] predicted arousal and valence on RECOLA’s ECG signal and video recordings.
Brady et al. [16] used RECOLA’s physiological data and baseline features, as specified in
AVEC 2016 [11], to apply regression over arousal and valence values via a long short-term
memory (LSTM) Recurrent Neural Network (RNN). They also extracted higher-level fea-
tures from raw video and audio features using deep supervised and unsupervised learning,
based on sparse coding, to ease the learning of the baseline SVM regressor. They used
convolutional neural network (CNN) features to predict arousal and valence values from
video recordings, using an RNN. Finally, they proposed predicting continuous emotion
dimensions using a state space approach such as Kalman filters, where measurements
and noise are handled as Gaussian distribution. This is to fuse the affective states (i.e.,
predictions) from the audio, video, and physiological data. According to [12], the results
obtained by the authors of [16] are the best results obtained on RECOLA in the literature.
As such, we will compare our results to theirs.

Han et al. [17] used RECOLA’s visual features to predict arousal and valence val-
ues through an RNN. Weber et al. [18] used visual features provided by RECOLA’s
team in 2016 to perform regression via a SVM with late subject, multimodal fusion (at
decision/prediction-level). The authors of [19] exploited CNN features from RECOLA’s
videos as well as an RNN to estimate valence values. CNNs have also shown promising
results when used to perform AR. AlexNet [7] was used in a number of studies to obtain
deep visual features. AlexNet has also been applied on emotion recognition, where results
demonstrated evident performance enhancements [8,9]. In this work, we exploit CNNs,
such as ResNet and MobileNet, to predict continuous dimensional emotion annotations in
terms of arousal and valence values from visual data.

Povolny et al. [20] presented a multimodal emotion detection algorithm using audio,
bottleneck, and text-based features as well as the features suggested by Velstar et al. [11].
The set of visual features in [11] were accompanied with CNN features, extracted from hid-
den layers, after training the CNN for landmark localization. The authors of [20] proposed
multiple linear regression systems, trained on individual feature sets, for predicting the
arousal and valence emotional dimensions. In comparison to [20], Somandepalli et al. [21]
used Kalman filters for decision level fusion. They first used support vector regression
(SVR) to perform predictions from unimodal features, where predictions are noisy estimates
of arousal and valence. The output of the SVR models was inputted to the Kalman filters
for fusion. They later [22] proposed facial posture cues and a voicing probability scheme
to deal with the multimodal nature of the problem. Table 1 summarizes the results of the
above-mentioned state-of-the-art studies and further compares them to our results, as they
will be presented in the remainder of the paper. A lower RMSE shows better performance.
On the other hand, higher PCC and CCC show better performance.

The following references showed the potential of using RNNs and CNNs to per-
form AR. Gunes and Schuller [23] trained two separate deep CNNs. The CNNs were
pre-trained on a large dataset, and then fine-tuned on a dataset of audio and video.
Gunes et al. [24] showed the potential of using LSTMs for dimensional emotion prediction.
Ringeval et al. [25] used a LSTM RNN to perform regression for dimensional emotional
recognition based on visual, audio, and physiological modalities. Chen et al. [26] used
LSTMs to identify the long-term inter-dependency within segments of a multimedia sig-
nal. They proposed a new conditional attention fusion scheme, in which modalities are
weighted according to their current and previous features. Tzirakis et al. [27] used a shal-
low network followed by identity mapping to extract features from raw audio and video
signals. The obtained features were then inputted into a two-layer LSTM. The LSTM was
trained from end-to-end instead of training it on individual components separately. This
approach outperformed traditional approaches based on baseline handcrafted features in
the RECOLA dataset. Huang et al. [28] applied a deep neural network and hypergraphs
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for emotion recognition using facial features. Facial features were extracted from the last
fully connected layer of the trained CNN, which were then treated as attributes for the
hypergraph. Ebrahimi et al. [29] used a CNN to extract features that were input into
an RNN. The RNN categorizes the emotions in RECOLA’s video recordings.

Table 1. Summary of results from the literature on prediction of arousal and valence values.

Data Type Prediction Reference Technique Results (RMSE, PCC, CCC)

Physiological

Arousal

Current ECG + EDA Optimizable Ensemble 0.0168, 0.9965, 0.9959
[13] ECG + EDA Optimizable Ensemble 0.0154, 0.9976, 0.9967
[10] ECG Random Forests N/A, N/A, 0.097
[10] EDA Random Forests N/A, N/A, 0.074
[14] ECG SVM N/A, N/A, 0.065
[14] EDA SVM N/A, N/A, 0.029
[15] ECG End2You N/A, N/A, 0.154
[16] ECG RNN 0.218, 0.407, 0.357
[16] EDA RNN 0.250, 0.089, 0.082

Valence

Current ECG + EDA Optimizable Ensemble 0.0083, 0.9985, 0.9978
[13] ECG + EDA Optimizable Ensemble 0.0139, 0.9954, 0.9946
[10] ECG Random Forests N/A, N/A, 0.139
[10] EDA Random Forests N/A, N/A, 0.206
[14] ECG SVM N/A, N/A, 0.043
[14] EDA SVM N/A, N/A, 0.058
[15] ECG End2You N/A, N/A, 0.052
[16] ECG RNN 0.117, 0.412, 0.364
[16] EDA RNN 0.124, 0.267, 0.177

Visual

Arousal

Current MobileNet-v2 CNN 0.1220, 0.7838, 0.7770
[10] Random Forests N/A, N/A, 0.514
[14] Multitask Lasso N/A, N/A, 0.312
[15] End2You N/A, N/A, 0.358
[16] CNN + RNN 0.201, 0.415, 0.346
[17] RNN N/A, N/A, 0.413
[18] SVM + Subject Fusion N/A, N/A, 0.682

Valence

Current MobileNet-v2 CNN 0.0823, 0.7789, 0.7715
[10] Random Forests N/A, N/A, 0.498
[14] SVM N/A, N/A, 0.438
[15] End2You N/A, N/A, 0.561
[16] CNN + RNN 0.107, 0.549, 0.511
[17] RNN N/A, N/A, 0.527
[18] SVM + Subject Fusion N/A, N/A, 0.468
[19] CNN + RNN 0.107, 0.554, 0.507

Multimodal

Arousal

Current Optimizable Ensemble + MobileNet-v2 0.0640, 0.9435, 0.9363
[10] Random Forests + Linear Regression 0.118, 0.776, 0.762
[14] Hierarchical Fusion + Lasso N/A, N/A, 0.657
[16] Kalman Filters 0.115, 0.774, 0.770
[20] Multiple Linear Regressors N/A, N/A, 0.833
[22] SVR + Kalman Filters N/A, N/A, 0.703

Valence

Current Optimizable Ensemble + MobileNet-v2 0.0431, 0.9454, 0.9364
[10] Random Forests + Linear Regression 0.104, 0.634, 0.624
[14] Hierarchical Fusion + Multitask Lasso N/A, N/A, 0.515
[16] Kalman Filters 0.100, 0.689, 0.687
[20] Multiple Linear Regressors N/A, N/A, 0.596
[22] SVR + Kalman Filters N/A, N/A, 0.681

N/A (not applicable); RMSE (root mean squared error); PCC (Pearson correlation coefficient); CCC (concordance
correlation coefficient); ECG (electrocardiogram); EDA (electrodermal activity); SVM (support vector machine);
RNN (recurrent neural network); CNN (convolutional neural network); SVR (support vector regression).
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Most state-of-the-art studies performed complex processing, feature extraction, and
multimodal fusion processes. Despite these efforts, the prediction performances of their
models can still be improved. We were able to perform simple processing and achieved
better results using only the EDA and ECG recordings of RECOLA in [13]. In this study,
we aim to further improve our prediction performance and initiate our work on the video
recordings of RECOLA.

2.3. Study Contributions

Our goal in this work is to design and develop a novel adaptable intervention to
remediate cognitive impairments in people with schizophrenia using virtual reality (VR),
based on synergistic computer science and psychology approaches. A novel machine
learning approach which depends on visual and physiological sensory data is required to
adaptively adjust the virtual environment to the affective states of users. In the future, we
also aim to automatically optimize the level of cognitive effort requested by users, while
avoiding discouragement. AR can help determine the affective states of users and this study
presents the first milestone of this project. In our proposed solution, a multi-sensory system
will be used to improve the prediction of affective states. The information from the various
data sources in the system will be treated to predict the affective state of the user, during
VR immersion, through classical and deep machine learning techniques. Figure 2 displays
a high-level diagram of our proposed solution. It is composed of subsystems: one system
for each data modality, namely the visual (video) and physiological (EDA and ECG) data
modalities. We chose to focus on one data modality at a time to perfect the results for each
modality first, before we combine all modalities in our final system (i.e., multimodal fusion).
In [13], we operated on physiological data from RECOLA’s physiological signal recordings
of EDA and ECG. We processed the EDA and ECG signals by applying time delay, early
features fusion, arousal and valence annotation labelling, and data shuffling and splitting.
We used early fusion to combine the EDA and ECG modalities at the feature level. We
exploited an optimizable ensemble regressor for the purpose of predicting continuous
dimensional emotion annotations in terms of arousal and valence values.
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In this study, we extend our previous work from [13] by (1) adding preprocessing
operations; (2) applying feature standardization; (3) applying feature selection; (4) testing
additional regressors, namely tree regressors and exploring RNNs, specifically a bidirec-
tional LSTM (BiLSTM); and (5) introducing decision fusion. Furthermore, we introduce
an additional source of data, namely video recordings. We initially use data from RECOLA
as a proof-of-concept mechanism. In the future, we will operate on real data that we will
collect in our laboratory.

3. Materials and Methods

As we will further present in this section, we processed the physiological signals and
visual recordings and labelled them. Then, we performed continuous dimensional emotion
predictions of arousal and valence values, through classical machine learning and deep
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learning techniques. Specifically, we experimented with tree and ensemble regression as
well as a BiLSTM RNN for physiological data. We chose to work with tree and ensemble
models because they are known to be fast and effective [30]. On the other hand, we chose
to work with a BiLSTM RNN because it is capable of processing data in the form of time
series and sequences, which suits our needs. BiLSTM RNNs can learn from past and future
samples/time steps. For visual data, we experimented with ResNet and MobileNet CNNs
as they offer a good trade-off between accuracy, speed, and size.

3.1. Processing of Physiological Signals

In our work, RECOLA recordings of 18 participants were used for training and valida-
tion, as well as testing purposes. All records were preprocessed by applying time delay
and sequencing, early feature fusion, replacement of missing values, feature standard-
ization/normalization, arousal and valence annotation labelling, and data shuffling and
splitting. After processing the physiological data, classical regressors and a BiLSTM RNN
were used for predicting arousal and valence values. Figure 3 details our approach for
processing physiological data.
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RECOLA’s physiological recordings (i.e., EDA and ECG) were sampled at a rate of
1000 samples per second. This means that one sample was captured every 1 millisecond.
On the other hand, RECOLA’s audio and video recordings were sampled every 40 ms.
Similarly, the physiological features were calculated every 40 ms as well. To enable the
synchronous use of data, we subsampled the EDA and ECG signals by considering only
the readings occurring every 40 ms. However, the corresponding EDA and ECG features in
RECOLA were only calculated after 2 s of recording. Therefore, we skipped the readings
that were collected before that time. As a result, the first 50 samples of the recordings
were discarded.

We used the baseline EDA and ECG features of RECOLA, as described in [11]. Skin
conductance response (SCR) is EDA’s rapid, transient response, whereas skin conductance
level (SCL) is EDA’s slower, basal drift. In [11], both SCR and SCL are extracted from the
EDA signal through a third-order Butterworth filter, at different cut-off frequencies. In
addition to the EDA readings, there are 62 EDA features, which include: the slope, the fast
Fourier transform (FFT) entropy and mean frequency of the SCR, the mean, its first-order
derivative, and the negative part of its derivative for EDA, SCR, and SCL; the standard
deviation, kurtosis, and skewness of EDA, SCR, and SCL; the proportion of EDA, SCR, and
SCL; the x-bound of EDA, SCR, and SCL; the non-stationary index (NSI) and normalized
length density (NLD) of EDA, SCR, and SCL; and deltas of all of the above. Besides the
ECG readings, there are 54 ECG features, which consist of the heart rate and heart rate
variability; the zero-crossing rate; the first 12 FFTs; the entropy, mean frequency, and slope
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of ECG’s FFT; the first four statistical moments (mean, standard deviation, kurtosis, and
skewness); NSI and NLD; the power at very low, low, high, and low/high frequencies;
and deltas of all of the above. We fused the EDA and ECG features together into one
matrix. The resulting matrix was 132,751 samples (rows) × 118 features (columns) (1 EDA
reading + 1 ECG reading + 62 EDA features + 54 ECG features) in size.

During our work, we observed that some of RECOLA’s physiological feature vectors
contained missing values. A missing value can also be called not a number (NaN), which
represents an undefined or unrepresentable value; for example, the result of dividing
a number by zero. Missing values can negatively influence the performance of machine
learning techniques. Hence, we replaced them with zeros.

To study the impact on the regression performance, multiple data preprocessing
techniques were investigated. In particular, we explored standardizing/normalizing the
EDA and ECG features using the z-score method:

xi’ = zi =
xi − µ

σ
(1)

where xi is a sample feature value; while µ and σ are the mean and the standard deviation
of the feature vector, respectively. This approach standardized the data in each feature
vector to have a mean of 0 and a standard deviation of 1.

In this study, the main sources of outliers in the features could be due to sensor
malfunctions, human errors, noise from participant-specific behaviors, or natural variations
between participants. We implemented a feature selection mechanism which depends
on the number of outliers in a given feature vector. To be considered an outlier, the
value of a feature should be “more than three scaled median absolute deviations from the
median” [30]. Our method first detects outliers within each feature vector. Then, it checks
if the number of outliers in any feature vector is higher than an acceptable percentage of
the data. If so, the corresponding feature vector is discarded. Only feature vectors that
contain an number of outliers that is less than or equal to the acceptable percentage of the
data are selected for machine learning. For instance, when we set the acceptable percentage
of outliers to 5%, 50 features are selected as a result. When we set the acceptable percentage
of outliers to 15%, 103 features are selected as a result. The more outliers are allowed, the
more features pass the features selection test.

Data shuffling is necessary to ensure the randomization and diversity of the data. The
data were shuffled and split, where 80% were used for training and validation, and 20%
were used for testing. The shuffled indexes were saved for use at later stages of our work.
Since recordings were for different participants and time steps, we needed the shuffled
indexes to ensure that the training, validation, and testing records were matching for all
data modalities. Table 2 represents the breakdown of the data.

Table 2. Physiological data breakdown.

Training Samples Testing Samples Total

106,201 26,550 132,751

For annotation labelling, the first 50 annotations were ignored to match the physiologi-
cal recordings. The remaining annotations were accordingly used to label the corresponding
physiological samples. All labelling and fusion of data samples and features were carried
out based on the recording time.

3.2. Processing of Visual Data

In our work, 18 RECOLA videos were preprocessed. All videos were preprocessed
by applying frame extraction and sequencing, face detection and cropping, annotation
labelling, and data augmentation. After processing, the extracted images (i.e., video frames)
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of participants’ whole faces were inputted into CNNs for predicting arousal and valence
values. Figure 4 illustrates our approach for processing visual data.
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The videos available in the RECOLA dataset are approximately 5 min long each. They
were processed by extracting their video frames at a rate of 25 frames per second. As
a result, we obtained an image frame every 40 ms of video recording. That is a total of
approximately 7500 frames per video. To match the physiological data, we skipped the
first 50 frames again and ensured that the data were synchronous (i.e., had all samples
for the same times of recording). For example, we would have EDA and ECG readings,
EDA and ECG features, and a video frame collected at the 40th millisecond of recording,
the 80th millisecond of recording, and so on. The same shuffling indexes we used for
shuffling the physiological data were used here to randomize and shuffle the video frames
to ensure data coherence. Visual data were then split using an 80–20% split, as in the case
of physiological data. Table 3 represents the breakdown of the visual data.

Table 3. Visual data breakdown.

Parameters Original 80–20% Split

Training Frames 106,201 84,960
Validation Frames N/A 21,241

Testing Frames 26,550 26,550

Total 132,751 132,751
N/A (not applicable).

Face detection was then applied to narrow the prediction area. We used the cascade
object detector based on the Viola–Jones algorithm to detect people’s faces [31]. Following
face detection, we noticed that the algorithm failed to detect faces in some of the obtained
video frames. Hence, we cropped these images according to the face coordinates of the
nearest image with a detected face. In the best-case scenario, the nearest image with
a detected face would be the image preceding or following the image with a missed face.
In the worst-case scenario, the algorithm would have failed to detect faces in a group of
images, where the nearest image with a detected face would be more than one video frame
away. In this case, the coordinates of the face might be off due to the movement of the
participant in the video. Thus, manual intervention to edit the images was required.

Similar to the approach in Section 3.1, the first 50 annotations (2 s × 25 samples per
second) were ignored. The remaining annotations were accordingly used to label the
corresponding visual samples. All labelling and fusion of data samples and features were
carried out based on the recordings time.
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3.3. Machine Learning

We exploited both classical and deep machine learning methods to perform continuous
dimensional emotion predictions of arousal and valence values.

3.3.1. Classical Regression

We trained and validated four tree regressors (fine, medium, coarse, and optimiz-
able tree), as well as ensembled regressors such as boosted trees, bagged trees, and an
optimizable ensemble. A fine regression tree is small and has a minimum leaf size of
4 [30]. A medium regression tree has a minimum leaf size of 12. A coarse regression tree is
larger, with a minimum leaf size of 36. An optimizable regression tree optimizes training
hyperparameters (i.e., minimum leaf size) using a Bayesian optimizer. Boosted trees repre-
sent an ensemble of regression trees using the LSBoost algorithm. Bagged trees represent
a bootstrap-aggregated ensemble of regression trees. An optimizable regression ensemble
optimizes training hyperparameters (ensemble method, number of learners, learning rate,
minimum leaf size, and number of predictors to sample) using Bayesian optimization.

We performed 5-fold cross-validation during training to protect against overfitting.
For the classical machine learning approach, we used RECOLA’s EDA and ECG recordings
along with their features as described earlier. Table 4 displays the dimensions of the datasets
we used for classical regression. As discussed in Section 3.1, we fused the baseline EDA
and ECG features of RECOLA, described in [11].

Table 4. Summary of classical machine learning data.

Dataset Samples EDA ECG Final Dimensions

Training 106,201 1 EDA reading + 62 features 1 ECG reading + 54 features 106,201 × 118
Validation 5-fold cross-validation on training data

Testing 26,550 1 EDA reading + 62 features 1 ECG reading + 54 features 26,550 × 118

3.3.2. Recurrent Neural Network (RNN) Regression

We also trained and validated a BiLSTM RNN, using sequences of ECG and EDA,
to predict arousal and valence values. A BiLSTM network learns bidirectional long-term
dependencies between time steps of time series or sequence data [30]. These dependencies
can be useful when we want the network to learn from the complete time series at each
time step. In this case, the EDA and ECG signals were processed into sequences. Since
the physiological signals contained in RECOLA were sampled every 1 millisecond, unlike
the other modalities, which were sampled every 40 ms, the physiological signal samples
were grouped into 40 ms sequences. As a result, we had 132,751 labelled sequences of
EDA and ECG readings (without features) that were composed of 40 samples each. The
data sequences were divided into a training set of 106,201 sequences and a testing set of
26,550 sequences. The training set was further broken with an 80–20% split to allow for
validation. As a result, the final training set contained 84,960 sequences, and the validation
set contained 21,241 sequences. We did not use the feature sets for training the BiLSTM
RNN model, since it is a deep learning approach, where the neural network learns features
directly from the data. Thus, the processing steps related to physiological features from
Section 3.1 were not applied on the data used for RNN regression.

Table 5 shows the training parameters of the BiLSTM network. We experimentally
set the initial learning rate to 0.0001, and the number of epochs to 30. As there were
84,960 training sequences, we set the minimum batch size to 9 in order to evenly divide the
training data into 9440 equal batches and ensure the whole training set was used during
each epoch. This resulted in 9440 iterations per epoch (84,960/9 = 9440). For validation
frequency, we divided the number of iterations by 2 to ensure that the training process
was validated at least twice per training epoch. We set the number of hidden units to 125.
Since the network was bidirectional, the number of hidden units multiplied by 2; that is
250 units. The hidden state can contain information from all previous samples/time steps,
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irrespective of sequence length. A BiLSTM can include past and future information. Lastly,
we used the stochastic gradient descent with momentum (SGDM) optimizer for training.

Table 5. BiLSTM Training Parameters.

Parameters and Options Amount/Value

Original Sequences 132,751
Training Sequences 84,960

Validation Sequences 21,241
Testing Sequences 26,550
Sequence Length 40 ms/samples

Learning Rate 0.0001
Minimum Batch Size 9
Number of Epochs 30

Iterations per Epoch 84,960/9 = 9440
Validation Frequency 9440/2 = 4720

Hidden Units 125 × 2 = 250
Optimizer/Learner SGDM

3.3.3. Convolutional Neural Network (CNN) Regression

We also experimented with two pretrained MATLAB CNNs: ResNet-18 and MobileNet-
v2. ResNet-18 is a CNN that is 18-layers-deep, whereas MobileNet-v2 has a depth of
53 layers [30]. Both of these pretrained CNNs are capable of classifying images of 1000 ob-
ject categories, such as a keyboard, mouse, pencil, and many animals. As a result, these
networks have learned rich feature representations for a wide range of images. ResNes-18
and MobileNet-v2 have an image input size of 224 × 224 × 3.

To fine-tune the pretrained CNNs for regression to predict arousal and valence values,
we customized the layers of each CNN to suit our needs and apply data augmentation.
We, thus, replaced the image input layer to make it accept images of size 280 × 280 × 3.
Additionally, we replaced the final fully connected layer and the classification output layer
with a fully connected layer of size 1 (the number of responses, i.e., arousal/valence value)
and a regression layer. The convolutional layers of the CNNs extract image features that are
then used by the last learnable layer and the final classification layer to classify the input
image [30]. These layers have information about converting the extracted features into class
probabilities, loss values, and predicted labels. In the cases of ResNet-18 and MobileNet-v2,
the last learnable layer is the fully connected layer. We adjusted the learning rates of the
last learnable layer in order to make the CNNs learn faster in the new fully connected layer
than in the transferred/pretrained convolutional layers by setting the learning rate factors
for weights and biases to 10.

The amount of training data was increased by applying randomized data augmen-
tation. Data augmentation allows CNNs to train to be invariant to distortions in image
data and helps to prevent overfitting, by preventing the CNN from memorizing the exact
characteristics of training images. We use augmentation options such as random reflection
in the x-axis, random rotation, and random rescaling. As aforementioned, we replaced the
image input layer of the pretrained CNNs (ResNet-18 and MobileNet-v2) to allow them to
take larger input images of size 280 × 280 × 3, but the images in our video frames did not
all have this size. Therefore, we used an augmented image datastore to automatically resize
the images. We also specified additional augmentation operations to perform on the images
in order to prevent the CNNs from memorizing image features. We randomly reflected
the images along the vertical x-axis, and randomly rotated them from the range [–90, 90]
degrees, and randomly rescale them from the range [1, 2]. These changes do not affect the
contents of the training images; however, they will help the CNNs in extracting/learning
more features from the images.

We modified the training options and parameters depending on the size of our input
data. Table 6 summarizes the training parameters we used for training the CNNs. We
experimentally set the initial learning rate to 0.0001, and the number of epochs to 30. As
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there were 84,960 training images, we set the minimum batch size to 9 in order to evenly
divide the training data into 9440 equal batches and ensure the whole training set was
used during each epoch. This resulted in 9440 iterations per epoch (84,960/9 = 9440). For
validation frequency, we divided the number of iterations by 2 to ensure that the training
process was validated at least twice per training epoch. We used the SGDM optimizer
for training.

Table 6. CNN training parameters.

Parameters and Options Original 80–20% Split

Training Images 106,201 84,960
Validation Images N/A 21,241

Testing Images 26,550 26,550
Learning Rate 0.0001

Minimum Batch Size 9
Number of Epochs 30

Iterations per Epoch 84,960/9 = 9440
Validation Frequency 9440/2 = 4720
Optimizer/Learner SGDM

N/A (not applicable).

3.3.4. Decision Fusion

We fused the testing predictions from various regressors and neural networks by
averaging them to observe how this fusion affected the prediction performance. Let N
be the number of trained regressors and neural networks, and P be the predictions set
obtained by model i; the final predictions set, Pf inal , can then be computed as follows:

Pf inal =
P1 + P2 + . . . + Pn

N
=

∑n
i=1 Pi

N
(2)

4. Results and Discussion

After training the aforementioned models, we tested them by predicting the arousal
and valence values on the testing sets. This helped to evaluate the performance of the
trained models when they were presented with new data. We used the RMSE, PCC, and
CCC performance measures to enable a comparison with similar work in the literature.
The RMSE simply measures the root of the mean of squared difference between the set
of arousal/valence predictions and the set of the actual values [11,23,30]. The RMSE is
calculated as follows:

RMSE =

√
∑n

i=1(ŷi − yi)
2

N
(3)

PCC measures the linear correlation between the set of arousal/valence predictions
and the set of the actual values [11,23,30]. PCC is estimated using the following formula:

PCC = ρ =
∑n

i=1
(
ŷi − µŷ

)(
yi − µy

)√
∑n

i=1
(
ŷi − µŷ

)2·∑n
i=1
(
yi − µy

)2
(4)

CCC measure combines PCC with the square difference between the mean of the set
of arousal/valence predictions and the set of the actual values [11,30]. The CCC can be
evaluated by the following equation:

CCC = ρc =
2ρσŷσy

σŷ2 + σy2 +
(
µŷ − µy

)2 (5)

where N is the total number of samples; ŷi and yi are the predicted and actual values
for a given sample at time/index, i; ρ is PCC between the predicted and actual sets; σŷ
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and σy are the standard deviations of the predicted and actual sets; and µŷ and µy are the
mean values of the predicted and actual sets. A smaller RMSE value represents better
performance. On the other hand, larger PCC and CCC values represent better performance.
The following sections will discuss our results and prediction performance in further detail.

4.1. Results on Physiological Data

This section contains a discussion of the results we obtained on physiological data
from RECOLA’s database.

4.1.1. Classical Regression Results

As described in Section 3.3.1, we tested seven regression models including four tree
regressors and three ensemble models. Our results for the three ensemble models were
similar to our previous results from [13], where the optimizable ensemble regressor out-
performed the other models. For arousal predictions, it achieved a testing RMSE, PCC,
and CCC of 0.0173, 0.9966, and 0.9956, respectively. For valence predictions, it achieved
a testing RMSE, PCC, and CCC of 0.0126, 0.9957, and 0.9950, respectively. As far as we
know, these results are better than any results reported in other state-of-the-art studies
using the physiological data from RECOLA.

Replacing missing values with zeros and feature standardization/normalization
through the z-score method positively influenced the prediction performance of both
arousal and valence predictions. The best performance was achieved via the optimizable
ensemble regressor. For arousal, it achieved a testing RMSE, PCC, and CCC of 0.0170,
0.9967, and 0.9958, respectively. For valence, it achieved a testing RMSE, PCC, and CCC of
0.0106, 0.9971, and 0.9965, respectively. As such, we can conclude that a processing mecha-
nism which includes replacing missing values and z-score standardization improves the
prediction performance when predicting the emotional measures of arousal and valence.

After feature selection, our prediction performance improved. A feature selection
mechanism which allows only 5% of outliers (50 features) produced better results for arousal
predictions. On the other hand, allowing up to 15% of outliers (103 features) produced
better results for valence predictions. With 50 features selected, the optimizable ensemble
regressor achieved an RMSE, PCC, and CCC of 0.0168, 0.9965, and 0.9959 when predicting
arousal values. With 103 features selected, the optimizable ensemble regressor achieved
an RMSE, PCC, and CCC of 0.0083, 0.9985, and 0.9978 when predicting valence values.

Table 7 summarizes the validation and testing results of the classical machine learning
regressors. The validation results were computed through 5-fold cross-validation over the
training data. The testing results were obtained by having the trained model predict arousal
and valence values on the testing set. The row corresponding to the highest prediction
performance, for each case, is displayed in bold font in the tables. Figure 5 displays a plot
of the predicted arousal and valence values against the actual values, as per the best model.
A perfect regression model has predicted values equal to the actual values; in which case,
all points would be on the diagonal line [30]. The vertical distance from the diagonal line
to any point represents the prediction error for that point. Good models would have small
errors, where the predictions are scattered near the line.

4.1.2. Recurrent Neural Network (RNN) Results

We tested the trained BiLSTM RNN with a dataset of 26,550 sequences. Each sequence
was 40 ms/samples in length. Table 8 summarizes the validation and testing results from
BiLSTM regression in terms of the RMSE, PCC, and CCC performance measures.

This shows that the classical regression results are better than the BiLSTM results
when predicting arousal and valence values. In spite of this observation, it is worth noting
that our results are comparable to the results obtained in [16] and outperform the baseline
results from [14]. For arousal, our results are better than those of [16], but that is not the
case for valence.
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Table 7. Classical regression results after feature standardization and selection.

Prediction Regressor Acceptable
Outliers

Selected
Features

Validation
RMSE Testing RMSE, PCC, CCC

Arousal

Fine Tree 100% 118 0.046975 0.0420, 0.9751, 0.9751
Medium Tree 100% 118 0.055288 0.0494, 0.9653, 0.9651
Coarse Tree 100% 118 0.076615 0.0697, 0.9296, 0.9279

Optimizable Tree 100% 118 0.045176 0.0396, 0.9780, 0.9779
Boosted Trees 100% 118 0.143590 0.1440, 0.6821, 0.5237
Bagged Trees 100% 118 0.026890 0.0221, 0.9948, 0.9927

Optimizable Ensemble 100% 118 0.021043 0.0170, 0.9967, 0.9958
Optimizable Ensemble 5% 50 0.020137 0.0168, 0.9965, 0.9959
Optimizable Ensemble 15% 103 0.054835 0.0533, 0.9597, 0.9574

Valence

Fine Tree 100% 118 0.026728 0.0237, 0.9830, 0.9830
Medium Tree 100% 118 0.031906 0.0280, 0.9761, 0.9760
Coarse Tree 100% 118 0.046718 0.0422, 0.9450, 0.9443

Optimizable Tree 100% 118 0.025805 0.0230, 0.9840, 0.9840
Boosted Trees 100% 118 0.099252 0.0987, 0.6784, 0.5164
Bagged Trees 100% 118 0.016891 0.0137, 0.9958, 0.9940

Optimizable Ensemble 100% 118 0.012907 0.0106, 0.9971, 0.9965
Optimizable Ensemble 5% 50 0.012644 0.0099, 0.9976, 0.9969
Optimizable Ensemble 15% 103 0.010682 0.0083, 0.9985, 0.9978

The rows corresponding to the highest prediction performances are displayed in bold font.
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Table 8. BiLSTM regression results.

Prediction Validation RMSE Testing RMSE, PCC, CCC

Arousal 0.18461 0.1832, 0.2515, 0.1089
Valence 0.12774 0.1268, 0.1773, 0.0567

4.2. Results on Visual Data

As described in Section 3.3.3, we tested two CNN models: ResNet-18 and MobileNet-
v2. Table 9 summarizes the validation and testing results of these CNNs. Our results
outperform the baseline results, reported in [14], of 0.312 and 0.438 CCCs for arousal and



Sensors 2023, 23, 5613 15 of 19

valence, respectively. Additionally, they are comparable to other results from the literature
(see Section 2.2).

Table 9. CNN regression results.

CNN Prediction Number of Epochs Validation RMSE Testing RMSE, PCC, CCC

ResNet-18
Arousal

30 0.15281 0.1524, 0.5952, 0.5446
60 0.14386 0.1443, 0.6844, 0.6353

150 0.12683 0.1284, 0.7605, 0.7336

Valence 30 0.11651 0.1167, 0.6720, 0.5571

MobileNet-v2
Arousal

30 0.14565 0.1458, 0.6452, 0.6192
60 0.13653 0.1367, 0.7113, 0.7031

150 0.12178 0.1220, 0.7838, 0.7770

Valence
30 0.09890 0.0979, 0.6576, 0.6315

150 0.08309 0.0823, 0.7789, 0.7715

The rows corresponding to the highest prediction performances are displayed in bold font.

We further experimented with the training parameter of the number of epochs. We
first increased the number of epochs by another 30 epochs to a total of 60 epochs. Then, we
added 90 more epochs for a total of 150 training epochs. Increasing the number of epochs
leads to a longer training period; hence, more learning. Thus, a higher number of epochs
can potentially enhance the prediction performance of the CNNs. Table 9 also summarizes
the results of increasing the number of training epochs. The table proves that the higher the
number of training epochs, the better the prediction performance. Finally, the MobileNet-v2
CNN achieved better performance over the ResNet-18 CNN. By increasing the number of
epochs to 150, the MobileNet-v2 CNN achieved a testing RMSE, PCC, and CCC of 0.1220,
0.7838, and 0.7770 at arousal predictions, respectively. For valence predictions, it achieved
a testing RMSE, PCC, and CCC of 0.0823, 0.7789, and 0.7715, respectively. To the best of our
knowledge, these results are better than the literature. More performance enhancement is
expected if the number of epochs is increased. However, we chose to stop at 150 epochs
due to the time- and power-consuming process of training CNNs. Figure 6 displays a plot
of the predicted arousal and valence values against the actual values, as per the best model.
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4.3. Multimodal Fusion Results

As described in Section 3.3.4, we applied decision fusion across the two data modalities
(physiological and visual) to fuse the best predictions from the best regressor and CNN. As
such, we fused the predictions of the optimized ensemble regressor for the physiological
data with the predictions of the MobileNet-v2 CNN for the visual data. Table 10 shows our
results after decision fusion. As can be seen, our decision fusion mechanism outperformed
the results from the literature. Figure 7 displays a plot of the predicted arousal and valence
values against the actual values after multimodal decision fusion.

Table 10. Decision fusion results.

Prediction Fused Models Testing RMSE, PCC, CCC

Arousal Optimizable Ensemble and
MobileNet

0.0640, 0.9435, 0.9363
Valence 0.0431, 0.9454, 0.9364
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5. Conclusions

In conclusion, we performed continuous emotional predictions of the arousal and
valence dimensions/measures using EDA and ECG recordings and their features, as well
as video recordings extracted from the RECOLA dataset. The EDA and ECG signals were
processed, accompanied with pre-extracted features, and accordingly labelled with their
corresponding arousal or valence annotations. Multiple regressors were trained, validated,
and tested to predict arousal and valence values. We explored various preprocessing steps
to study their effects on the prediction performance. The replacement of missing values and
feature standardization improved the prediction performance. We also applied a feature
selection mechanism which slightly improved our results on physiological data. For
physiological data, the best performance was achieved by optimizable ensemble regression.
To the best of our knowledge, this model outperformed previously published AR studies.
This evidence points towards the use of optimizable ensemble regression for physiological
data in the following steps of this project.
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The video recordings were processed to extract their frames. We then applied a face
detection algorithm to the extracted video frames, which were labelled with their cor-
responding arousal or valence annotations. For images where the algorithm failed to
detect a face, manual work was carried out, which can be a time-consuming process and
is sometimes prone to error. Pretrained CNNs, such as ResNet-18 and MobileNet-v2,
were customized and used to predict the arousal and valence measures. MobileNet-v2
outperformed ResNet-18. Therefore, the MobileNet-v2 CNN will be retained for predicting
affective states using visual data in the remainder of this project. Finally, we applied
multimodal decision fusion to fuse the predictions of the optimizable ensemble on the
physiological data with the predictions of MobileNet-v2 on the visual data. Our multimodal
fusion results outperformed results from the literature.

One limitation of this study is the lack of real data in the context of our specific VR
application. At this stage of our work, we used the RECOLA dataset as a proof of concept.
In future work, we will explore additional data modalities, additional multimodal fusion
techniques, and evaluate the impact of their use in the context of a VR system. We will
then apply our findings and validate our approach on real data, collected in our laboratory.
Future studies could explore the use of additional sensors to not only predict affective
states, but also measure cognitive effort during VR interventions, enabling the development
of more personalized and effective treatments for individuals with cognitive impairments.
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