
Citation: Rodrigues, N.R.P.; da Costa,

N.M.C.; Melo, C.; Abbasi, A.;

Fonseca, J.C.; Cardoso, P.; Borges, J.

Fusion Object Detection and Action

Recognition to Predict Violent Action.

Sensors 2023, 23, 5610. https://

doi.org/10.3390/s23125610

Academic Editors: Min Young Kim

and Byeong Hak Kim

Received: 27 April 2023

Revised: 30 May 2023

Accepted: 4 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Fusion Object Detection and Action Recognition to Predict
Violent Action
Nelson R. P. Rodrigues 1,2,3,*,† , Nuno M. C. da Costa 2,3,4,*,† , César Melo 2,3 , Ali Abbasi 2 ,
Jaime C. Fonseca 2 , Paulo Cardoso 2 and João Borges 2,3,4

1 Engineering School, University of Minho, 4800-058 Guimarães, Portugal
2 Algoritmi Center, University of Minho, 4800-058 Guimarães, Portugal
3 Polytechnic Institute of Cávado and Ave, 4750-810 Barcelos, Portugal
4 2Ai—School of Technology, Polytechnic Institute of Cávado and Ave, 4750-810 Barcelos, Portugal
* Correspondence: id8323@alunos.uminho.pt (N.R.P.R.); id6814@alunos.uminho.pt (N.M.C.d.C.);

Tel.: +351-913034911 (N.R.P.R.); +351-934536668 (N.M.C.d.C.)
† These authors contributed equally to this work.

Abstract: In the context of Shared Autonomous Vehicles, the need to monitor the environment inside
the car will be crucial. This article focuses on the application of deep learning algorithms to present a
fusion monitoring solution which was three different algorithms: a violent action detection system,
which recognizes violent behaviors between passengers, a violent object detection system, and a lost
items detection system. Public datasets were used for object detection algorithms (COCO and TAO)
to train state-of-the-art algorithms such as YOLOv5. For violent action detection, the MoLa InCar
dataset was used to train on state-of-the-art algorithms such as I3D, R(2+1)D, SlowFast, TSN, and
TSM. Finally, an embedded automotive solution was used to demonstrate that both methods are
running in real-time.

Keywords: machine learning; visual intelligence; object detection; image processing; action recognition;
autonomous vehicles

1. Introduction

Mobility could be defined as the potential for movement and the ability to get travel
from one place to another using one or more modes of transport to meet daily needs.
The transportation mode can be called a vehicle. In recent years, a new technological
iteration in the evolution of vehicles has been integrated into mobility, using autonomous
driving. Autonomous vehicles have different levels of automation (Level 0 to Level 5),
and Level 5 is commonly referred to as autonomous, self-driving vehicles. The term
“autonomous” is inconsistently used in the literature, but some state legislation refers
to highly automated driving systems, that is, at or above Level 3 [1,2]. Shared mobility
refers to the shared use of a vehicle for the carrying out of a trip, such as car sharing,
bike sharing, scooter sharing, on-demand ride services, and ride sharing [3]. Although
there exist several vehicles available for our shared mobility, the car is still by far the most
frequently used transportation mode that humans rely on, and it will be the topic for this
article. Within this topic, the concept of shared autonomous vehicles (SAVs) is expected
to gain a huge preponderance, as it will allow for passenger transportation in an easy,
fast, and economical way. The absence of a human driver in SAVs has raised concerns
about passenger safety, making passenger monitoring a critical aspect to ensure the well-
being of both passengers and the vehicle. Detecting incidents of passenger–passenger
violence is particularly relevant in this context, which requires careful consideration of the
SAV concept to guarantee the exclusivity of passengers as human agents and to ensure
their safety is not compromised. On the other hand, it will make it possible for any
passenger action that jeopardizes the vehicle’s integrity to be identified (passenger–vehicle

Sensors 2023, 23, 5610. https://doi.org/10.3390/s23125610 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125610
https://doi.org/10.3390/s23125610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7697-1749
https://orcid.org/0000-0002-8425-3501
https://orcid.org/0000-0001-9601-3874
https://orcid.org/0000-0002-5581-1279
https://orcid.org/0000-0001-6703-3278
https://orcid.org/0000-0002-7924-0060
https://orcid.org/0000-0002-5880-033X
https://doi.org/10.3390/s23125610
https://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/23/12/5610?type=check_update&version=2


Sensors 2023, 23, 5610 2 of 21

interaction), safeguarding the interests of the company providing the service. To implement
this monitoring system, it is essential to develop an algorithm method to recognize human
actions inside the car. This type of method comprises two subclasses: traditional methods
and deep learning methods. Traditional methods require a manually implemented feature
extraction module, and deep learning methods automatically learn to extract the features
that best characterize the image. Although deep learning-based methods achieve results
with state-of-the-art accuracy compared to traditional methods, they also require a lot
of data to process the algorithms, which implies the need to use or to create datasets to
feed them.

Since deep learning-based monitoring algorithms are required to run in real-time,
they must be energy efficient so as not to jeopardize the autonomy of the vehicle. Going
into the aspect of implementing deep learning algorithms in embedded systems, it is
possible to verify that different approaches bring benefits and constraints. Systems such as
field-programmable gate arrays (FPGAs) allow for the implementation of a logic circuit
that is dedicated and specific to the specificity of the developed algorithm. However,
they lead to greater development complexity and the risk of not obtaining results that are
equal or superior to other systems that offer the facilitated of parallel execution. Another
advantage of these systems is the ability to obtain a reduction in consumption compared
to other systems. As an alternative, some systems focus on a generic architecture and
are supported by graphic processing units (CUDA cores), providing easy access to the
parallelization of instructions, and thus achieving rapid deployment at the expense of
greater energy consumption. This solution is typically used to train deep learning-based
methods. Both systems mentioned are possible to find in the industry for the most varied
needs; however, they end up lacking ASIL or SAE. It is worth noting that it may be
the focus of automakers to find a solution that can safeguard the safety of passengers
by providing automotive solutions that enable monitoring systems to perform real-time
inference, and at the same time, ensure that the energy consumption of this solution is
not too high. We propose an embedding object detection and violent action detection into
one pipeline to achieve the best possible performance in human violent action recognition.
For object detection data, we introduced the procedure of collecting and restructuring
public datasets, namely, COCO [4] and TAO [5], which we fused to create the MoLa
InCar dataset [6], an aggressive action and object custom dataset. In object detection, we
tested different versions of the YOLO detector and selected one of the active-development
SOTAs, YOLOv5 [7]. From these studies, we were able to define the best object detection
method for lost items and aggressive objects, which can be easily inserted into complex
video processing pipelines for existing projects. For action recognition, we benchmark
our dataset [6] end-to-end features (RGB, event frames, and optical flow,) using SOTA
2D and 3D CNN models. To conclude, we present our final solution, running all the
algorithms in real-time on an embedded system. The architecture of the proposed solution
is illustrated in Figure 1. The remainder of the paper is organized as follows. Section 2
presents the state-of-the-art, presented with respect to the automotive industry, focusing on
autonomous vehicle developments. The deep learning-based algorithmic solution is used
for action recognition and object detection. The chapter that concludes that it mentions the
deployment solutions to embed the algorithms for in-car scenarios. Section 3 described the
preparation of the dataset with the subtasks performed in the development of the dataset
preparation to be fed into the algorithms. The algorithm analysis is presented in Section 4,
which described the experiments performed for the violent action detection, as well as
for the object detection algorithm, namely the aggressive objects. Section 5 presented the
results of the algorithms that allow for the selection of the best algorithms with the highest
precision and the lowest computational requirements, and also described the pipeline used
for the embedded solution, which will process both algorithms. Finally, Section 6 provides
general conclusions and a discussion.



Sensors 2023, 23, 5610 3 of 21

Figure 1. Architecture description of proposed solution.

2. Related Work

The development and introduction of fully autonomous vehicles is seen as the future
of the automotive industry. With the implementation of this new paradigm, a revolution
is foreseen in the way that transportation are used today. Actions by autonomous vehicle
manufacturers and partners suggest that these vehicles will initially be deployed in shared
mobility services. For example, BMW, Ford, Volkswagen, and Hyundai have all partnered
with various companies to develop autonomous vehicles for ride-sharing and on-demand
services, with production being planned in 2021 [8–10]. Daimler has partnered with Uber
to allow for the introduction of autonomous vehicles in Uber’s ride-sharing network [6].
Toyota has also partnered with Uber with the same goal [11]. Waymo has already started
commercial autonomous ride-sharing services in Tempe, Mesa, and Chandler [12].

There are several developments regarding to the monitoring of human motion using
sensor fusion, such as the work presented by Abbasi et al. [13] although it is does not focuses
for the in-car monitoring, demonstrating the potential of using sensor fusion and deep
learning techniques for multi-human tracking by using NVS sensors. In [14], Melo et al. use
a similar approach of sensor fusion, in this case, by combining RGB and thermal cameras
with deep learning techniques for monitoring the presence of masks on people in public
spaces in the context of COVID-19 and for measuring the body temperature.

Regarding to the works on the in-car environment, the work proposed by Torres et al. [15]
can detect the human body pose inside the vehicle by using a time-of-flight sensor which
that could provide more light immunity compared to RGB sensors. In [16], Dixe et al.
use a similar approach to detect multi-person human body detection by using depth
images generated synthectically with the knowledge of the work developed by Borges et al.
in [17,18]. Although, in [19], Dixe et al. follow a different approach by using generative
adversarial networks (GANs) for automatically generating artificial images of vehicle
interiors to support the developed algorithms for the creation of monitoring systems.

In [20], Dixe et al. presented a monitoring system capable of estimating the state of
the car, namely, the presence of damage, dirt, and stains using semantic segmentation.
A similar work was developed by Faria et al. in [21] by classifying the state of the vehicle
interior with the use of state-of-the-art classifiers using RGB images.

Regarding action recognition, there is a lot of work being developed in this field.
In [22], Carreira et al. introduced a deep learning model and kinetics datasets, which is
a large-scale video action recognition dataset. The model is called two-stream inflatable
3D ConvNet (I3D), and it is an extension of the popular two-stream architecture that
uses spatial and temporal information. Their main contributions are the proposed I3D
model, which is a 3D CNN that inflates 2D filters to 3D, and that uses spatial and temporal
information. We can not only reuse the 2D models’ architecture (e.g., ResNet and Inception),
but we can also bootstrap the model weights from the 2D pretrained models. Following
the same path of spatio-temporal 3D ConvNets is the model R(2+1)D.

Tran et al. [23] present a deeper analysis of the use of spatio-temporal convolutions for
action recognition in videos. Spatio-temporal convolutions are a type of convolutional layer
that can model spatial and temporal dependencies in the input data. They are commonly
used in video action recognition models and are effective for this task. Their main contribu-
tions are a more detailed analysis of the properties of spatio-temporal convolutions and
their impacts on the performance of action recognition models. The authors study different



Sensors 2023, 23, 5610 4 of 21

variations of spatio-temporal convolutions, such as 2D convolutions, 3D convolutions,
and separable spatio-temporal convolutions. They also evaluated the impacts of different
factors such as kernel size, dilation rate, and the number of layers, on the performance of
the models. They trained and tested their algorithm with Sports1M [24], Kinetics [25–27],
UCF101 [28,29], and the HMDB51 [30] datasets, reporting an accuracy of 73.3%, 72%,
96.8%, and 74.5%, respectively. SlowFast is another recent implementation of the Resnet3D
backbone, and it was presented by Feichtenhofer et al. [31] for video action recognition.
SlowFast Networks are a type of two-stream architecture that uses both a slow pathway,
which processes the video at a lower frame rate, and a fast pathway, which processes the
video at a higher frame rate. The technique is partially inspired by the retinal ganglion in
primates, in which 80% of the cells (P-cells) operate at a low temporal frequency and recog-
nize fine details, and 20% of the cells (M-cells) operate at a high temporal frequency and are
responsive to swift changes. Similarly, in SlowFast, the compute cost of the Slow pathway is
4x larger than that of the Fast pathway. Their main contributions are the proposed SlowFast
Networks, which can be trained end-to-end to learn both spatial and temporal represen-
tations of the video. The slow pathway captures long-term temporal information, while
the fast pathway captures fine-grained temporal information. The authors also propose
a new fusion strategy that combines the outputs of the two pathways to make the final
prediction. The proposed method was evaluated on several action recognition datasets,
and it outperforms state-of-the-art methods that use only a single pathway or simple fusion
methods. In [32], the authors present a method for action recognition in videos called
Temporal Segment Networks (TSNs). TSNs is a deep learning method that addresses
the problem of recognizing actions in videos with variable length and temporal structure.
It combines a sparse temporal sampling strategy and video-level supervision to enable
efficient and effective learning, using the whole action video. Their main contributions
are the TSN architecture, which is composed of multiple branches that process different
segments of the input video, and a fusion module that combines the features of all branches
to make the final prediction. The authors also propose several good practices for training
TSNs, such as using multiple segments per video, data augmentation, and a consensus loss
function. In [33], Lin et al. proposed a new method called Temporal Shift Module (TSM) for
video action recognition. TSM is a technique that enables the network to efficiently process
videos of different lengths by shifting the frames of the video in the temporal dimension.
Their main contributions are the proposed TSM module, which can be added to existing
CNN architectures and enables the network to efficiently process videos of different lengths
by shifting the frames of the video in the temporal dimension. Video understanding faces
the challenge of achieving a high accuracy at a low computational cost. While 2D CNNs are
computationally cheap, they fail to capture temporal relationships. Meanwhile, 3D CNNs
are computationally intensive but achieve a high performance. The Temporal Shift Module
(TSM) offers a solution that combines high efficiency with performance by enabling the
exchange of information among adjacent frames, achieving 3D CNN performance while
retaining 2D CNN complexity. TSM can be easily integrated into 2D CNNs without adding
any computational or parameter costs. TSM is also adaptable to online settings, enabling
real-time and low-latency recognition and detection of video objects. The authors also
propose a new architecture that uses the TSM module to process the input video and to
show that it can improve the performance of the model while reducing computational costs.

Object detection is a well-studied area with diverse applications, including mask
detection. The R-CNN family of algorithms [34,35] identifies regions of interest and uses
CNN to detect objects within those regions. More recently, YOLO [36], developed by
Redmon et al., introduces a novel object detection system called YOLO (You Only Look
Once), which is based on a neural network that takes an entire image as input and outputs a
set of bounding boxes and class probabilities for all objects in the image. This is in contrast
to traditional object detection systems that use multiple stages to identify objects, such as
region proposal generation, feature extraction, and object classification. The YOLO object



Sensors 2023, 23, 5610 5 of 21

detection family presented as YOLOv2 [37], YOLOv3 [38], YOLOv4 [39], and YOLOv5 [7],
provides a more accurate and faster method compared to the R-CNN family.

In addition to the development of a method for action recognition in a car environment,
it is necessary to consider its incorporation into it. To do this, it is necessary to select and to
develop an embedded system that allows for the implementation of the algorithm and that
is suitable for the automotive context. Embedded computing systems that are selected to
operate in a vehicle should have certain factors as a selection focus, these being the cost
and the ratio between the operations per second and the energy consumed (FLOPS/Watt).
Even considering the selection based on the mentioned factors, it is relevant to focus on the
development, taking into account the future trends of the automotive industry. With the
prospects of achieving full autonomous driving levels, car control systems are moving
towards a centralized topology, where all the intelligence of the car is composed of a single
processing unit. To meet this general requirement of the automotive industry, NVIDIA
provides its products for the centralized development of all vehicle intelligence. All the
factors mentioned above, such as cost, computing, energy expenditure, ASIL, and SAE are
available for the different needs of autonomous driving. Right now, NVIDIA is a tier 1
company that serves OEM customers who make autonomous cars. Implementations and
direct comparisons between standard and embedded CUDA systems show that it is possible
to achieve the same performance with a 50% reduction in power consumption [40,41].

3. Dataset Preparation

This topic described the subtasks performed in the development of the dataset prepara-
tion to be fed into the algorithms. In Figure 2 summarizes the entire development pipeline
of this article.

Figure 2. Two main development pipelines are presented: (1) lost items and aggressive objects;
(2) violent action. Both with a focus on in-vehicle environment. For each pipeline, 3 identical steps
are made: (1) a toolchain for data generation is implemented (Sections 3.2 and 3.3); (2) models are
selected (Sections 4.1.1 and 4.1.2); (3) evaluate in (Sections 5.1.1–5.1.3).



Sensors 2023, 23, 5610 6 of 21

3.1. MOLAnnotate Framework

For the faster implementation of algorithms, we used the MoLAnnotate Toolkit https:
//github.com/eng-motionlab/molannotate (accessed on 14 December 2022), an open-
source framework for dataset annotation software to merge, fuse, split, check, and export
datasets (videos or/and images) to different algorithms.

3.1.1. Unified Format

The most significant part of the toolkit is in developing a data format that is both
comprehensive and easy to manipulate. As such, we base our JSON format on the COCO
format, as can be seen in Figure 3. The simple definition of JSON is a collection of name-
value pairs in object format (e.g., name: value) [4].

Figure 3. Annotation in MoLa data format.

For the metadata, we defined the name ‘info’ to provide a description of the file,
and the name ‘icenses’ to save a list of all the licenses for the images and videos. The
following names specifically belong to the annotation of the dataset. An example of the
structure of the list object is shown in Figure 3 ‘datasets’, where two datasets are listed
using dictionaries with ‘name’ and the correspondent ‘id’. All the other names follow
the same structure but with different purposes. The categories/classes of the labeling of
the dataset are listed in ‘categories’; each category has at least the following dictionary
structure ‘id’: int, ‘name’: str, ‘dataset’: int—note that int, str, and [] are all variable types of
Python. Similarly, all image information is stored in a list of dictionaries in ‘images’, videos
in ‘videos’, tracking information in ‘tracks’, annotations for each image with bounding
boxes for each category in ‘annotations’, and annotations for videos, such as the original
start frame of the labeling and the end frame, in ‘video_annotations’.

3.1.2. Annotation Pipeline

The annotation pipeline consists of 5 types of algorithms: merge, fusion, split, check,
and export (Table 1).

https://github.com/eng-motionlab/molannotate
https://github.com/eng-motionlab/molannotate


Sensors 2023, 23, 5610 7 of 21

Table 1. Annotation Pipeline.

Process Algorithm Description

Merge mergedatasets.ipynb Merge different datasets
fixclasses.ipynb Find and fix duplicate classes

cleanclasses.ipynb Remove classes with missing annotations and images
cleanimages.ipynb Remove images missing from dataset folder

Fusion mixclasses.ipynb Mix/Fusion of classes into other classes & reorder class ids

Split splitbyannotations.ipynb Split using annotations in test, val and train
splitbyimages.ipynb Split using images in test, val and train

reorderids.ipynb Reorder class ids

Check checkmissings.ipynb Check missing images, videos and annotations

Export json2yolo.ipynb Exports dataset to yolo format
json2mmaction2.ipynb Exports dataset to mmaction2 format

3.2. Violent Action

For the violent action, we used the MoLa InCar dataset [6]. This dataset was recorded
with RGB, Depth, Thermal, and Event-based data (see Figure 4). Although it was recorded
in a laboratory environment, the actions were performed on a car testbed (see Figure 5).
The resulting dataset contains 6400 video samples and more than 3 million frames, collected
from 16 distinct subjects (different ages, genders, and heights). We also provided infor-
mation related to the clothing color, material, and skin tone, according to the Fitzpatrick
scale [42] of each subject for each recording. The dataset contains 58 action classes, includ-
ing violent and neutral (i.e., nonviolent) activities. Although our labeling is the primary
binary for the moment (violent and nonviolent), it fits the purpose of detecting violence
inside the vehicle.

To train violent action models, we labeled the frames ‘VIOLENT’ and ‘NONVIOLENT’,
and used RGB, Thermal, NVS, and optical flow frames for end-to-end training. Using
MOLAnnotate, we started by ‘dataset2json.ipynb’ to convert the data and labels of the
dataset into the MOLA annotation format. This script imports the categories, videos,
and images, and creates the respective annotations.

Figure 4. From Top Left to Bottom Right: RGB, Depth, Point-Cloud, Thermal, NVS, and Events Grayscale.



Sensors 2023, 23, 5610 8 of 21

Figure 5. Laboratory car testbed from different perspectives.

The resultant ‘INCAR.json’ (see Figure 6) had 760 original videos annotated, 1551 video
annotations (760 videos split into 745 ‘VIOLENT’ and 806 ‘NONVIOLENT’ labeled clips),
and 443,433 images (annotated only with one of the two classes, ‘VIOLENT’ or ‘NONVIO-
LENT’).

Figure 6. Dataset-to-JSON example.

Then, we used the ‘json2mmaction2.ipynb’ to export our dataset to the format of the
mmaction2 algorithms methods (Figure 6). This is a framework that can be used to train
end-to-end action recognition models. In this case, ‘json2mmaction2.ipynb’ exports the
dataset, generates a file list for all videos, and splits the file list into train lists (50%, 4 pairs,
subjects P1–P8), validation (25%, 2 pairs, subjects P9–P12), and test (25%, 2 pairs, subjects
P13–P16), as can be seen in Figure 6. Additionally, this all-in-one approach with the split
function inside of the export script is one way of exporting, but in the next section, we



Sensors 2023, 23, 5610 9 of 21

give a different example of splitting the JSON into smaller training, validation, and testing
JSONs, and then exporting.

3.3. Aggressive Objects

Another example of the requirements of training algorithms for detecting lost items
and aggressive objects such as knives, weapons, and bats, versus non-aggressive personal
objects such as a book, phone, or bag, we selected public datasets such as the COCO [4] and
TAO [5] public datasets. COCO was assembled to tackle object recognition in the context of
broader scene understanding. In this example pipeline, we used COCO 2017 annotations
containing 80 object classes, with a total of 123,287 images and 886,284 instances labeled.

First, the public JSONs are merged into the MOLA format. Then, they are split by via
annotation into train, validation (val), and test. Then, the 373 classes are fused into two
different classes: aggressive and nonaggressive. TAO is a dataset for Tracking Any Object,
containing 2907 high-resolution videos from other datasets (Charades, LaSOT, ArgoVerse,
AVA, YFCC100M, BDD-100K, and HACS), captured in diverse environments, which are half
a minute long on average and have tracks labeled for 833 object categories. The TAO dataset
follows an annotation format similar to that of COCO [12]. In our pipeline, we imported
363 TAO object classes with annotations, with a total of 54,649 images and 167,751 instances
labeled. We first prepare the entire dataset using the open source annotation pipeline
developed by merging the datasets using ‘mergedatasets.ipynb’ (see Figure 7). After this,
we start by fixing the classes with ‘fixclasses.ipynb’ (like, for example, removing duplicate
categories), then cleaning the classes (“cleanclasses.ipynb”) with missing annotations and
missing images, and cleaning the images (“cleanimages.ipynb”) that could be missing from
the original directory of the datasets. The merged JSON ’cocotaolbo.json’ had 1488 videos,
194,943 images, 8123 tracks, and 1,348,451 annotations. Unlike the previous section exam-
ple, we illustrated splitting the JSON into training, validation, and testing JSONs before
exporting. As such, ‘cocotaolbo.json’ is split using annotations (“splitbyannotations.ipynb”,
see Figure 7) that are balanced per category in 70% training annotations, 20% validation,
and 10% for testing. Finally, the JSON is exported to YOLOv5 in this example. As such,
for object detection, our requirements were a Multi-class Multi-object Detector (MCMOD).
As such, we choose the You Only Look Once (YOLO) detector [36]. After testing different
versions of YOLO, we selected the most recent state-of-the-art active development and
stable Python framework, the YOLOv5 from Ultralytics [7]. Therefore, as an example, we
export ‘cocotaolbo.json’ to train aggressive custom data.

Figure 7. JSONs to MOLA example.



Sensors 2023, 23, 5610 10 of 21

After fusion, we use the script ‘json2yolo.ipynb’ to first export the dataset to the
YOLOv5 structure, and then we generate the ‘filelist’ with the paths of the images. Cus-
tomizing the dataset to feed YOLOv5 with aggressive data training, we can perform various
experiments with different fusions of aggressive classes using ‘mixclasses.ipynb’. Addition-
ally, note that fusion can be done before or after the split of JSONs. In this example pipeline,
we fused aggressive classes (such as knife, fork, bat, bow, gun, weapon, and rifle) in one
class, named ‘aggressive’, and the rest of the classes were fused in a ‘nonaggressive’ class
(such as a person, car or book). Therefore, because we do not remove any class, the same
number of annotations remains (as can be seen in Figure 8). These fusions are made in the
script ‘mixclasses.ipynb’, resourced to an Excel report, where the user can select how to
mix the classes. Then, we used ‘json2yolo.ipynb’ to export our dataset to the format of the
YOLO algorithm [18], as shown in Figure 8. In this case, “json2yolo.ipynb” exports the
dataset (images and labels) and generates a file list for each train, validation, and test json.
This is a different approach from the previous section.

Figure 8. MOLA JSON to YOLOv5.

4. Algorithmic Analysis

The objective of this section is to define experiments for the recognition of violent
actions and the detection of objects. All these tests were performed on a server with an
Intel(R) Xeon(R) Gold 6140 CPU 2.30 GHz processor, 128 GB RAM, and NVIDIA Tesla
V100-PCIE-16 GB computing GPU.

4.1. Methods
4.1.1. Violent Action

The dataset customization was done during recording and labeling. Also, we were
only able to label two classes, “VIOLENT” and “NONVIOLENT”. As such, no further
customization was needed. In our experiments, we evaluate five state-of-the-art action
recognition methods on the MoLa InCar dataset [6], the I3D [22], R(2+1)D [23], the Slow-
Fast [31], TSN [32], and TSM [33]. We started by training our dataset in 3D convolutional
networks. This is a simple, yet effective approach for spatio-temporal feature learning
using deep 3-dimensional convolutional networks (3D ConvNets) trained on a large-scale
supervised video dataset. 3D ConvNets are more suitable for spatio-temporal feature
learning compared to 2D ConvNets.



Sensors 2023, 23, 5610 11 of 21

E1—I3D: for our first experiment (E1), we started with the deep learning model
introduced by Carreira et al. [22], the I3D. We trained the raw frames of each video using
a sampling frame pipeline of clip length (Frames of each sampled output clip) × frame
interval (Temporal interval of adjacent sampled frames) × num clips (Number of clips to
be sampled) of 32 × 2 × 1. Also, this method was trained with the Resnet3d backbone
without pretraining, and with a learning rate of 0.0025 for 100 epochs.

E2—R(2+1)D: following the same path of the spatio-temporal 3D ConvNets, in E2,
we selected a more recent model R(2+1)D developed by Tran et al. [23]. This method
was trained using a sampling frames pipeline of 32 × 2 × 1, the ResNet2Plus1d custom
backbone, and no pre-trained weights, with a learning rate of 0.01875 for 100 epochs.

E3—SlowFast: for our third experiment (E3), we selected SlowFast with the Resnet3D
backbone, which was presented by Feichtenhofer et al. [31]. This method was trained with
the Resnet3dSlowFast backbone, with no pre-trained weights, and with a learning rate of
0.0125 for 100 epochs.

E4—TSN: concerning our method of labeling, we also decided to experiment with
temporal ConvNets instead of spatio-temporal, such as the Temporal Segment Network
(TSN); for this particular reason, we chose the work developed in [32] for our fourth
experiment (E4). This method was trained with the Resnet50 backbone, without pre-trained
weights, and with a learning rate of 0.0009375 for 100 epochs.

E5—TSM: with the good results obtained from TSN, we trained in E5 a faster state-
of-the-art temporal action recognition model, the Temporal Shift Model (TSM) presented
by Lin et al. in [33]. This method was trained with the ResnetTSM backbone, with no
pre-trained weights, and with a learning rate of 0.001875 for 100 epochs.

4.1.2. Aggressive Objects

For object detection, our requirements were a Multi-class Multi-object Detector (MC-
MOD). As such, we choose the You Only Look Once (YOLO) detector [36]. The YOLO
system can perform object detection in real-time due to its single-stage architecture. The net-
work is made up of convolutional layers and ends in a few fully connected layers that
predict the bounding boxes and class probabilities. Using a single network, YOLO can
achieve a high degree of accuracy while maintaining real-time performance, making it
suitable for applications such as self-driving cars, robotics, and real-time surveillance. One
of the advantages of the YOLO system is that it can learn from contextual information
in the image, such as spatial relationships between objects. This allows the system to
make more accurate predictions, and reduces false positives. Additionally, the YOLO
system can be trained in a large number of object classes, making it highly adaptable to a
wide range of applications. After testing different versions of YOLO, we selected a SOTA
model, under active development, with a stable Python framework, the YOLOv5 from
Ultralytics [7]. We then adapted the framework to our pipeline for training lost items and
aggressive custom data. Customizing the dataset to feed YOLOv5 with aggressive data
training, we performed various experiments with different fusions of aggressive classes.

4.1.3. Embedded System

All models were implemented in PyTorch in the first iteration, exported as a weight
file (weights.wts) or converted to Open Neural Network Exchange (ONNX), and then used
TensorRT was used to load weights, define the network, and perform inference. TensorRT
supports quantized floating points, which compresses and rounds floating-point numbers
to 8-bit integers. This dramatically improves arithmetic throughput while lowering storage
and memory bandwidth needs. To use the Int8 quantization it is necessary to prepare
the calibration images, which are the ones used for the training; in our case, we selected
1000 images. Figure 9 shows the flow chart of how the algorithm for the embedded system
was implemented to process the 3 methods (2 object detectors and 1 violent detector). First,
we use the lost items objects detector, which has the person class and can detect if there is a
person inside the vehicle; if there is none, we start to infer on any other object inside the



Sensors 2023, 23, 5610 12 of 21

vehicle. If there is at least one person inside the vehicle, the lost items object detector stops
inferring and starts inferring the aggressive objects. Also, if there is more than one person
inside the vehicle, the violent detection method starts to check if there is any violence
between the passengers.

Figure 9. Pipeline for inference in NVIDIA AGX Xavier.

5. Results

This section can be divided into subtopics. It should provide a concise and precise de-
scription of the experimental results, their interpretation, and the experimental conclusions
that can be drawn.

5.1. Experimental Evaluation
5.1.1. Violent Action

The results of our experiments with the above-mentioned methods are reported in
Table 2. The methods were trained with the same data with resized samples at 256p.
Accuracy is the number of correct predictions divided by the total number of predictions
(sum of the diagonal of confusion matrix, divided by the total number of predictions); Top-1
accuracy represents this accuracy, as it uses the highest probability prediction to match the
expected answer (the sum of the diagonal of confusion matrix divided by the total number
of predictions); Mean class accuracy, is calculated as the mean of the number of correct class
predictions divided by the total number of class predictions (the mean of each confusion
matrix column accuracy).

Table 2. Inference accuracy for violent action.

Experiment Methods Top-1 Accuracy Mean Class Accuracy

E1 I3D 0.7673 0.7737
E2 R(2+1)D 0.7737 0.7737
E3 SlowFast 0.5524 0.5546
E4 TSN 0.9540 0.9544
E5 TSM 0.9437 0.9432



Sensors 2023, 23, 5610 13 of 21

From the results, we were able to conclude that temporal action recognition worked
better with our dataset labels context. Also, using TSM has the advantage of low latency
(a faster inference time) for real-time applications. As such, we used TSM in the final
embedded system.

In Table 3 presents the results for the detection of violent actions using different
features for the TSN and TSM methods.

Table 3. Best results per feature.

Feature Experiment Top-1 Accuracy Mean Class Accuracy Epoch

thermal E4 0.9519 0.9452 20
thermal E5 0.9500 0.9426 85
thermal E5 (no pre-train) 0.8731 0.8402 75
thermal E4 (no pre-train) 0.8846 0.8572 75

rgb E4 0.9422 0.9263 5
rgb E5 0.9827 0.9852 10
rgb E5 (no pre-train) 0.9730 0.9788 40
rgb E4 (no pre-train) 0.9634 0.9667 65
nvs E4 0.8990 0.8891 35
nvs E5 0.9732 0.9739 75
nvs E5 (no pre-train) 0.8804 0.8721 75
nvs E4 (no pre-train) 0.7216 0.6472 10

opticalflow E4 0.9692 0.9633 50
opticalflow E5 0.9885 0.9909 75
opticalflow E5 (no pre-train) 0.8962 0.8730 65
opticalflow E4 (no pre-train) 0.9077 0.8878 85

In conclusion, for a binary context, RGB is not needed to have good results. We can
use optical flow and NVS to get similar results, and the training is faster. As such, violent
action information is conserved through the different features. Additionally, we can see that
temporal 2D CNNs have more performance than spatio-temporal 3D CNNs in this context
of the binary categories of violent versus nonviolent. Due to the use of RGB frames for the
aggressive objects and lost items algorithms, we maintain the use of the RGB feature for
the violent action detection, otherwise, it was required two streams of process information
from different sensors were required, which could lead to the increasing of the inference
time for the recognition.

5.1.2. Aggressive Objects

We started our experiment, E1, by feeding the same 76 classes to the YOLOv5s (model
small, version 5.0) from scratch with default hyperparameters, with the results as seen in
Table 4. Then, as the results were not significant, we decided to experiment (E2) using
only 2 classes, the same aggressive class and the remaining 75 classes grouped in the
nonaggressive class. The results were even worse, so we removed the person in the class
that could lead to better results. In E3, class 1 (‘person’) has more than five times the
annotations, which means that more or less, all images have one or more persons in them
(see Figure 10).



Sensors 2023, 23, 5610 14 of 21

Figure 10. Visualization of 76 classes of the dataset. (a) Number of annotations per class. (b) Visual-
ization of the location and size of each bounding box. (c) The statistical distribution of the bounding
box position. (d) The statistical distributions of the bounding box sizes.

Then, we checked in experiment E4 for if testing only the class aggressive (overfitting)
would show the problem. As can be seen in Table 4, the results are only marginally better.
As such, we demonstrate that mixing aggressive objects such as knives, weapons, bats,
hammers, bows, and others is not a good policy, as they have very different characteristics.
Afterward, we decided to test the separation of the best 20 aggressive classes using the
best pre-trained default model YOLOv5x (E5), and this type of separation provided better
results (as seen in the next section, Table 4, the mean of all the classes).

Table 4. YOLO Experiments.

Experiment Precision Recall mAP_0.5 mAP_0.5:0.95

E1 0.126 0.225 0.0687 0.0331
E2 0.126 0.190 0.0597 0.0278
E3 0.143 0.262 0.0770 0.0375
E4 0.259 0.267 0.1410 0.0627
E5 0.546 0.662 0.5790 0.3810

From these 20 classes, we selected those with more labels, bat (3000 labels) and knife
(7000 labels), but we also decided to include weapons (500 labels) due to our case study
(see Figure 11).



Sensors 2023, 23, 5610 15 of 21

Figure 11. Visualization of the 3 most labeled classes of the dataset. (a) Number of annotations per
class. (b) Visualization of the location and size of each bounding box. (c) The statistical distribution
of the bounding box position. (d) The statistical distribution of the bounding box sizes.

As such, in E9 (E6), from using the best YOLOv5x model (extra large) and testing it on
1337 images, we obtained the following results in Table 5.

Table 5. Test split metrics (1337 images).

Classes Labels Test Split Precision Recall mAP_0.5 mAP_0.5:0.95

all 1469 0.479 0.622 0.481 0.314
knife 1015 0.264 0.337 0.178 0.107

weapon 43 0.735 0.907 0.84 0.604
bat 411 0.439 0.623 0.426 0.232

This can also be inspected graphically in the confusion matrix (Figure 12), but the
weapon class must be observed with some care, as we trained with only 500 labels. In fact,
during real-time tests, the weapon inference was very low.

5.1.3. Lost Item Objects

From the know-how obtained from the experiments of the previous aggressive pipeline,
we were able to develop the lost items pipeline. In this pipeline, we selected 12 common
object classes plus the 3 aggressive classes (knife, bat, and weapon) for a better separation
of aggressive and non-aggressive: [‘person’, ‘knife’, ‘weapon’, ‘bat’, ‘bag’, ‘book’, ‘phone’,
‘laptop’, ‘mouse’, ‘keyboard’, ‘bottle’, ‘cable’, ‘banana’, ‘apple’, ‘orange’]. In Figure 13, we
show the distribution of the labels.



Sensors 2023, 23, 5610 16 of 21

Figure 12. Confusion matrix of knife, weapon, and bat classes.

Figure 13. Visualization of classes for lost items objects on the dataset. (a) Number of annotations per
class. (b) Visualization of the location and size of each bounding box. (c) The statistical distribution
of the bounding box position. (d) The statistical distributions of the bounding box sizes.

In Table 6, you can see the results for each class using the second-best model YOLOv5l
(large) model pre-trained, which is faster for real-time implementations.



Sensors 2023, 23, 5610 17 of 21

Table 6. Metrics of the test split classes (38,048 images).

Classes Labels Test Split Precision Recall mAP_0.5 mAP_0.5:0.95

all 64,509 0.238 0.468 0.23 0.161
person 50,906 0.245 0.707 0.285 0.214
knife 1015 0.178 0.274 0.138 0.0929

weapon 43 0.734 0.9 0.773 0.525
bat 411 0.124 0.453 0.118 0.0725
bag 2332 0.0961 0.237 0.083 0.0549

book 2733 0.199 0.141 0.113 0.0714
phone 881 0.186 0.46 0.193 0.133
laptop 551 0.177 0.682 0.229 0.199
mouse 242 0.205 0.657 0.196 0.152

keyboard 306 0.215 0.497 0.186 0.139
bottle 2738 0.159 0.389 0.161 0.116
cable 243 0.616 0.646 0.617 0.388

banana 959 0.11 0.234 0.0773 0.0472
apple 491 0.191 0.483 0.184 0.134

orange 658 0.132 0.266 0.0959 0.071

The person class has the most labels; as such, without overfitting, such as the class
weapon, it provides the best results, as one can see in the confusion matrix (Figure 14).

Figure 14. Confusion matrix for lost items.

In conclusion, we still need a larger collection of data for each class—at least 1000 labels
per class, because fewer than 1000 labels are not sufficient. Furthermore, our current dataset
is disproportional for person labels; nonetheless, this class is useful for detecting whether a
person is inside or not in the vehicle.

5.1.4. Embedded System

Table 7 presents the inference times for aggressive objects using PyTorch models for
different YOLO size layers (S = small, M = medium, L = large, X = extra large). The classes
are knife, weapon, and bat. In terms of qualitative analysis, we determine that the Yolo_L
has better precision results compared to Yolo_S and Yolo_M for aggressive object detection.
The reason for why we don’t use Yolo_X is due to the amount of time to infer; it is almost
twice as much as Yolo_L.



Sensors 2023, 23, 5610 18 of 21

Table 7. Inference times of aggressive object detection models using PyTorch.

Model Num Classes Inference Time (ms)

Yolo_S 3 120
Yolo_M 3 185
Yolo_L 3 300
Yolo_X 3 580

The 15 classes used for training were: Person, knife, weapon, bat, bag, book, phone,
laptop, mouse, keyboard, bottle, cable, banana, apple, and orange. Table 8 presents the
inference times for the object detector of lost items, using Yolo with a different number
of layers. In terms of qualitative analysis, we follow the same strategy that is used for
aggressive objects.

Table 8. Inference times of lost item detection models using PyTorch.

Model Num Classes Inference Time (ms)

Yolo_S 1298 175
Yolo_S 15 130
Yolo_M 15 270
Yolo_L 15 330

The following Table 9 shows the inference times (3 trials) using different levels of
precision: single precision (32 bits), half precision (16 bits), and 8-bit integer of the network
(Yolo_S, ‘yolov5s’) using TensorRT for Yolov5, with a pre-trained model with 80 labels.

Table 9. Inference times for object detection using TensorRT.

Model FP32 (s) FP16 (s) INT8 (s)

Yolo_S 0.024021 0.015262 0.010740
Yolo_S 0.023381 0.013463 0.010827
Yolo_S 0.022659 0.014394 0.012740

In the quantitative results, as we can see from Table 9, that the inference time gap
between FP32 and FP16 is, on average, 9 ms if we compare it with FP16 and INT8, and the
difference is, on average, 4 ms. As such, it is almost half when compared to the 3 different
levels of precision. When we qualitatively analyzed the results of the video in real-time,
we concluded that the number of true predictions with INT8 is not as good as FP16,
and compared to FP32 and FP16, the former has the same results for our use case. For these
two reasons, the inference time and precision, we selected the FP16 precision level to use
on our embedded system.

To validate our method, we used our test bench vehicle inside the laboratory. We
also created an interface to show our results for the 3 methods. The following Figure 15
shows some of the results obtained from the algorithms, namely, lost items, aggressive
items, and violent action detection, to validate our methodology.

Figure 15. Examples of results obtained from real-time inferences. (a) Lost items detector. (b) Aggres-
sive objects detector. (c) Violent action detection.



Sensors 2023, 23, 5610 19 of 21

6. Discussion

This article presents a system that is capable of detecting violent action behaviors
within the scope of the SAV, and more specially, the implementation of algorithms for the
detection of aggressive objects, lost items, and violent action. In the first stage, a search
was carried out that was associated with the existing state-of-the-art algorithms suitable
for performing the proposed tasks. The selected algorithms belong to the themes of object
detection and action recognition. The first task was to detect violent actions. As a basis for
training the selected algorithms in this component, it was necessary to create a dataset and
to generate the respective labels. In this context, the internal MoLa InCar dataset was used.
This task is performed not only by using RGB frames, but also when we fed the algorithms
with thermal, NVS, and optical-flow features, which could be very useful in situations
where we need light immunity.

After training and the respective evaluation of the results obtained, all of the models
obtained good results; however, considering the balance between precision and real-time
performance, our choice falls into the TSM (94.32%) architecture. For the object detection
task, the strategy was similar for lost items and aggressive objects. In this case, we dont
have an internal dataset to use for training, so the COCO and TAO were selected, which
both were both filtered and manipulated with the MoLAnnotate toolkit to fit our format for
development. For training, was used the YOLOv5 family of object detection algorithms was
used to detect lost/forgotten items and aggressive objects inside the vehicle. Among the
YOLOv5 models, the Small model is chosen for the task due to its similar performance
metrics and lower complexity, as only 3 classes need to be detected for aggressive objects.
Although we have more classes, namely 12 when we execute the lost items algorithm, we
can still get obtained good metrics and real-time performance.

From the results obtained in Table 3, the NVS feature could be a very feasible data to
iterate for iterating our future work, namely, by replacing the von Neunmann architecture
to neuromorphic. Because NVS frames only capture information from the motions of the
passengers, this could lead to a more efficient inference method in terms of processing and
energy consumption.

Author Contributions: Conceptualization, J.C.F., P.C. and J.B.; Data curation, N.R.P.R. and N.M.C.d.C.;
Funding acquisition, J.C.F., P.C. and J.B.; Investigation, N.R.P.R., N.M.C.d.C., C.M. and A.A.; Method-
ology, J.B.; Project administration, J.C.F., P.C. and J.B.; Software, N.R.P.R. and N.M.C.d.C.; Super-
vision, J.B.; Validation, N.R.P.R., N.M.C.d.C., C.M. and A.A.; Writing—original draft, N.R.P.R. and
N.M.C.d.C.; Writing—review and editing, N.R.P.R. and N.M.C.d.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This work has been supported by FCT—Fundação para a Ciência e Tecnologia within the
R&D Units Project Scope: UIDB/00319/2020. The author would also like to acknowledge FCT for the
attributed Doctoral grant PD/BDE/150500/2019.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
the Declaration of Helsinki, and approved by the Ethics Committee of Universidade do Minho.

Informed Consent Statement: Written informed consent has been obtained from the patients to
publish this paper.

Data Availability Statement: The MoLa InCar dataset [6] was published and are available.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.



Sensors 2023, 23, 5610 20 of 21

References
1. Narayanan, S.; Chaniotakis, E.; Antoniou, C. Shared autonomous vehicle services: A comprehensive review. Transp. Res. Part C

Emerg. Technol. 2020, 111, 255–293. [CrossRef]
2. SAE J3016; Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE

International: Warrendale, PA, USA, 2021.
3. Shaheen, S.; Chan, N.; Bansal, A.; Cohen, A. Definitions, Industry Developments, and Early Understanding; Transportation Sustain-

ability Research Center, Innovative Mobility Research: Berkeley, CA, USA, 2015.
4. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in

context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September
2014; Lecture Notes in Computer Science; pp. 740–755. [CrossRef]

5. Dave, A.; Khurana, T.; Tokmakov, P.; Schmid, C.; Ramanan, D. TAO: A Large-Scale Benchmark for Tracking Any Object. In
Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Lecture Notes in
Computer Science; pp. 436–454. [CrossRef]

6. Rodrigues, N.R.; da Costa, N.M.; Novais, R.; Fonseca, J.; Cardoso, P.; Borges, J. AI based monitoring violent action detection data
for in-vehicle scenarios. Data Brief 2022, 45, 108564. [CrossRef] [PubMed]

7. Jocher, G. ultralytics/yolov5: V7.0—YOLOv5 SOTA Realtime Instance Segmentation (v7.0). 2022. p. 10. Available online:
https://zenodo.org/record/7347926 (accessed on 28 February 2023).

8. Mobileye. BMW Group, Intel and Mobileye Team up to Bring Fully Autonomous Driving to Streets by 2021. 2016. Available
online: https://www.press.bmwgroup.com/global/article/detail/T0261586EN/bmw-group-intel-and-mobileye-team-up-to-
bring-fully-autonomous-driving-to-streets-by-2021?language=en (accessed on 30 January 2023).

9. Ford. Ford Targets Fully Autonomous Vehicle for Ride Sharing in 2021; Invests in New Tech Companies, Doubles Silicon Valley
Team | Ford Media Center. 2016. Available online: https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16
/ford-targets-fully-autonomous-vehicle-for-ride-sharing-in-2021.html (accessed on 30 January 2023).

10. O’Kane, S. Former Google Self-Driving Will Help Volkswagen and Hyundai Build Fully Autonomous Cars. 2018. Available
online: https://www.theverge.com/2018/1/4/16846526/aurora-chris-urmson-volkswagen-hyundai-self-driving-cars (accessed
on 30 January 2023).

11. Daimler, A.G. Daimler and Uber Join Forces to Bring More Self-Driving Vehicles on the Road—Daimler Global Media Site.
2018. Available online: https://www.prnewswire.com/news-releases/daimler-and-uber-join-forces-to-bring-more-self-driving-
vehicles-on-the-road-300399621.html (accessed on 30 January 2023).

12. LeBeau, P. Waymo Starts Comercial Ride-Share Service. 2018. Available online: https://www.cnbc.com/2018/12/05/waymo-
starts-commercial-ride-share-service.html (accessed on 30 January 2023).

13. Abbasi, A.; Queirós, S.; da Costa, N.M.; Fonseca, J.C.; Borges, J. Sensor Fusion Approach for Multiple Human Motion Detection
for Indoor Surveillance Use-Case. Sensors 2023, 23, 3993. [CrossRef] [PubMed]

14. Melo, C.; Dixe, S.; Fonseca, J.C.; Moreira, A.H.; Borges, J. Ai based monitoring of different risk levels in covid19 context. Sensors
2022, 22, 298. [CrossRef] [PubMed]

15. Torres, H.R.; Oliveira, B.; Fonseca, J.; Queirós, S.; Borges, J.; Rodrigues, N.; Coelho, V.; Pallauf, J.; Brito, J.; Mendes, J. Real-Time
Human Body Pose Estimation for In-Car Depth Images. IFIP Adv. Inf. Commun. Technol. 2019, 553, 169–182. [CrossRef]

16. Dixe, S.; Sousa, J.; Fonseca, J.C.; Moreira, A.H.; Borges, J. Optimized in-vehicle multi person human body pose detection. Procedia
Comput. Sci. 2022, 204, 479–487. [CrossRef]

17. Borges, J.; Oliveira, B.; Torres, H.; Rodrigues, N.; Queirós, S.; Shiller, M.; Coelho, V.; Pallauf, J.; Brito, J.H.; Mendes, J.; et al.
Automated generation of synthetic in-car dataset for human body pose detection. In Proceedings of the 15th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Valletta, Malta, 27–29 February
2020; Volume 5, pp. 550–557. [CrossRef]

18. Borges, J.; Queirós, S.; Oliveira, B.; Torres, H.; Rodrigues, N.; Coelho, V.; Pallauf, J.; Brito, J.H.; Mendes, J.; Fonseca, J.C. A system
for the generation of in-car human body pose datasets. Mach. Vis. Appl. 2021, 32, 4. [CrossRef]

19. Dixe, S.; Leite, J.; Fonseca, J.C.; Borges, J. BigGAN evaluation for the generation of vehicle interior images. Procedia Comput. Sci.
2022, 204, 548–557. [CrossRef]

20. Dixe, S.; Leite, J.; Azadi, S.; Fariae, P.; Mendes, J.; Fonseca, J.C.; Borges, J. In-car damage dirt and stain estimation with RGB
images. In Proceedings of the 13th International Conference on Agents and Artificial Intelligence, Online, 4–6 February 2021;
Volume 2, pp. 672–679. [CrossRef]

21. Faria, P.; Dixe, S.; Leite, J.; Azadi, S.; Mendes, J.; Fonseca, J.C.; Borges, J. In-Car State Classification with RGB Images. In
Proceedings of the Intelligent Systems Design and Applications: 20th International Conference on Intelligent Systems Design and
Applications (ISDA 2020), Online, 12–15 December 2021; pp. 435–445. [CrossRef]

22. Carreira, J.; Zisserman, A. Quo Vadis, action recognition? A new model and the kinetics dataset. In Proceedings of the 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 4724–4733.
[CrossRef]

23. Tran, D.; Wang, H.; Torresani, L.; Ray, J.; Lecun, Y.; Paluri, M. A Closer Look at Spatiotemporal Convolutions for Action
Recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018. [CrossRef]

http://doi.org/10.1016/j.trc.2019.12.008
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-030-58558-7_26
http://dx.doi.org/10.1016/j.dib.2022.108564
http://www.ncbi.nlm.nih.gov/pubmed/36188137
https://zenodo.org/record/7347926
https://www.press.bmwgroup.com/global/article/detail/T0261586EN/bmw-group-intel-and-mobileye-team-up-to-bring-fully-autonomous-driving-to-streets-by-2021?language=en
https://www.press.bmwgroup.com/global/article/detail/T0261586EN/bmw-group-intel-and-mobileye-team-up-to-bring-fully-autonomous-driving-to-streets-by-2021?language=en
https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16/ford-targets-fully-autonomous-vehicle-for-ride-sharing-in-2021.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2016/08/16/ford-targets-fully-autonomous-vehicle-for-ride-sharing-in-2021.html
https://www.theverge.com/2018/1/4/16846526/aurora-chris-urmson-volkswagen-hyundai-self-driving-cars
https://www.prnewswire.com/news-releases/daimler-and-uber-join-forces-to-bring-more-self-driving-vehicles-on-the-road-300399621.html
https://www.prnewswire.com/news-releases/daimler-and-uber-join-forces-to-bring-more-self-driving-vehicles-on-the-road-300399621.html
https://www.cnbc.com/2018/12/05/waymo-starts-commercial-ride-share-service.html
https://www.cnbc.com/2018/12/05/waymo-starts-commercial-ride-share-service.html
http://dx.doi.org/10.3390/s23083993
http://www.ncbi.nlm.nih.gov/pubmed/37112337
http://dx.doi.org/10.3390/s22010298
http://www.ncbi.nlm.nih.gov/pubmed/35009846
http://dx.doi.org/10.1007/978-3-030-17771-3_14
http://dx.doi.org/10.1016/j.procs.2022.08.059
http://dx.doi.org/10.5220/0009316205500557
http://dx.doi.org/10.1007/s00138-020-01131-z
http://dx.doi.org/10.1016/j.procs.2022.08.067
http://dx.doi.org/10.5220/0010228006720679
http://dx.doi.org/10.1007/978-3-030-71187-0_40
http://dx.doi.org/10.1109/CVPR.2017.502
http://dx.doi.org/10.1109/CVPR.2018.00675


Sensors 2023, 23, 5610 21 of 21

24. SravyaPranati, B.; Suma, D.; ManjuLatha, C.; Putheti, S. Large-Scale Video Classification with Convolutional Neural Networks.
Smart Innov. Syst. Technol. 2021, 196, 689–695. [CrossRef]

25. Kay, W.; Carreira, J.; Simonyan, K.; Zhang, B.; Hillier, C.; Vijayanarasimhan, S.; Viola, F.; Green, T.; Back, T.; Natsev, P.; et al. The
Kinetics Human Action Video Dataset. arXiv 2017, arXiv:1705.06950.

26. Carreira, J.; Noland, E.; Banki-Horvath, A.; Hillier, C.; Zisserman, A. A Short Note about Kinetics-600. arXiv 2018, arXiv:1808.01340.
27. Smaira, L.; Carreira, J.; Noland, E.; Clancy, E.; Wu, A.; Zisserman, A. A Short Note on the Kinetics-700-2020 Human Action

Dataset. arXiv 2020, arXiv:2010.10864.
28. Rodriguez, M.D.; Ahmed, J.; Shah, M. Action MACH: A spatio-temporal maximum average correlation height filter for action

recognition. In Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Anchorage, AK,
USA, 23–28 June 2008. [CrossRef]

29. Soomro, K.; Zamir, A.R. Action recognition in realistic sports videos. Adv. Comput. Vis. Pattern Recognit. 2014, 71, 181–208.
[CrossRef]

30. Kuehne, H.; Jhuang, H.; Stiefelhagen, R.; Serre Thomas, T. Hmdb51: A large video database for human motion recognition. In
High Performance Computing in Science and Engineering‘12: Transactions of the High Performance Computing Center, Stuttgart (HLRS)
2012; Springer: Berlin/Heidelberg, Germany, 2013; pp. 571–582. [CrossRef]

31. Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. Slowfast networks for video recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [CrossRef]

32. Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; van Gool, L. Temporal segment networks: Towards good practices
for deep action recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
11–14 October 2016; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; pp. 20–36. [CrossRef]

33. Lin, J.; Gan, C.; Han, S. TSM: Temporal shift module for efficient video understanding. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [CrossRef]

34. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
23–28 June 2014; pp. 580–587. [CrossRef]

35. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

36. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 779–788. [CrossRef]

37. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 30th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

38. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. https://doi.org/10.48550/arxiv.
1804.02767.

39. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934. https://doi.org/10.48550/arxiv.2004.10934.

40. Zhang, W.; Zhao, D.; Xu, L.; Li, Z.; Gong, W.; Zhou, J. Distributed embedded deep learning based real-time video processing.
In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016, Budapest, Hungary,
9–12 October 2016; pp. 1945–1950. [CrossRef]

41. Oro, D.; Fernandez, C.; Martorell, X.; Hernando, J. Work-efficient parallel non-maximum suppression for embedded GPU
architectures. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai,
China, 20–25 March 2016; pp. 1026–1030. [CrossRef]

42. Fitzpatrick, T.B. The Validity and Practicality of Sun-Reactive Skin Types I Through VI. Arch. Dermatol. 1988, 124, 869–871.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-981-15-7062-9_69
http://dx.doi.org/10.1109/CVPR.2008.4587727
http://dx.doi.org/10.1007/978-3-319-09396-3_9
http://dx.doi.org/10.1007/978-3-642-33374-3
http://dx.doi.org/10.1109/ICCV.2019.00630
http://dx.doi.org/10.1007/978-3-319-46484-8_2
http://dx.doi.org/10.1109/ICCV.2019.00718
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/arxiv.1804.02767
https://doi.org/10.48550/arxiv.1804.02767
https://doi.org/10.48550/arxiv.2004.10934
http://dx.doi.org/10.1109/SMC.2016.7844524
http://dx.doi.org/10.1109/ICASSP.2016.7471831
http://dx.doi.org/10.1001/archderm.1988.01670060015008
http://www.ncbi.nlm.nih.gov/pubmed/3377516

	Introduction
	Related Work
	Dataset Preparation
	MOLAnnotate Framework
	Unified Format
	Annotation Pipeline

	Violent Action
	Aggressive Objects

	Algorithmic Analysis
	Methods
	Violent Action
	Aggressive Objects
	Embedded System


	Results
	Experimental Evaluation
	Violent Action
	Aggressive Objects
	Lost Item Objects
	Embedded System


	Discussion
	References

