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Abstract: Despite several existing techniques for distributed sensing (temperature and strain) using
standard Single-Mode optical Fiber (SMF), compensating or decoupling both effects is mandatory
for many applications. Currently, most decoupling techniques require special optical fibers and are
difficult to implement with high-spatial-resolution distributed techniques, such as OFDR. Therefore,
this work’s objective is to study the feasibility of decoupling temperature and strain out of the
readouts of a phase and polarization analyzer OFDR (φ-PA-OFDR) taken over an SMF. For this
purpose, the readouts will be subjected to a study using several machine learning algorithms, among
them Deep Neural Networks. The motivation that underlies this target is the current blockage in the
widespread use of Fiber Optic Sensors in situations where both strain and temperature change, due
to the coupled dependence of currently developed sensing methods. Instead of using other types of
sensors or even other interrogation methods, the objective of this work is to analyze the available
information in order to develop a sensing method capable of providing information about strain and
temperature simultaneously.

Keywords: decoupling; distributed sensing; XAI; machine learning; φ-PA-OFDR

1. Introduction

The general interest in Distributed Optical Fiber Sensors (DOFSs) has increased in the
past few decades [1–3]. Due to the huge variety of phenomena related to light propagation
along an optical fiber and depending on the interrogator and the fiber used, there are more
than 60 types of sensors [1,2]. This technology has been applied in several fields such as
Structural Health Monitoring [4], Geo-Hydrological applications [5], acoustic sensing [6]
and even medicine [7].

Basically, a Distributed Optical Fiber Sensor consists of a segment of optical fiber
within which monochromatic light is propagated forward (transmission) and backward
(backscattering). The fiber core’s shape is varied, going from a simple circle up to the
polarization-maintaining configurations shown in Figure 1. The dimension of this core
determines the number of modes that can be propagated. In the present work, light
propagation into an SMF is studied. This type of fiber is preferred due to its lower cost
and reduced size when compared with other types of optical fiber (PMF), where, moreover,
temperature-strain decoupling has been currently achieved.

Commonly, light propagated within the fiber is emitted by a tunable laser source;
and the backscatter radiation is analyzed by a photodetector after passing through some
filters and beamsplitters [8]. Both photonic systems are usually integrated into the same
equipment, and the emitted and analyzed light wavelength determines the type of inter-
rogator (Raman, Rayleigh, or Brillouin [3]), and with the appropriate beamsplitters and
filters, both states of polarization can be studied separately. The phase analysis needs
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a special configuration in the photodetector to compare the signal received with a local
oscillator [9]. In the present work, a Phase-sensitive and Polarization Analyzer Optical
Frequency Domain Reflectometer (φ-PA-OFDR) was used.

Non PMF PMF

Elliptical core Elliptical clad Panda Bow-tie

Core Stress-rod
Cladding

Figure 1. Different existing core shapes for optical fiber. On the left, a cross-section of a Non-
Polarization-Maintaining Optical Fiber (non PMF) with a circular core. On the right, a cross-section
of four types of PMF with different types of core or stress-rods into the cladding.

Light backscattering is sensitive to both temperature and strain changes and is presently
the principal limitation when implementing this technology. The solutions are diverse and
depend on the type of DOFS chosen, but two main groups can be distinguished. The first
type of solution is to integrate sensors in parallel, which are usually either strain gauges or
thermocouples along with Optical Fiber Sensors (OFSs) in order to obtain one independent
measure. The second type of solution consists of a signal treatment, which requires either a
second type of interrogator or a signal post-processing. In Table 1, some of the methods
developed for different OFSs are listed.

Table 1. A summary of the strain/temperature discrimination methods using DOFS configurations.

Method Configuration Refs.

Brillouin
Brillouin frequency shift [10,11]
Brillouin amplitude effects with LEAF fiber [12,13]
Dispersion shifted fiber [14]

Brillouin and Raman hybrid Raman–Brillouin gains [15–17]
Brillouin and Rayleight hybrid Frequency shift [18]
Rayleight scattering Fiber with core-offset splicing [19]
Photonic crystal fiber (PCF) Brillouin [11,20–23]
FBG Dual wavelength [24]
FBG on PMF Polarization-Maintaining Fiber analysis [25]
OTDR-BOTDA Time delay [26]
OFDR PMF, Rayleigh scattering, auto-correlation function [27]

More specifically, the last one is the most similar to the present work. In it [27],
Froggat et al. use a φ-PA-OFDR over a PMF. However, in the present work, the fiber
studied is an SMF because of its higher availability and lower price (around two orders
of magnitude [28,29]). The behavior of states of polarization in an SMF is different, and
the same technique used by Froggat et al. cannot be implemented. More specifically,
the birefringence vector’s randomness causes fast and slow polarization modes to have
different time arrivals. In addition, they will decompose into both the fast and slow modes
of the next segment, leading to polarization-mode coupling [30].

Artificial intelligence has been applied successfully to Optical Fiber Sensors [31].
Therefore, before trying to find an analytical approach to the states of polarization evolution
through the fiber or any statistical analysis of the signals acquired, artificial intelligence
(AI) methods have been applied to the problem in the present work, in order to determine
the feasibility of decoupling temperature and strain from a φ-PA-OFDR readout.
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2. Materials and Methods
2.1. Resources Used

The optical fiber and interrogator used are described in Table 2. Moreover, the signal
was analyzed using Python open source libraries as Scipy [32] and Numpy [33].

Table 2. Resources used.

Resource Supplier Model References

Single-Mode Fiber Corning (Corning, NY, USA) SMF-28e+ [34]
Optical Frequency Domain Reflectometer LUNA (Roanoke, VA, USA) OBR-4600 [35,36]

2.2. Experimental Data Acquisition

For a proper creation of an artificial intelligence model, it is imperative to have a
huge and reliable experimental dataset [37,38]. Therefore, the optical fiber was subjected to
mechano-thermal tests where the longitudinal fiber strain and temperature were varied.
For this purpose, a cantilever aluminum beam is supported at one end, restricting all six
degrees of freedom, and some weights are hanging at the free end to produce a linear strain
field on the top face of the beam, where the SMF is fixed with cyanoacrylate glue. This
solution is taken instead of setting the deflection of the beam with some mechanism because
of the temperature variation. Then, the cantilever beam is placed in a calibrated stove to set
different temperatures to acquire different sets of data. Finally, SMF was converted into a
succession of overlapping sensors with a sensor length of 20 mm and a sensor spacing of
2 mm. This is possible because of the interferometer used, which provides 2000 samples
per sensor, which allows signal processing calculations.

In Figure 2 the experimental setup is illustrated, as well as the temperature and strain
distribution shape and how the fiber readouts along the beam are converted into a row
of sensors.

Figure 2. Top: Test configuration, a cantilever aluminum beam (a plate of 300 × 30 × 2 mm with a
Young modulus of E = 70.3 GPa and a Coefficient of Thermal Expansion of α = 24 µm/(m·K)) fixed
at one end and up to four 50 g weights added at the free end (since the weight is maintained with
temperature). Middle: Strain and temperature distributions for any test. Bottom: A scheme of the
spatial distribution of the point sensors along the beam length.
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2.3. Interferometer Readouts

A φ-PA-OFDR provides information about the amplitude and phase of the two states
of polarization of the interference between the backscattered electromagnetic field Em and
the one generated by a local oscillator Elo (see Figure 3 or [8] for more details). This means
that two complex measurements, S and P, are received by the photo-detectors every time
the optical fiber is interrogated,

S(ω) = 2 Re
{〈

Elo

∣∣∣∣T†
s Tsr(ω)

∣∣∣∣Em

〉
exp[jω(t)∆τ]

}
,

P(ω) = 2 Re
{〈

Elo

∣∣∣∣T†
pTpr(ω)

∣∣∣∣Em

〉
exp[jω(t)∆τ]

}
,

(1)

where the matrix operators Ts and Tp represent the beam splitter action, r(ω) is the complex
spectral reflectivity, and ∆τ is the temporal delay. Once the spectral response is obtained,
the time-domain response of the sensing fiber can be obtained by means of a Discrete
Inverse Fourier Transform (DIFT). Then, knowing the speed of light in the fiber, obtaining
the spatial distribution is trivial.

Figure 3. Measurement network for a Polarization Analyzer OFDR. In [8], Soller et al. describe this
measurement network more precisely.

3. Results
3.1. Dataset

The process carried out to create the dataset is illustrated in Figure 4. The readings
obtained from the test under controlled conditions have been labeled with the test condi-
tions themselves. Then each of these signals has been taken and divided into segments
that act as a point sensor; i.e., they can be assigned a single temperature and a single strain
value. Finally, these segments have been taken two-by-two and the temperature and strain
increment corresponding to the pair has been computed, thus storing the two segment
signals (P and S) and the difference between states. As the most suitable pre-treatment of
the signals was not known a priori, it was decided to keep both signals (P1, S1, P2, S2) in
full in order to evaluate the performance of the different transformations.

From the test performed, data have been obtained at four temperatures, 20, 30, 40,
and 50 ◦C, and five strain states associated with an end deflection of, 0, 3.11, 6.22, 9.33,
and 12.45 mm. These combined states result in 20 different states, which, combined two-
by-two, amount to 190 possible combinations. By means of the optical interrogator used,
the optical fiber was converted into a succession of overlapping sensors with a sensor length
of 20 mm (with a sampling period of 10 µm) and a sensor spacing of 2 mm (see Figure 2).
Then, a fiber length of 300 mm, of which only measurements between 100 and 280 mm
have been selected (to avoid possible errors), consists of a total of 80 sensors. Randomly
taking a percentage of the number of combinations, a dataset of 13,950 samples has been
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created by taking, randomly again, 60% for training, 20% for validation, and the remaining
20% for testing.

The temperature range has been determined by the room temperature at the time of
the test (since the oven does not have refrigeration) and the characteristics of the adhesive
used, cyanoacrylate, to adhere the optical fiber to the aluminum plate.

Controlled condition test Global transfer functions (P(x) and S(x)) labeled
 with global sate variables: temperature (T) and deflection (δ)

Slicing each global signal in local samples

associated with a position and labeled with global state variables

If

For each pair of samples in the same position with different conditions

AI Dataset creation

X will be transformed before
entering the neural net

Figure 4. Process carried out to obtain the dataset with which the model has been trained. Firstly,
the acquired readouts are labeled according to their conditions of temperature and deflection at the
free end of the beam. Then, each readout is sliced into several samples, where it is assumed that the
strain and temperature are constant. After, for each pair of slices with the same spatial position, the
temperature and strain increment are computed. Finally, this set of data is composed of two slices of
readouts with two polarization states (four signals), and their corresponding temperature and strain
increments are appended to the dataset.
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3.2. Pre-Processing

Sometimes, Artificial Intelligence is presented as a tool capable of solving any prob-
lem with just the corresponding training time. Nothing could be further from the truth:
the proper dataset pre-processing is key not only in the success or failure of the model but
also in its accuracy and efficiency [39,40].

In the beginning, the use of the raw P and S signals was attempted with poor results.
Then, the correlation between signals was proposed as a possible pre-processing due to
its presence in the relative spectral shift calculation process, but the results of the non-
supervised algorithms were still poor. Since Froggat et al. [27], used the auto-correlation
to achieve the temperature–strain decoupling, the autocorrelation of the signals was also
included. Just then, the machine learning algorithms began to show promising results.
Finally, the following correlation between signals was chosen:

X = [P1 ? P1, P1 ? P2, P2 ? P2, S1 ? S1, S1 ? S2, S2 ? S2] ,

where the six signals were concatenated in a one-dimensional array. The process is illus-
trated in Figure 5 .

P1 S1P2 S2

Figure 5. Process of readout preprocessing: two slices of the full readout (labeled with ”1” and ”2”)
that matches in position are taken, then its signals are cross-correlated or auto-correlated (operation
denoted with a star ?), and the six corresponding signals are concatenated in one array.

3.3. Clustering

Before starting to apply machine learning models, a clustering algorithm was used
to determine if the pre-processed data were capable of being classified into groups that
somehow could be related to strain and temperature increments. Note that this is an
iterative process where the dataset was exposed to different pre-processing methods;
however, only the final results of the clustering algorithm are shown in Figure 6. As can
be seen, the algorithm (TSNE) spontaneously generated temperature groups and orders
the deformations within them, which means that although there is some confusion within
some groups, an artificial intelligence model is able to differentiate both variables.
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Figure 6. Clustering algorithm results. The algorithm takes a vector with N dimensions and converts
it into 2 dimensions, so that all the samples are represented in a plane. On the left, the samples are
colored according to their strain increment and at right according to their temperature increment.

3.4. Neural Network

Input data
Once this check has been carried out, the artificial intelligence model capable of

discerning between the temperature increase and deformation from the signals of the
different polarizations is designed. After trying several options to train the model, an input
vector, composed of the cross-correlation of the two polarization states and the four auto-
correlations of the four available measurements, is selected due to the clustering algorithm
results. The input to the network is finally as follows:

xj = [P1 ? P1, P1 ? P2, P2 ? P2, S1 ? S1, S1 ? S2, S2 ? S2, ∆ν] ,

where the frequency increment ∆ν has been added to provide scaling information (since
the same equipment can operate in different frequency ranges).

Normalization
These input vectors have been previously normalized since training is much more

efficient with normalized values. In this case, the normalization of each variable separately
has been finally selected as it is the only one with which the model was able to fit the data:

X =


x1
x2
. . .

xns−1
xns

→ Xmax i = max
(
{X0i, . . . , Xji, . . . Xnsi}

)
Xmin i = min

(
{X0i, . . . , Xji, . . . Xnsi}

) →

→ X̂ji =
Xji − Xmin i

Xmax i − Xmin i
,

(2)

where index i refers to the column index, that is, to each of the items that make up the
vector xj; on the other hand, index j refers to the sample number.

Architecture
The network architecture is as shown in Figure 7 and is basically a compendium

of densely connected layers with hyperbolic tangent-type activation functions that add
to its nonlinearity. The architecture chosen consists of two stages, one for the “feature
extraction” and the other for the “regression” of each magnitude (strain and temperature)
with more layers to make the dimensional reduction smoother. This simple architecture
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was capable of regressing the values in an acceptable range so more complex models such
as Convolutional Neural Networks or Generative Adversary Neural Networks were not
developed. However, for future work, these architectures will be tested.

P1 S1P2 S2

٭ ٭ ٭ ٭ ٭ ٭

Input data (12001)

Δ

Temperature increment Deformation increment

Linear: 12001x6000
Tanh

Linear: 6000x3000
Tanh

Linear: 1500x750
Tanh

Linear: 750x375
- 

Linear: 3000x1500
Tanh

Linear: 100x50 
Tanh

Linear: 50x25 
Tanh

Linear: 16x4
Tanh

Linear: 4x1
ReLU 

Linear: 25x16
Tanh

Linear: 350x300
Tanh

Linear: 300x250 
Tanh

Linear: 200x150
Tanh

Linear: 150x100
Tanh

Linear: 250x200
Tanh

Linear: 375x350
Tanh

Linear: 100x50 
Tanh

Linear: 50x25 
Tanh

Linear: 16x4
Tanh

Linear: 4x1
ReLU 

Linear: 25x16
Tanh

Linear: 350x300
Tanh

Linear: 300x250 
Tanh

Linear: 200x150
Tanh

Linear: 150x100
Tanh

Linear: 250x200
Tanh

Linear: 375x350
Tanh

Figure 7. Diagram of the neural network used. In the upper part, in blue, the pre-processing of the
signal prior to the neural network is shown; the operation marked with the ∗ denotes correlation
between two input signals.

Training
The results of the network training are shown in Figure 8. The training has been

carried out with an Adam-type optimizer with a learning rate of 10−6 and computing the
error with the mean squared error (MSE) criterion.
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Figure 8. Training and validation losses of the network for both target variables.

As can be seen at the 100 training epochs, the behavior is asymptotic, which indicates
that the model is not able to fit more of the data. On the other hand, from the behavior of
the validation curves, it can be determined that the model has not undergone overfitting. If
the model were remembering data, the behavior of training and validation losses would
not be asymptotic; instead, the validation curve would be enlarging as long as the model
is only remembering past samples and the validation samples (never used for train) are
completely unknown for the model.

Results
Once the model has been trained, it is evaluated with the test data. In Figures 9 and 10,

error histograms for the target variables are shown together with an approximation of normal
distribution, whose coefficients are shown in Table 3. In addition, confidence intervals of 99%
and 95% were computed, and the limits of these intervals are also shown in Table 3.
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Normal distribution
99% confident interval
95% confident interval
Data

Figure 9. Histogram of temperature errors and their normal distributions, as well as its confidence
interval limits.
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Figure 10. Histogram of strain errors and their normal distributions, as well as its confidence
interval limits.

For better comprehension, the predicted versus target values have also been plotted
on a plane (see Figures 11 and 12) to create the equivalent of a confusion matrix but with
continuous data. If the model worked perfectly, the predicted and target data would be
the same, thus plotting a diagonal. For this reason, a least squares regression line has been
plotted over the plane. The regression line has the form y = m x + n , where x represents the
target value and y the predicted one, m the slope of the straight line, and n the ordinate at
the origin. Additionally, the value of r2 has also been computed to determine the dispersion
of the values. All of the above values can be also found in Table 3.

Table 3. Deep Learning AI model error metrics.

Normal Distribution Confident Intervals Linear Regression
µ σ2 99% 95% m n r2

∆ T [K] −0.5948 2.4044 [−4.5889,3.3994] [−3.6339,2.4444] 0.94 −0.61 0.96
∆ µε −27.2083 71.4478 [−48.9810,−5.4357] [−43.7753,−10.6414] 0.93 −27.39 0.94

20 15 10 5 0 5 10 15 20
T[K] (target)

20

10

0

10

20

T[
K]

 (p
re

di
ct

io
n)

Predictions vs targets: Temperature
Linear regression
Value

Figure 11. Two-dimensional representation of predicted versus target values and linear regression
for temperature data.
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Figure 12. Two-dimensional representation of predicted versus target values and linear regression
for strain data.

Explainable Artificial Intelligence (XAI)
Explainable Artificial Intelligence (XAI) consists of a series of methods aimed at

converting the results provided by artificial intelligence into a form that humans can
understand. It contrasts with the “black box” concept of machine learning, where even
its designers cannot explain why an AI arrived at a particular decision. Thanks to XAI
methods, features can be extracted that allow existing knowledge to be confirmed, existing
knowledge to be questioned, and new hypotheses to be generated.

In this case, XAI allows explaining how the developed model interprets the correlations
of the signals to reveal the information on which the actions are based. To implement the
XAI methods on this model, the Lime-For-Time repository (see [41]) has been used, in which
the LIME library ([42]) is used to analyze time series.

The analysis consists of taking an example signal and dividing it into segments, in
this case 120, given the composition of the signal. Next, the neural network is studied as
a classifier in which each segment constitutes a class and which contributes, to a greater
or lesser extent, to the final decision. From the example signal, multiple variations in
the parameters are made to interpret how the model behaves to the different inputs.
From these data, the relevance of each of the segments can be determined. Taking the
12 most relevant segments and displaying their weights in a histogram, the images shown
in Figures 13 and 14 are produced.

Figure 13. Weight in the final decision of each of the segments of the signal in the order of relevance
for the temperature decision.
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Figure 14. Weight in the final decision of each of the segments of the signal in the order of relevance
for the strain decision.

If these segments are displayed over the signal, it can be seen which regions are the
most relevant. In this case, to represent the importance, an opacity has been assigned
according to the weights previously shown in the histograms. The result of this graphical
representation is the one shown in Figures 15 and 16.

Figure 15. Most relevant regions of the signal for each of the model predictions for the tempera-
ture prediction.

Figure 16. Mostrelevant regions of the signal for each of the model predictions for the strain prediction.
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4. Discussion

From the results shown in the previous section (Section 3.4), it can be said that an
artificial intelligence capable of distinguishing between strain and temperature readings
has been trained successfully, and so, the readout of the φ-PA-OFDR contains enough
information to obtain the measure of the two magnitudes (strain and temperature) even
when an SMF is used for sensing.

The results show how the artificial intelligence recognizes the spectral shift by com-
paring the values of segments 88, 30, and 89, which correspond to the central area of the
cross-correlations between the two compared signals. On the other hand, studying the
rest of the values is interesting, as this is where the ability to discern between thermal and
mechanical effects lies.

Comparing the two images in Figures 15 and 16, it can be seen how, to determine
the temperature, the model takes two symmetrical regions of the autocorrelation of the
polarization state P of the first signal and similar regions of the autocorrelation of the
polarization state S of the second one. In addition, to determine the deformations, it is
observed that the last values of the autocorrelation of the polarization state S of the second
signal are interpreted by some kind of integral.

Additionally, the temperature-related decision seems to focus more on the behavior
of the peak of the autocorrelation of the P polarization state of the second signal, whereas
the deformations focus on the peak of the autocorrelation of the S polarization state of the
first one.

This information allows us to determine that the autocorrelation of the signals does
provide additional information that can be key in determining unequivocally at what
temperature and state of deformation the optical fiber is. However, it should be noted that
the results provided by the AI may not follow any logic because the algorithm obviously
does not know anything about fiber optic sensing.

5. Conclusions

From these results, the following conclusions can be drawn:

• Readouts provided by φ-PA-OFDR (as OBR-4800 is) contents are capable of providing
more information than what is presently used.

• Artificial intelligence methods are suitable for analyzing DOFS data in order to decou-
ple temperature and strain phenomena.

• More specifically, the the neural network model designed and trained for this purpose
in the present work has reached the precision and accuracy shown in Table 4.

• In addition, explainable AI offers a deeper analysis of the AI model, which can be used
to chart the course of future research.

Table 4. Deep Learning AI model error metrics.

Normal Distribution Confident Intervals Linear Regression
µ σ2 99% 95% m n r2

∆ T [K] −0.5948 2.4044 [−4.5889,3.3994] [−3.6339,2.4444] 0.94 −0.61 0.96
∆ µε −27.2083 71.4478 [−48.9810,−5.4357] [−43.7753,−10.6414] 0.93 −27.39 0.94
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