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Abstract: In order to improve the stability and economy of 4WID-4WIS (four-wheel independent
drive—four-wheel independent steering) electric vehicles in trajectory tracking, this paper proposes
a trajectory tracking coordinated control strategy considering energy consumption economy. First,
a hierarchical chassis coordinated control architecture is designed, which includes target planning
layer, and coordinated control layer. Then, the trajectory tracking control is decoupled based on
the decentralized control structure. Expert PID and Model Predictive Control (MPC) are employed
to realize longitudinal velocity tracking and lateral path tracking, respectively, which calculate
generalized forces and moments. In addition, with the objective of optimal overall efficiency, the
optimal torque distribution for each wheel is achieved using the Mutant Particle Swarm Optimization
(MPSO) algorithm. Additionally, the modified Ackermann theory is used to distribute wheel angles.
Finally, the control strategy is simulated and verified using Simulink. Comparing the control results
of the average distribution strategy and the wheel load distribution strategy, it can be concluded
that the proposed coordinated control not only provides good trajectory tracking but also greatly
improves the overall efficiency of the motor operating points, which enhances the energy economy
and realizes the multi-objective coordinated control of the chassis.

Keywords: 4WID-4WIS EVs; trajectory tracking control; multi-objective coordinated control; mutant
particle swarm optimization (MPSO)

1. Introduction

4WID-4WIS EV is a novel electric vehicle that reduces mechanical components, such
as differentials and half shafts. It also integrates four-wheel steering technology based on
a distributed four-wheel drive system. This allows four wheels to be driven and steered
independently, increasing the controllable degree of freedom. In a word, 4WID-4WIS EV
has unique advantages in vehicle dynamics control [1,2].

To fully exploit the control potential of 4WID-4WIS EV and improve the overall
performance of the vehicle, coordinated multi-objective control of the chassis has become
a current research focus [3–5]. In particular, stability and economy are two important
performance characteristics. It is difficult to improve one performance by controlling only
one performance, and in extreme cases, the effect deteriorates. Therefore, there is a need
for coordinated control of the two performances to make the vehicle stable and economical
at the same time, which has been researched and studied by several scholars [6]. In [7], a
4WID EV torque coordination control strategy is developed, which considers both stability
and economy and uses MPC to calculate the generalized force. The demand torque of each
wheel is determined by an online solution using the control distribution error, tire utilization
rate, and power consumption of the drive system as objective functions. In [8], a multi-
objective online optimization of energy management strategy for 4WID EV is proposed. It
considers the efficiency of the drive system, tire slip energy consumption, wheel torque
fluctuation, yaw rate tracking error, etc. The weights of each element are dynamically
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adjusted using the fuzzy control method, and the effectiveness of the strategy is verified by
simulations. In [9], a cooperative game-based actuator fault-tolerant control strategy for a
4WID EV is proposed. This strategy minimizes tire energy dissipation to ensure economic
efficiency by designing a two-dimensional game controller that simultaneously satisfies the
generalized forces required for vehicle stability.

Due to the great potential of intelligent driving technology to enhance vehicle
safety [10,11], improve traffic efficiency, and reduce energy consumption [12], the re-
search on trajectory tracking control of 4WID-4WIS electric vehicles has received in-
creasing attention in the automotive industry, and numerous control methods have been
developed [13–15]. In [16], LTV-MPC (Linear Time-Varying Model Predictive Control)
based on DYC (Direct Yaw Control) is used to realize velocity tracking and trajectory
tracking, which improves stability during trajectory tracking. In [17], a robust path-tracking
controller for 4WID-4WIS agricultural robotic vehicles is designed by combining the back-
stepping SMC (Sliding Mode Control) theory to improve the robustness of trajectory
tracking. In [18], a four-wheel steering controller and a velocity tracking controller for
4WID-4WIS EV are designed based on the SMC algorithm to improve the accuracy of
trajectory tracking. In [19], the feedback linear quadratic regulator (LQR) controller is used
to realize emergency avoidance under 4WS high-speed conditions.

There are certain shortcomings in the aforementioned research which can be summa-
rized as follows. Most studies on chassis coordinated control is related to traditional 4WID
EV, while there is relatively little research on 4WID-4WIS EV. In addition, most existing
research establishes multi-objective optimization problems and solves them online to obtain
the control variables. This not only makes the objective function too complex and difficult
to solve but also has a negative impact on the real-time performance of the controller. Last
but not least, many studies on the trajectory tracking control of 4WID-4WIS EV mostly
only consider the trajectory tracking performance. Some studies also consider stability, but
there is almost no research that simultaneously considers trajectory tracking performance,
stability and economy.

To improve the stability and economy of 4WID-4WIS EV in trajectory tracking, the
contributions of this paper are summarized as follows:

• A hierarchical architecture for chassis coordinated control is designed including target
planning layer, and coordinated control layer.

• The MPC path tracking controller is constructed, which takes into account stability
constraints, such as yaw rate and tire slip angle.

• The MPSO algorithm is also used to create a mapping of the distribution coefficients by
optimizing the torque distribution between the front and rear wheels offline, thereby
reducing the computational cost.

The paper is organized as follows: Section 2 proposes a hierarchical chassis coordina-
tion control. Section 3 highlights the simulation validation and compares the simulation
results of different torque distribution strategies. Section 4 sums up the conclusions.

2. Trajectory Tracking Coordinated Control
2.1. Vehicle Model

4WID-4WIS EV uses in-wheel motors and steering motors to replace the traditional
transmission and steering mechanism, giving it more control freedom and thus enabling
more advanced control methods to improve the overall performance of the vehicle. Con-
sidering the strong coupling between the vehicle subsystems and the strong nonlinearity
of the tires and motor actuators, it is of great significance to establish a reasonable and
accurate vehicle model to study the control strategy of 4WID-4WIS EV.

2.1.1. Vehicle Dynamic Model

The vehicle is a complex multi-body dynamic system, and the vehicle dynamic model
is the basis for dynamic analysis, active control, function realization, and parameter opti-
mization. According to the research objective and concern, many scholars have proposed
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various linear and nonlinear vehicle models with different degrees of complexity [20,21].
This work focuses on the longitudinal and lateral coupling control of the 4WID-4WIS
EV. The coupling effects between longitudinal motion and lateral motion of the vehicle
include three categories: kinematic coupling, tire force coupling, and load transfer coupling.
Kinematic coupling refers to the longitudinal motion being influenced by the longitudinal
component of the steering wheel lateral deflection force due to the presence of the wheel
steering angle. Additionally, the lateral motion is also influenced by the longitudinal veloc-
ity. Tire force coupling is the interaction between tire lateral and longitudinal forces, the
combined force of which is constrained by the friction ellipse. The vertical load redistribu-
tion is caused by longitudinal acceleration or lateral acceleration, which in turn influences
the longitudinal and lateral dynamics. Therefore, a vehicle dynamic model with seven
degrees of freedom is adopted, i.e., longitudinal motion, lateral motion, yaw motion, and
the rotation of four wheels.

The vehicle is assumed to be left-right symmetric about the center plane and driven
on a flat horizontal road, ignoring the vertical motion of the body. At the same time, it is
assumed that the suspension system is a rigid structure and the body pitch and roll motion
is neglected. After conducting the above modifications, the simplified dynamic model is
developed, as shown in Figure 1.
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Figure 1. 4WID-4WIS vehicle dynamic model.

The longitudinal motion equation is:

m
( .
vx − vyωr

)
= Fx f l + Fx f r + Fxrl + Fxrr (1)

The lateral motion equation is:

m
( .
vy + vxωr

)
= Fy f l + Fy f r + Fyrl + Fyrr (2)
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The equation of yaw motion is:

Iz
.

ωr =
(

Fx f r + Fxrr − Fx f l − Fxrl

)d
2
+
(

Fy f l + Fy f r

)
l f −

(
Fyrl + Fyrr

)
lr (3)

where,
Fxij = Ftxij cos δij − Ftyij sin δij (4)

Fyij = Ftxij sin δij + Ftyij cos δij (5)

i ∈ { f , r}, j ∈ {l, r} (6)

The equation of wheel motion is:

Iw
.

ωij = Tdij − FtxijRe f f − Tbij (7)

where, m is the vehicle mass, vx is the longitudinal velocity, vy is the lateral velocity, ωr
is the yaw rate, Fxij and Fyij are the longitudinal force and lateral force of each wheel,
respectively, Iz is the yaw inertia, l f is the distance from the center of mass to the front axle,
lr is the distance from the center of mass to the rear axle, d is the wheelbase of the vehicle,
Ftxij and Ftyij are the longitudinal and lateral forces of each wheel in the tire coordinate
system, respectively, δij is the wheel angle, Iw is the wheel moment of inertia, ωij is the
speed of each wheel, Tdij is the driving torque of each wheel, Tbij is the braking torque of
each wheel, and Re f f is the effective rolling radius of the wheel.

2.1.2. Tire Model

As the only component that connects the vehicle to the ground, any state of vehicle
motion depends on the interaction forces between the tire and the road surface. The tire
has a critical impact on the vehicle’s performance, so it is necessary to perform accurate
dynamic modeling of tires to better describe the effects of tire forces on vehicle dynamics.
The tire model describes the relationship between the tire motion parameters and tire forces,
which can be mainly divided into three types: theoretical model, empirical model, and
semi-empirical model [22,23]. The theoretical model is formed by studying the deformation
mechanism of tires based on the physical essence of tire mechanics, but its complex structure
is not conducive to simulation research. The empirical model is based on the experimental
tire data, but as a result, it also lacks theoretical support and is poorly scalable. The semi-
empirical model combines the advantages of both models with theoretical support and
experimental data to obtain key parameters that ensure good accuracy and scalability.

In this study, the most commonly used semi-empirical tire model MF (Magic Formula)
is selected. The combination formula of trigonometric functions is used to describe the
relationship between tire force, slip rate, and slip angle. This model is suitable for the
operating condition with combined longitudinal and lateral forces. The general expression
of the MF tire model is as follows:

y = D sin{Carctan[Bx− E(Bx− arctan(Bx))]}
Y(X) = y(x) + SV
x = X + SH

(8)

where, B is the stiffness factor, C is the shape factor, D is the peak factor, E is the curvature
factor, Y is the output variable, that is, longitudinal force, lateral force or aligning torque, X
is the input variable, that is, slip rate or slip angle, SV is the vertical offset, and SH is the
horizontal offset.
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As input variables for the MF tire model, slip rate and side slip angle are important
parameters for calculating the tire effect, which must be calculated from the vehicle state as
shown in Equations (9) and (10), respectively.

sij =


ωijRe f f−uij

ωijRe f f
ωijRe f f ≥ uij(Drive)

ωijRe f f−uij
uij

ωijRe f f < uij(Brake)
(9)

where, uij is the speed of the wheel center.

α f l = tan−1
( vy+ωr l f

vx−ωr ·d/2

)
− δ f l

α f r = tan−1
( vy+ωr l f

vx+ωr ·d/2

)
− δ f r

αrl = tan−1
(

vy−ωr lr
vx−ωr ·d/2

)
− δrl

αrr = tan−1
(

vy−ωr lr
vx+ωr ·d/2

)
− δrr

(10)

2.1.3. Motor Model

The 4WID-4WIS EV drive system consists of four in-wheel motors, and independent
four-wheel steering is achieved by four steering motors. Therefore, to investigate the
longitudinal and lateral coordinated control strategy, the characteristics of the motors are
first analyzed, and suitable motor models are established.

1. In-wheel motor model

The research focuses on the coordinated control of the vehicle with multiple objectives.
For the in-wheel motor model, the charging and discharging efficiency of the motor is
only for the steady-state characteristics. The transient characteristics of the motor are
not considered. Therefore, the charging and discharging efficiency of the motor can be
expressed as in Equation (11).

ηem = η(nem, Tem) (11)

where, nem is the motor speed, and Tem is the motor torque.
Since the driving state of the vehicle is mainly studied in this paper, the motor efficiency

characteristics are shown in Figure 2. The external characteristic curve and the efficiency
map are used to characterize the in-wheel motor. The external characteristic curve can be
used to determine the maximum torque as a function of wheel speed in real-time. The
discharge efficiency of the motor can be determined using a two-dimensional look-up table
of motor speed and torque.
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2. Steering Motor Model

Since the steering motor in this study is not focused on the efficiency characteris-
tics, it is simplified from the perspective of the motor actuation effect as a wheel angle
tracking model. The delay caused by the steering mechanism is considered as shown
in Equation (12).

δij_out = δij_req ·
1

1 + τs
(12)

where, δij_out is the actual output angle, δij_req is the required output angle, and τ is the
response time constant.

2.2. Vehicle State Acquisition

Before performing chassis coordination control, it is necessary to observe the lateral
and longitudinal states of the vehicle, including the vehicle’s position information and the
body’s pose information. The position information of the vehicle consists of the coordinates
of the vehicle’s lateral and longitudinal axes, velocity and acceleration information, and
the pose information of the body includes yaw rate, sides lip angle, pitch angle, roll
angle and so on.

The implementation of the control strategy is based on the acquisition of vehicle state
information by pose sensors. There have been many studies on how to obtain the pose
information of the vehicle. For example, RTK (Real Time Kinematic) and INS (Inertial
Navigation System) are combined for positioning. Body combination sensors, including
longitudinal acceleration sensors, lateral acceleration sensors and yaw rate sensors are used
for pose calculation.

Considering that the signals from pose sensors contain uncertain noise interference,
it is necessary to design a reasonable signal filter to obtain accurate pose signals. At the
same time, the acquisition of road condition information, such as road adhesion coefficient
and road slope, can be realized by designing corresponding state observers based on the
information from pose sensors. Since the focus of this paper is on the trajectory tracking
coordinated control, this part will not be elaborated in detail.

2.3. Chassis Control Architecture

Based on the vehicle states obtained by pose sensors, the trajectory tracking controller
receives the expected path and velocity information sent by the decision planning layer and
controls the longitudinal and lateral movement of the vehicle so that the vehicle follows
the expected path. In addition, 4WID-4WIS EV has multiple degrees of freedom, and the
driving and steering of each wheel are controllable, which provides a basis for realizing
multi-objective coordinated control of the chassis. In summary, this research aims to achieve
the expected trajectory tracking while improving driving stability and energy economy.

The chassis control architecture designed in this paper is shown in Figure 3, which has
a layered structure and is divided into target planning layer and coordinated control layer.

Based on the decentralized control structure, the target planning layer receives the
expected path and velocity information and decouples the longitudinal and lateral control
targets. In the longitudinal direction, an expert PID control method is used to track the
desired velocity and output the generalized longitudinal force. In the lateral direction,
the MPC algorithm is used to perform the multi-objective real-time rolling optimization
considering the stability constraints, such as yaw rate and tire slip angle. It outputs the
generalized yaw moment and the generalized wheel angle.
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The coordinated control layer distributes the torque and wheel angle of each wheel
according to the generalized force, generalized yaw moment, and generalized wheel angle,
which realizes the calculation of the control objective of the motor actuator. Considering
the efficiency characteristics of the in-wheel motor, the torque distribution control uses
the MPSO algorithm to optimize the torque of the front and rear wheels offline. Then, the
two-dimensional diagram of the optimal torque distribution coefficient is generated and
real-time table look-up is performed according to the vehicle state to calculate the torque
for each wheel. The wheel angle distribution strategy considers the wheel slip angle and
distributes the generalized wheel angle based on the modified Ackerman theory to obtain
the wheel angles. Finally, the torque and angle of each wheel are output to in-wheel motors
and steering motors to realize the closed-loop control of the strategy.

2.4. Target Planning

The target planning layer completes the resolution of the chassis control targets based
on the expected trajectory. The expected vehicle trajectory includes information about
the expected path and velocity, i.e., the expected coupling of the vehicle’s longitudinal
and lateral motion states. Trajectory tracking strategies can be divided into decentralized
control and centralized control according to different control structures. Decentralized
control [24,25] refers to the decoupling of longitudinal and lateral vehicle motion, i.e., it
decomposes the trajectory tracking problem into longitudinal velocity tracking and lat-
eral path tracking problems and designs corresponding control objectives. Centralized
control [26–28], on the other hand, means that the longitudinal and lateral motion in the
trajectory tracking problem is considered uniformly, with a global controller computing
the longitudinal and lateral control targets. The centralized trajectory tracking controller
considers the system holistically and can better account for the coupling properties between
longitudinal and lateral motion control. However, the higher dimensionality and complex-
ity of the system model make it more challenging to design control laws than decentralized
control, and it is also more computationally intensive and costly to implement physically.
In contrast, the decentralized trajectory tracking strategy is relatively simple and easy to
implement in engineering practice. In this work, the trajectory tracking strategy adopts
a decentralized structure, decouples the trajectory tracking problem into a longitudinal
velocity tracking problem and a lateral path tracking problem, and designs the tracking
strategy to calculate the desired generalized force and moment.

2.4.1. Longitudinal Velocity Tracking

The uncertainty of vehicle system parameters, uncertain external disturbances, and
nonlinear coupling between systems lead to difficulties in tuning PID control parameters
and low robustness of dynamic and steady-state performance of vehicle velocity track-
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ing [29]. In this work, the expert PID algorithm is used in conjunction with the expert
system theory to track the longitudinal velocity.

The expert PID algorithm is based on various knowledge of the controlled object
and the control laws. If the precise model of the controlled object is not available, the
PID parameters are designed using expert experience. The deviations and increments
of deviations are used to determine the current state of the controlled system. Rules are
designed to adjust the output of the controller to achieve faster and smoother convergence
of the controlled system.

Assume that e(k) = v(k)− vd(k) is the velocity error, and ∆e(k) = e(k)− e(k− 1) is
the velocity error increment. At the same time, based on engineering practice experience,
the maximum deviation value is set as Mmax, the middle deviation value is set as Mmid
and the minimum deviation value is set as Mmin. According to the setting of deviation,
deviation increment and extreme value of deviation, the setting rules are as follows:

(1) When |e(k)| > Mmax, it means that the velocity error is unacceptably large. At this
time, the controller should be directly output at full load, that is, u(k) = Fxmax.

(2) When e(k) ∗ ∆e(k) > 0, ∆e(k) = 0, it means that the velocity deviation is changing in
the direction of increasing the absolute value of the deviation, or the deviation is a
certain fixed value, then

u(k) = u(k− 1) + k1
{

kie(k) + kp∆e(k) + kd∆∆e(k)
}

(13)

If |e(k)| > Mmid, the velocity deviation is also large, and it may be considered to
increase the output gain k1 of the controller.

(3) When e(k)∆e(k) < 0, ∆e(k)∆e(k − 1) > 0, e(k) = 0, it means that the absolute
value of the velocity deviation is changing in the direction of decreasing, or has
reached the equilibrium state. Then, the controller output remains unchanged, that is,
u(k) = u(k− 1).

(4) When e(k)∆e(k) < 0, ∆e(k)∆e(k− 1) < 0, it means that the velocity deviation is in
the limit state, then,

u(k) = u(k− 1) + k2kie(k) (14)

If |e(k)| > Mmid, it means that the velocity deviation is also large, and it may be
considered to increase the output gain k2 of the controller.

(5) When |e(k)| < Mmin, it means that the absolute value of the velocity deviation is very
small. In order to reduce the static error of the system, PI control is implemented:

u(k) = u(k− 1) + kie(k) + kp∆e(k) (15)

To sum up, the generalized longitudinal force is expressed as:

Fxd(k) = u(k) (16)

2.4.2. Lateral Path Tracking

Intelligent driving faces a complex and changing environment where conditions, such
as critical safety constraints and actuator constraints, must be met [30–32]. In this paper,
MPC is used to realize the lateral path tracking considering the driving stability constraints.

1. Predictive model design

The predictive model is the basis of the MPC used to predict the future output of
the controlled system. The vehicle is a complex coupled nonlinear dynamic model. More
degrees of freedom can improve the modeling accuracy, but the complexity of the model
will also increase, making it difficult to meet the requirements for fast model solutions and
real-time control. Therefore, dynamic modeling must strike a balance between improving
model accuracy and reducing model complexity. Considering the accuracy and real-time
requirements for lateral control of vehicles, a nonlinear three degrees-of-freedom vehicle
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model with lateral and longitudinal coupling is established in this paper to realize the
prediction of system output as shown in Figure 4.
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Based on the established dynamic model, the force analysis is performed:

m
( .
vy + vxωr

)
= C f

( vy+l f ωr
vx

− δ f

)
+ Cr

(
vy−lrωr

vx
− δr

)
−mvxωr

Iz
.

ωr = l f C f

( vy+l f ωr
vx

− δ f

)
− lrCr

(
vy−lrωr

vx
− δr

)
+ Mzd

.
ϕ = ωr.
x = vx cos ϕ− vy sin ϕ
.
y = vx sin ϕ + vy cos ϕ

(17)

where, ϕ is the heading angle, C f and Cr are the equivalent cornering stiffnesses of the front
axle and the rear axle, respectively, δ f is the front wheel angle, δr is the rear wheel angle,
Mzd is the generalized yaw moment, x and y are the longitudinal and lateral coordinates of
the centroid in the geodetic coordinate system, respectively.

In the path tracking process, the desired heading angle and lateral coordinate can be
obtained from the longitudinal coordinate of the current vehicle position. The state variable
X, the control variable u and the output variable Y of the controller can be shown as:

X =
[
vy, ϕ, ωr, y, x

]T

u =
[
δ f , δr, Mzd

]T

Y = [ϕ, y]T
(18)

Assuming that the longitudinal velocity remains constant during path tracking, in
order to meet the real-time requirements of high-speed control, this paper uses Taylor’s
formula to linearize the nonlinear system. The Taylor expansion is performed at the
reference point, and the high-order differential components are rounded off. Then, the
discretization is carried out using the first-order difference quotient method, as shown
in Equation (19).

X(k + 1) = aX(k) + bu(k− 1) + b∆u(k) + d(k) (19)

where,
a = I + T ∂ f

∂X , b = T ∂ f
∂u

d(k) = Xr(k + 1)− aXr(k)− bur(k)
(20)

the augmented state variables are constructed:

ξ(k + 1) =
[

X(k + 1)
u(k)

]
=

[
a b

0Nu×Nx INu×Nu

]
ξ(k) +

[
b

INu×Nu

]
∆u(k) +

[
d(k)

0Nu×1

]
(21)

where, Nx is the number of state variables, and Nu is the number of control variables.
Equation (21) can be simplified as

ξ(k + 1) = Aξ(k) + B∆u(k) + d(k) (22)
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where,

A =

[
a b

0Nu×Nx INu×Nu

]
, B =

[
b

INu×Nu

]
, d(k) =

[
d(k)

0Nu×1

]
(23)

Therefore, the discretized output equation can be obtained as:

Y(k + 1) = Cξ(k + 1) (24)

where,

C =

[
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

]
(25)

The prediction time-domain length is set as p, and the control time-domain length is
set as c (p ≥ c). Assuming that the control increment outside the control time domain is
zero, the predicted output equation of the system can eventually be obtained by iteration,
as shown in Equation (26).

Yp(k) = Φξ(k) + Θ∆U(k) + ΓD(k) (26)

where,

Yp(k) =



Y( k + 1|k)
Y( k + 2|k)
Y( k + 3|k)

...
Y( k + c|k)

...
Y( k + p|k)


, ∆U(k) =


∆u(k)

∆u(k + 1)
∆u(k + 2)

...
∆u(k + c− 1)

, D(k) =



d(k)
d(k + 1)
d(k + 2)

...
d(k + c− 1)

...
d(k + p− 1)


(27)

Φ =



CA
CA2

CA3

...
CAc

...
CAP


, Θ =



CB 0Ny×Nu 0Ny×Nu · · · 0Ny×Nu

CAB CB 0Ny×Nu · · · 0Ny×Nu

CA2B CAB CB · · · 0Ny×Nu
...

...
...

...
...

CAc−1B CAc−2B CAc−3B · · · CB
...

...
...

...
...

CAp−1B CAp−2B CAp−3B · · · CAp−cB


(28)

Γ =



C 0Ny×(Nx+Nu) 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu)

CA C 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu)

CA2 CA C · · · 0Ny×(Nx+Nu) · · · 0Ny×(Nx+Nu)

...
...

...
...

...
...

...
CAc−1 CAc−2 CAc−3 · · · C · · · 0Ny×(Nx+Nu)

...
...

...
...

...
...

...
CAp−1 CAp−2 CAp−3 · · · CAp−c · · · C


(29)

2. Objective function design

The control objective of lateral path tracking is to ensure that the vehicle tracks the
desired path smoothly, accurately, and quickly. Therefore, the objective function in this
paper is designed as shown in Equation (30).

J =
[
Yp(k)−Yre f

]T
QQ

[
Yp(k)−Yre f

]
+ ∆U(k)T RR∆U(k) (30)
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where, QQ = Ip ⊗Q, RR = Ic ⊗ R, Q is the weight coefficient matrix of the output of the
control system, R is the weight coefficient matrix of the control increment, and ⊗ represents
the Kronecker product.

The first in the objective function represents the deviation of the heading angle and
the deviation of the lateral displacement, which characterizes the accuracy of the vehicle in
tracking the desired path. The second limits the control increment, which not only ensures
the stability and continuity of the control but also takes into account the response capability
of the actuator. Equation (30) can be simplified as,

J = [E + Θ∆U(k)]TQ[E + Θ∆U(k)] + ∆U(k)T R∆U(k) (31)

where,
E = Φξ(k) + ΓD(k)−Yre f (32)

Considering that E is a constant matrix at each sampling moment, it can be omitted.
The final objective function in standard quadratic programming form is obtained, as shown
in Equation (33).

J = ∆U(k)T
(

ΘTQΘ + R
)

∆U(k) + 2ETQΘ∆U(k) (33)

3. Constraints design

A major advantage of MPC over other control methods is that it handles constraints
better. MPC is a rolling optimization process that can naturally incorporate constraints into
the optimization problem. For the path-following controller in this paper, the constraints
are mainly considered in the form of the constraint on the control increment, the constraint
on the control set, and the stability constraints.

In order to make the control process more stable and improve the stability and comfort
of the vehicle when tracking the desired path, the control increment should be constrained.
Due to the constraints of the actuator, there are also constraints on the control variables,
such as front wheel angle, rear wheel angle, and generalized yaw moment. So, in summary,
the following can be said:

Umin(k) ≤ Uct(k− 1) + Act ∗ ∆U(k) ≤ Umax(k) (34)

where,

Uct(k− 1) =


u(k− 1)
u(k− 1)

...
u(k− 1)

, Act =


1 0 · · · 0
1 1 · · · 0
...

...
...

...
1 1 1 1

⊗ Ic (35)

To ensure that the vehicle has good stability while tracking the desired path, stability
constraints must be imposed on the MPC optimization problem. The stability constraints
generally start with the two parameters yaw rate and tire slip angle. Therefore, the con-
straint output variable is defined as Yb = [ωr, αr]

T . The expression for the constraint output
can be obtained, as shown in Equation (36).

Yb(k + 1) = Cbξ(k + 1) (36)

where,

Cb =

[
0 0 1 0 0 0 0 0
1

vx
0 − lr

vx
0 0 0 −1 0

]
(37)

The predicted output equation for the stability constraint is shown in Equation (38).

Yp,b(k) = Φbξ(k) + Θb∆U(k) + ΓbD(k) (38)
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where,

Yp,b(k) =



Yb( k + 1|k)
Yb( k + 2|k)
Yb( k + 3|k)

...
Yb( k + c|k)

...
Yb( k + p|k)


, Φb =



Cb A
Cb A2

Cb A3

...
Cb Ac

...
Cb AP


(39)

Θb =



CbB 0Ny1×Nu 0Ny1×Nu · · · 0Ny1×Nu

Cb AB CbB 0Ny1×Nu · · · 0Ny1×Nu

Cb A2B Cb AB CbB · · · 0Ny1×Nu
...

...
...

...
...

Cb Ac−1B Cb Ac−2B Cb Ac−3B · · · CbB
...

...
...

...
...

Cb Ap−1B Cb Ap−2B Cb Ap−3B · · · Cb Ap−cB


(40)

Γb =



Cb 0Ny1×(Nx+Nu) 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu)

Cb A Cb 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu)

Cb A2 Cb A Cb · · · 0Ny1×(Nx+Nu) · · · 0Ny1×(Nx+Nu)

...
...

...
...

...
...

...
Cb Ac−1 Cb Ac−2 Cb Ac−3 · · · Cb · · · 0Ny1×(Nx+Nu)

...
...

...
...

...
...

...
Cb Ap−1 Cb Ap−2 Cb Ap−3 · · · Cb Ap−c · · · Cb


(41)

Based on the road adhesion conditions and the tire slip angle limits, it can be shown
in Equation (42).

Yb,min ≤ Φbξ(k) + Θb∆U(k) + ΓbD(k) ≤ Yb,max (42)

In summary, the finite time domain optimization problem for MPC in this paper can
be transformed into a standard quadratic programming problem:

min
∆U(k)

∆U(k)T(ΘTQΘ + R
)
∆U(k) + 2ETQΘ∆U(k)

s.t. ∆Umin(k) ≤ ∆U(k) ≤ ∆Umax(k)
Umin(k) ≤ Uct(k− 1) + Act ∗ ∆U(k) ≤ Umax(k)
Yb,min ≤ Φbξ(k) + Θb∆U(k) + ΓbD(k) ≤ Yb,max

(43)

The optimal sequence of control increments is obtained by solving the standard
quadratic programming problem, and the first element ∆u∗(k) is output. The control
variable at the current moment can be described as Equation (44).

u(k) = u(k− 1) + ∆u∗(k) (44)

2.5. Coordinated Control

The coordinated control layer receives the generalized force, generalized yaw moment,
and generalized wheel angle from the upper layer. The wheel torque and the wheel
angle are calculated and output to in-wheel motors and steering motors. Depending on the
actuating subsystem, the coordinated control layer consists of two parts: torque distribution
control and wheel angle distribution control.



Sensors 2023, 23, 5496 13 of 29

2.5.1. Torque Distribution Control

The torque distribution control receives the generalized longitudinal force and the
generalized yaw moment output from the upper level and distributes and controls the
driving torque of the individual wheels. The current research in torque distribution mainly
considers the stability index and economic index as the control objective and uses online
real-time optimization to complete the torque coordinated distribution [33,34]. However,
current research has the following limitations:

• The rule-based torque distribution control does not consider the operating efficiency
of motor, resulting in unnecessary power loss.

• The real-time optimization of torque distribution places a large burden on the con-
troller. The solution speed may be slow and this problem may even be unsolvable
under certain working conditions.

• The economic evaluation generally uses the size of the control variables as the index,
ignoring the efficiency characteristics of the motor. This is mainly due to the nonlinear-
ity of the motor model, which makes it impossible to optimize the system efficiency
in real-time.

To address these issues, this paper simplifies the real-time optimization problem of
torque distribution in order to balance practical and optimization objectives. A combination
of rule-based strategy and offline optimization strategy is used for the distribution strategy.
A rule-based strategy is designed to distribute the torque between the left and right wheels.
Considering the stability constraints, the optimization of the torque distribution coefficients
between the front and rear wheels based on the MPSO algorithm leads to an optimal wheel
torque, improving the efficiency while ensuring the response speed of the vehicle. First, the
torque distribution between left and right wheels is carried out based on the generalized
longitudinal force and generalized yaw moment requirements. Then, the MPSO algorithm
is used to optimize the torque distribution offline between the front and rear wheels on the
same side to obtain the optimal distribution coefficient of the front axle. Finally, the driving
torque of each wheel is calculated.

1. Left-right distribution

A rule-based strategy is used for the generalized longitudinal force to distribute it
equally between the left and right sides of the vehicle. The corresponding demand torques
are obtained as follows.

TdlF = TdrF =
Fxd
2

Re f f (45)

where, TdlF and TdrF are the left-hand and right-hand demand torques, respectively, corre-
sponding to the generalized longitudinal forces.

The same uniform distribution is used for the generalized yaw moment. The yaw
moment generated by the wheels on both sides is equal and has an opposite direction,
which can shorten the response time of the vehicle and speed up the response speed. It can
be represented as Equation (46).

TdlM = −Mzd
d Re f f

TdrM = Mzd
d Re f f

(46)

where, TdlM and TdrM are the left-hand and right-hand demand torques, respectively
corresponding to the generalized yaw moment.

The total demand torques are,

Tdl =
Fxd
2 Re f f − Mzd

d Re f f

Tdr =
Fxd
2 Re f f +

Mzd
d Re f f

(47)

where, Tdl and Tdr are the left-hand and right-hand demand torques, respectively.

2. Front-rear distribution
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For the front and rear wheels on the same side, the total demand torque is fixed. The
independent drive function allows the torque of the front and rear wheels to be optimally
distributed so that in-wheel motors can operate in the high-efficiency range as far as
possible. Considering the high time complexity of online optimization, this paper uses the
MPSO algorithm to optimize the distribution coefficient of the front axle offline, and it is
put into a tabular form for subsequent table lookup operations which ensures the real-time
performance of the system.

(1) The MPSO algorithm

PSO (Particle Swarm Optimization) is a type of swarm intelligent optimization algo-
rithm [35]. In PSO, each solution of the optimization problem is abstracted as a particle,
and all particles search for the optimal solution in the solution space. Each particle is
assigned a fitness function to determine the fitness of the current location, and a speed
property to determine the distance and direction of flight, after which the optimal solution
is determined by iteration.

The traditional PSO algorithm has the advantage of fast convergence, but it can easily
fall into local optimal solutions in some complex situations. Therefore, the MPSO algorithm
is introduced to avoid the problem of premature convergence. The MPSO algorithm
combines the traditional PSO algorithm with the idea of mutation in the genetic algorithm.
The mutation occurs when the population location is updated, thereby jumping out of
the local optimal solution, which is conducive to finding the global optimal solution and
reduces the probability of premature convergence. The process of the MPSO is shown
in Figure 5.

(2) Distribution coefficient optimization

Since the four in-wheel motors are the same, the offline optimization problems on the
left and right sides are essentially the same, so this paper takes the right-side wheel as an
example. In order to carry out the optimization, the economy needs to be characterized
and this paper uses the overall motor efficiency as the economic index. The expression of
the overall motor efficiency is,

J =
Tf rn f r + Trrnrr

Tf rn f r
η f r

+ Trrnrr
ηrr

(48)

where, Tf r and Trr are the output torques of the right front and right rear motors, respectively,
n f r and nrr are the output speeds of the right front and right rear motors, respectively, and
η f r and ηrr are the output efficiencies of the right front and right rear motors, respectively.

To simplify the complexity of the optimization problem, the concept of the front axle
distribution coefficient λ is introduced, which is the ratio of the front wheel torque to the
total demand torque.

During normal driving, there is little difference in speed between the front and rear
wheels on the same side, so the optimization problem can be translated into Equation (49).

minJ =
λ

η f r
+

1− λ

ηrr
(49)

Considering the constraints on the external characteristics of the in-wheel motor, the
following constraints are made:

0 ≤ λTdr ≤ Tmax
0 ≤ (1− λ)Tdr ≤ Tmax

(50)

where, Tmax is the peak torque of the in-wheel motor.
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In addition, depending on the vehicle model, the center of mass is closer to the front
axle, which means that the vertical load on the front axle is greater than that on the rear axle.
This results in a greater tire adhesion limit for the front wheel, with a greater longitudinal
force limit. Therefore, the front wheels should take on a larger portion of the required
torque. The following restriction applies to the distribution coefficient of the front axle.

0.5 ≤ λ ≤ 1 (51)

Factors affecting the front axle distribution coefficient include the velocity and the
demand torque, wherein the velocity is represented by wheel speed. Based on the MPSO
algorithm, the offline optimization of the front axle distribution coefficient is realized by
programming in MATLAB. Finally, the mapping of the optimal distribution coefficient for
the front axle is shown in Figure 6. The optimal distribution coefficient for the front axle is
determined by the velocity and the demand torque, which realizes the torque distribution
between the front and rear wheels on the same side. From the optimization results, when
the demand torque is low, the front wheel drive is selected; when the demand torque is
high, it tends to be four-wheel drive.
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(3) Torque calculation for each wheel

Based on the optimal coefficient for the distribution of front axle torque determined via
offline optimization, the torque for each wheel can be calculated. The offline optimization of
the front axle distribution coefficients takes into account the constraints on the peak torque
of the in-wheel motors but still requires stability corrections according to the constraints on
road adhesion, as shown in Equation (52).

Tf l = min
(
|λlTdl |, µFz f l

)
· sgn(Tdl)

Tf r = min
(
|λrTdr|, µFz f r

)
· sgn(Tdr)

Trl = min(|(1− λl)Tdl |, µFzrl) · sgn(Tdl)
Trr = min(|(1− λr)Tdr|, µFzrr) · sgn(Tdr)

(52)

where, λl and λr are the optimal front axle distribution coefficients for the left and right
side, respectively. Tij is the torque of each wheel, µ is the coefficient of road adhesion, and
Fzij is the vertical load of each wheel, which can be obtained using Equation (53).

Fz f l =
mglr

2l −
maxh

2l −
mayhlr

dl

Fz f r =
mglr

2l −
maxh

2l +
mayhlr

dl

Fzrl =
mgl f

2l + maxh
2l −

mayhl f
dl

Fzrr =
mgl f

2l + maxh
2l +

mayhl f
dl

(53)

2.5.2. Wheel Angle Distribution Control

The generalized wheel angle calculated by the target planning layer is the correspond-
ing angle at the center of the front and rear axles, which is referred to as the equivalent
angle of the front and rear wheels. Traditional control methods often assume that the left
and right wheels on the same axis have the same angle, which directly corresponds to
the equivalent angle. Although this method can simplify the design process, it does not
take into account the actual steering geometry relationship, which not only increases tire
wear but also causes unnecessary energy consumption. For this reason, the wheel angle
distribution method based on Ackermann steering geometry is applied in this paper to
convert the equivalent angle into the angle of each wheel.

By distributing the wheel angles based on the Ackermann steering geometry, the tires
can be put into a pure rolling condition as much as possible. However, the ideal Ackermann
steering principle is limited by the fact that it ignores the cornering characteristics of the
tires. To further improve vehicle stability and reduce excessive tire wear, the Ackermann
principle must be modified to obtain wheel angles.

When the vehicle is steering, the lateral elastic deformation of the tires results in the
slip angles of the individual wheels on the front and rear axles. As shown in Equation (54),
the corresponding relationship that each wheel angle should satisfy can be called the
modified Ackermann principle.

tan(δ f l − α f l) =
tan δ f

1− d
2l (tan δ f−tan δr)

tan(δ f r − α f r) =
tan δ f

1+ d
2l (tan δ f−tan δr)

tan(δrl − αrl) =
tan δr

1− d
2l (tan δ f−tan δr)

tan(δrr − αrr) =
tan δr

1+ d
2l (tan δ f−tan δr)

(54)

3. Simulation and Results

This section is divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.
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3.1. Environment and Configuration

In this section, the simulation model is built based on the MATLAB R2022a software
produced by MathWorks (Natick, MA, USA), as shown in Figure 7. The vehicle model
is the seven degrees-of-freedom vehicle model presented in Section 2. The simulations
were performed using single-lane change and slalom test. The results verify the effect of
trajectory tracking and economic optimization, which fully proves the effectiveness of the
proposed control strategy.
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To validate the economic performances of the coordinated control, simulations compar-
ing the average distribution strategy and the wheel load distribution strategy are performed.
These two strategies are simple and efficient and are widely used in practice. Therefore, the
advantages of the proposed distribution control strategy can be further emphasized.

3.1.1. Average Distribution Strategy

The generalized longitudinal force and the generalized yaw moment output from the
upper layer are distributed equally to each wheel. The wheel torque in this strategy is
as follows: {

Tf l = Trl =
Fxd
4 Re f f − Mzd

2d Re f f

Tf r = Trr =
Fxd
4 Re f f +

Mzd
2d Re f f

(55)

3.1.2. Wheel Load Distribution Strategy

The generalized force and yaw moment are distributed equally between the left and
right sides of the vehicle. Then, the distribution between the front and rear wheels is carried
out on the same side in proportion to the vertical load on the tires. The wheel torque with
this strategy is shown in Equation (56).

Tf l =
Fz f l

Fz f l+Fzrl

(
Fxd
2 Re f f − Mzd

d Re f f

)
Tf r =

Fz f r
Fz f r+Fzrr

(
Fxd
2 Re f f +

Mzd
d Re f f

)
Trl =

Fzrl
Fz f l+Fzrl

(
Fxd
2 Re f f − Mzd

d Re f f

)
Trr =

Fzrr
Fz f r+Fzrr

(
Fxd
2 Re f f +

Mzd
d Re f f

) (56)

3.2. Results and Analysis
3.2.1. Single-Lane Change

As one of the common conditions, the single-lane change condition is usually used to
simulate a vehicle lane change scenario.
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1. Trajectory tracking effect

Three speeds of 40 km/h, 80 km/h, and 120 km/h are simulated to verify the effect
of the controller. The longitudinal velocity tracking and lateral path tracking results are
analyzed to verify the performance of the vehicle at low, medium, and high speeds. The
simulation results are shown in Figures 8 and 9.
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For a single-lane change, the longitudinal velocity tracking algorithm can track the
expected velocity very well according to Figure 8. The tracking error is less than 0.2 km/h,
which satisfies the longitudinal tracking accuracy requirements. As the velocity increases,
the tracking error gradually increases. This is mainly because the nonlinearity of the tire
gradually increases and is associated with the strong coupling properties between the
subsystems, resulting in a decrease in tracking accuracy.

The data in Figure 9c,d have been processed to obtain the tracking error at different
velocities to facilitate quantitative analysis of the error, as shown in Table 1.

Table 1. Comparison of path tracking errors under single-lane change.

Performance Index 40 km/h 80 km/h 120 km/h

Lateral displacement
tracking error (m)

Maximum 0.0115 0.0171 0.0234
Average 0.0024 0.0036 0.0053

Standard deviations 0.0040 0.0058 0.0075

Heading angle
tracking error (rad)

Maximum 0.0012 0.0036 0.0042
Average 0.0002 0.0009 0.0009

Standard deviations 0.0004 0.0012 0.0012

From Figure 9 and Table 1, it can be seen that the lateral path tracking algorithm is
very good at tracking the desired path for single-lane change. As the speed increases, the
lateral displacement error gradually increases. The maximum lateral displacement error is
0.0115 m at 40 km/h, 0.0171 m at 80 km/h, and 0.0234 m at 120 km/h, which is mainly due
to the gradual increase in the nonlinearity of the tire and the enhancement of the coupling
effect of the subsystem. At the same time, although the lateral displacement error increases,
it is still generally small and within acceptable limits. Similarly, the heading angle error
also increases with velocity but remains at a low level overall. The maximum heading
angle error at 120 km/h is only 0.0042 rad, which demonstrates the good path-tracking
performance of the controller.

The trajectory tracking controller is designed to achieve good stability while providing
accurate and reliable path tracking. To check the stability effect, the lateral acceleration
of the vehicle, side slip angle, and yaw rate are selected as indicators, and the simulation
results are analyzed.

From Figures 10–13, it can be seen that the vehicle is in a stable state due to the
stability constraints and no instability occurs even at a high speed of 120 km/h. The lateral
acceleration is kept within 0.4 g, which ensures the accuracy of the linear tire model. The
side slip angles at different speeds are all within 0.01 rad, and the yaw rate is all within
0.15 rad/s, indicating that the vehicle has good driving stability.

The simulation results shown in Figure 13 illustrate the advantages of 4WIS in terms of
dynamic control. At low speeds, the front and rear wheels rotate in the opposite direction,
reducing the steering radius and improving the vehicle’s maneuverability. At high speeds,
the front and rear wheels turn in the same direction, thereby increasing the lateral stability
margin and improving the vehicle’s driving stability.

2. Economy optimization effect

The above three distribution strategies are simulated at different velocities to validate
the economy optimization effect, using the overall efficiency of the motor and the battery
SOC as performance indicators. It is assumed that Rule 1 is the average distribution strategy,
Rule 2 is the wheel load distribution strategy, and Rule 3 is the torque distribution strategy
proposed in this paper. At the same time, the control strategy does not include a braking
energy recovery strategy. The initial value of SOC is set to 0.8. The simulation results are
shown in Figures 14–16 and Table 2.
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Table 2. Comparison of overall motor efficiency under single-lane change.

Velocity (km/h) Strategy Maximum Average
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Rule 1 0.7356 0.7303
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Rule 1 0.8969 0.8877
Rule 2 0.8970 0.8882
Rule 3 0.9276 0.9241

120
Rule 1 0.8973 0.8791
Rule 2 0.8972 0.8793
Rule 3 0.9147 0.9107
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For a single-lane change, the change in SOC is almost identical for the average and
wheel load distribution strategies at different speeds. The maximum and average values of
the overall motor efficiency are also almost identical, indicating that the economic effects of
these two strategies are almost the same.

The change in battery SOC represents the electrical energy consumed by the in-wheel
motors while driving. Comparing the change curves of SOC at different speeds, the SOC
change in Rule 3 is smaller than those in Rule 1 and Rule 2, and the SOC in Rule 3 falls
relatively slowly. This shows that the in-wheel motors consume less electric energy in the
Rule 3 strategy, which proves the energy economy of the proposed strategy.

The average value of the overall motor efficiency of Rule 3 is 14.68% higher than
that of Rule 1 at 40 km/h. Compared with the results of Rule 1, the average values at
80 km/h and 120 km/h have increased by 4.10% and 3.5%, respectively. This shows that
the coordinated control strategy proposed in this paper can maintain the overall motor
efficiency at a relatively high level and effectively improve the vehicle economy.

Comparing the effects of economy optimization at different speeds, it can be found
that the economy optimization at low speeds is better, and the difference in SOC decline is
significant. This is because the demand torque is relatively low at low speeds. In the average
distribution strategy, the torque of each wheel is very low, so in-wheel motors operate in the
low-efficiency region. However, the proposed strategy optimizes the torque distribution
and tends to select the front wheel drive mode. This allows the front in-wheel motors
to operate in a relatively efficient range, and the overall efficiency can be significantly
improved. However, at high speeds, the in-wheel motors’ speeds are also high. As shown
in Figure 2, the motor’s efficiency characteristic range gradually narrows as the speed
increases when the motor’s speed is high. The distribution difference of the motor working
points decreases for different strategies, resulting in a less significant improvement effect.

3.2.2. Slalom Test

1. Trajectory tracking effect

Two speeds of 30 km/h and 60 km/h are simulated to verify the effect of the controller.
The longitudinal velocity tracking and lateral path tracking results are analyzed to verify
the performance of the vehicle at different speeds. The simulation results are shown in
Figures 17 and 18.
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The data in Figure 18c,d have been processed to obtain the tracking error at different
velocities to facilitate quantitative analysis of the error, as shown in Table 3.
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Table 3. Comparison of path tracking errors under slalom test.

Performance Index 30 km/h 60 km/h

Lateral displacement
tracking error (m)

Maximum 0.0412 0.0603
Average 0.0158 0.0241

Standard deviations 0.0147 0.0214

Heading angle
tracking error (rad)

Maximum 0.0058 0.0129
Average 0.0011 0.0033

Standard deviations 0.0010 0.0029

From Figure 18 and Table 3, it can be seen that the lateral path tracking algorithm
is very good at tracking the desired path in a slalom test. As the speed increases, the
path-tracking error gradually increases. The average lateral displacement error is 0.0158 m
and the average heading angle error is 0.0011 rad at 30 km/h, while the average lateral
displacement error is 0.0241 m and the average heading angle error is 0.0033 rad at 60 km/h.
Although the tracking error increases, it remains low overall, which shows the good tracking
performance of the designed controller.

Figures 19–22 show that the vehicle is in a stable state due to stability constraints. The
side slip angle is maintained at a low level, which provides good tracking capability. The
lateral acceleration is kept within 0.4 g, ensuring the accuracy of the linear tire model. The
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velocities under both simulation conditions are not particularly high, so the front and rear
wheels turn in opposite directions, which improves the maneuverability of the vehicle
while meeting the stability requirements.
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2. Economy optimization effect

The above three distribution strategies are simulated at different speeds to validate the
economy optimization effect, using the overall efficiency of the motor and the battery SOC as
performance indicators. The simulation results are shown in Figures 23 and 24 and Table 4.
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Table 4. Comparison of overall motor efficiency under slalom test.

Velocity (km/h) Strategy Maximum Average

30
Rule 1 0.6404 0.6151
Rule 2 0.6409 0.6121
Rule 3 0.7857 0.7484

60
Rule 1 0.8973 0.7995
Rule 2 0.8971 0.7987
Rule 3 0.9345 0.8829

In the slalom test, the change in SOC is almost identical for the average and wheel
load distribution strategies at different speeds. The maximum and average values of the
overall motor efficiency are also almost identical, indicating that the economic effects of
these two strategies are almost the same.

Comparing the change curves of SOC at different speeds, the change in SOC in Rule 3
is smaller than in Rule 1 and Rule 2, and the SOC in Rule 3 drops relatively slowly. This
shows that the in-wheel motors consume electric energy under the Rule 3 strategy, which
proves the energy economy of the proposed strategy.

The coordinated control proposed in this paper is significantly better than the other
two strategies, as shown in Table 4. Compared with the results of Rule 1, the average value
of the overall motor efficiency of Rule 3 has increased by 21.67% at 30 km/h. At 60 km/h, it
has increased by 10.43%, which proves that the coordinated control strategy can effectively
improve the vehicle economy.

4. Conclusions

In this paper, a 4WID-4WIS EV trajectory tracking coordinated control strategy consid-
ering energy consumption economy is proposed to improve vehicle stability and economy
during trajectory tracking. A hierarchical chassis coordinated control architecture for 4WID-
4WIS EV is designed. In the target planning layer, the longitudinal velocity tracking and
lateral path tracking are achieved by using expert PID and MPC, respectively, consider-
ing stability constraints, such as yaw rate and tire slip angle. In the coordinated control
layer, the optimal torque distribution for each wheel is performed to achieve the optimal
overall motor efficiency based on the MPSO algorithm. Then, the angle distribution of
each wheel is performed in combination with the modified Ackermann theory. From the
simulation results, it can be concluded that the proposed coordinated control strategy not
only achieves good trajectory tracking but also ensures driving stability and improves the
energy consumption economy.

In future work, the coupling characteristics between multiple subsystems will be
considered. The influence of vertical dynamics will be incorporated into the control strategy
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to achieve unified control of multi-dimensional lateral, longitudinal, and vertical dynamics.
At the same time, the motor model will be further improved, and research on redundant
control of actuator failures will be conducted. The test with a real vehicle will be conducted
to further verify the effectiveness of the control strategy.
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