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Abstract: An automatic determination of grape must ingredients during the harvesting process
would support cellar logistics and enables an early termination of the harvest if quality parameters
are not met. One of the most important quality-determining characteristics of grape must is its
sugar and acid content. Among others, the sugars in particular determine the quality of the must
and wine. Chiefly in wine cooperatives, in which a third of all German winegrowers are organized,
these quality characteristics serve as the basis for payment. They are acquired upon delivery at
the cellar of the cooperative or the winery and result in the acceptance or rejection of grapes and
must. The whole process is very time-consuming and expensive, and sometimes grapes that do not
meet the quality requirements for sweetness, acidity, or healthiness are destroyed or not used at all,
which leads to economic loss. Near-infrared spectroscopy is now a widely used technique to detect
a wide variety of ingredients in biological samples. In this study, a miniaturized semi-automated
prototype apparatus with a near-infrared sensor and a flow cell was used to acquire spectra (1100 nm
to 1350 nm) of grape must at defined temperatures. Data of must samples from four different red
and white Vitis vinifera (L.) varieties were recorded throughout the whole growing season of 2021
in Rhineland Palatinate, Germany. Each sample consisted of 100 randomly sampled berries from
the entire vineyard. The contents of the main sugars (glucose and fructose) and acids (malic acid
and tartaric acid) were determined with high-performance liquid chromatography. Chemometric
methods, using partial least-square regression and leave-one-out cross-validation, provided good
estimates of both sugars (RMSEP = 6.06 g/L, R2 = 89.26%), as well as malic acid (RMSEP = 1.22 g/L,
R2 = 91.10%). The coefficient of determination (R2) was comparable for glucose and fructose with
89.45% compared to 89.08%, respectively. Although tartaric acid was predictable for only two of
the four varieties using near-infrared spectroscopy, calibration and validation for malic acid were
accurate for all varieties in an equal extent like the sugars. These high prediction accuracies for the
main quality determining grape must ingredients using this miniaturized prototype apparatus might
enable an installation on a grape harvester in the future.

Keywords: grapevine; NIRS; quality; ripening; harvest; precision viticulture; field phenotyping

1. Introduction

The ripening process of grapes follows a three-part scheme, two growth cycles sep-
arated by a lag phase [1,2]. In the first growth phase, malic acid and tartaric acid are
accumulated, thus increasing the acids content to its maximum. During the second growth
period, onwards from véraison, sugar concentrations increase rapidly and acid contents
begin to steadily decrease. While malic acid is mainly metabolized, tartaric acid is diluted
by growth in this phase [3]. These growth phases depend highly on the weather and, thus,
on the prevailing climatic conditions and their changes. It is already becoming apparent
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that the predicted climatic changes can lead to musts of lower quality and a more difficult
vinification [4]. Due to rising temperatures and mild winters in the Northern Hemisphere,
véraison tends to take place earlier in the year. As a consequence, ripening is in the warmest
period of the year. This, combined with the predicted rising temperature [5], results in
a separation of sugar and acid metabolisms [6]. Excessive sugar contents are possible,
resulting in undesirable high alcohol contents. Furthermore, acid contents become far too
low, due to concentration of sugars [7,8] and further metabolization of acids (especially
malic acid) [6]. This impairment of the delicate sugar–acid balance is particularly disadvan-
tageous for the production of high-quality wines, as the sugar, alcohol, and acid contents
largely determine the taste of the wine.

In order to obtain a broader view of the maturity stage of the grapes, it is possible to
carry out a laboratory analysis. In this case, most commonly Fourier-Transform infrared
spectroscopy (FTIR) is used to measure various additional parameters, for example volatile
acids, pH, or the content of yeast-usable nitrogen. However, this method is labour in-
tense as clear must samples have to be prepared for the measurements in the laboratory.
Additionally, specialized personal and equipment is required, and it is expensive and
time-consuming. Such measurements of the quality attributes such as the sugars and acids
contents can be carried out prior to harvest, but are then made again upon delivery in
the cellar. The differences between these measurements show that accurate predictions of
quality in the field is crucial and appropriate techniques are needed. This could be over-
come through a sensor measuring important quality parameters in the tank of the grape
harvester during the harvesting process. However, there is a lack of usable, inexpensive
technology on the market, that collects these parameters fully automatically.

In vibrational spectroscopy, there is a so-called fingerprinting region. This region
is below 1500 cm−1, where a highly complex spectrum is obtained that can be clearly
assigned to an organic substance. However, working in such wavelength ranges so far
requires expensive sensors intended for the scientific use. Often some sample preparation
is necessary and such sensitive spectrometers are not sufficiently robust for use in the
field. To overcome this, near-infrared spectroscopy (NIRS) can be used. This is a reliable,
common, and widely used easy-to-operate technique, detecting infrared radiation between
760 nm and 2500 nm. The obtained spectra contain overtones and combination of vibrations,
requiring chemometric methods for the content predictions. After calibration, results could
be achieved quickly and easily, and excessive sample preparation could be circumvent.

Using diffuse reflectance spectra, the reflected and returning light of an illuminated
sample would be recorded. Only a small proportion of the radiation entering the sam-
ple and directly interacting with the ingredients returns. Disturbing influences on such
spectra are manifold and high coefficients of variation are reported when applying this
technique [9]. For this type of measurement, a great deal of research and development
is still needed before suitable solutions can be found. Currently, measurements in trans-
mission mode are more suitable. There, a light beam is guided through the homogenized
sample. As a result, in particular light scattering effects can be minimized and coefficients
of variation can be reduced. A high proportion of the radiation interacts with the target
molecules and a higher amount of information about them are included. This enables the
construction of better models using chemometrics resulting in a higher predictability of
ingredients in biological samples using NIRS. Some properties as well as substances in
agricultural products could already be determined on- and in-line using this technique (for
an overall overview see Huang et al. [10], especially Cozzolino et al. [9] for viticulture).
Due to the strong absorption of water in this wavelength range NIRS is most often used
to determine the moisture content of a sample, but also the determination of alcohols
in beverages is completed. Moreover, a handheld digital refractometer using NIRS for
the sugar determination in individual grapevine berries is already available on the mar-
ket. However, no usable, reliable and inexpensive sensors using NIRS are available for
measuring important quality parameters like sugars and acids before winemaking.
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There are still some challenges to overcome. Grape must is highly variable and contains
many substances influencing the quantification of metabolites of interest. The changing
chemical matrix can have influences on the spectra and, thus, can affect the predictive
capacity of this technique. González-Caballero et al. [11] and Fernández-Novales et al. [12]
have recorded transmission spectra of white and red grape must of different grapevine
varieties. However, they did not create the calibrations specifically for the variety and, thus,
increased the variance in the dataset. A wide wavelength range, as it was chosen in the
study of González-Caballero et al. [11], requires expensive spectrometers. The prediction of
quality-determining compounds can be executed using smaller wavelength ranges, which
was shown by Fernández-Novales et al. [12]. However, until now acids have been less
predictable. Krause et al. [13] could show the attribution of sugars and acids to particular
wavelength bands in the range of 1100 nm to 1160 nm and 1300 nm to 1350 nm, respectively.
These should be taken into consideration to achieve precise results, especially for the acids
contents prediction.

Reliable and robust models for must of several Vitis vinifera (L.) varieties are still
needed. This study is about the prediction of the important quality determining param-
eters, main sugars and acids in different grape musts using miniaturized NIRS. Sample
preparation was minimal and models were build using accurate reference values gained
with high-performance liquid chromatography (HPLC).

2. Materials and Methods
2.1. Plant Material and Sampling
2.1.1. Grapevine Farming Sites and Used Vitis vinifera (L.) Varieties

In Germany, in the south of Rhineland Palatinate, 17 different vineyards were se-
lected, with four to five vineyards per Vitis vinifera (L.) variety, comprising white (‘Ries-
ling’, ‘Chardonnay’) and red (‘Dornfelder’, ‘Pinot Noir’) ones. Vineyards were located
between 49°11′15.1′′ N–49°42′86.3′′ N and 8°06′50.8′′ E–8°20′97.7′′ E (Figure 1) next to the
towns Deidesheim (DH), Kleinfischlingen (KF), Mühlhofen (MH), Niederkirchen (NK), and
Wollmesheim (WH). Most of the vineyards were located next to Wollmesheim comprising
all used Vitis vinifera (L.) varieties, with ‘Riesling’ only being located there.

Figure 1. Map of the plots used in Germany, southern Rhineland Palatinate, districts of Bad Dürkheim
an der Weinstraße (DÜW), Neustadt an der Weinstraße (NW), and Südliche Weinstraße (SÜW) with
the city of Landau (LD); abbreviations stand for the corresponding towns the vineyards were nearby:
DH Deidesheim, NK Niederkirchen, KF Kleinfischlingen, WH Wollmesheim, and MH Mühlhofen.

Plots of ‘Chardonnay’ were also located in Niederkirchen, as well as Kleinfischlingen.
The plot next to Deidesheim was planted with ‘Pinot Noir’ and the one in Mühlhofen with
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‘Dornfelder’. Vine and row spacing in the plots were approximately the same and the
greening in the tracks was well-kept. All vineyards were roughly north–south oriented,
except one in Deidesheim (DH 01). Additional information can be found in the Table A1.

2.1.2. Sampling and Processing Samples

Throughout the ripening period from 9 August 2021 to 1 October 2021 (8 time-points),
for ‘Riesling’ till 14 October (10 timepoints) 2021, 100 berries were taken randomly from
each entire vineyard every week. Sampled vines were selected randomly, but evenly
distributed over the entire plot. Care was taken to use berries from different positions on
the vine, the grape bunch and according to the exposure to sunlight. To gain the must,
berries were crushed with a blender (BL 6280, Grundig, Germany) and centrifuged at
20,340× g for 10 min (Sigma 6K 15, Sigma Laborzentrifugen GmbH, Osterode am Harz,
Germany). Must was then poured through a 100 µm sieve into two 50 mL falcon tubes and
used for recording spectral data (Figure 2) and reference values, respectively.

Figure 2. Average recorded and, according to described spectral pretreatments, normalized and
filtered transmission spectra of the must in the wavelength range from 1100 nm to 1350 nm, and their
corresponding 95% confidence interval (semi-transparent areas) showing the spectral changes be-
tween the different samples of the Vitis vinifera (L.) cultivars ‘Chardonnay’ (blue, solid line), ‘Riesling’
(yellow, dotted), ‘Dornfelder’ (green, dashed), and ‘Pinot Noir’ (red, dotdashed).

2.2. Collection of Reference Values

For the analysis of sugars and acids two laboratory methods were used, (1) HPLC and
(2) FTIR.

2.2.1. High-Performance Liquid Chromatography

A subsample of the must was transferred to a 2 mL reaction tube, centrifuged (12,100× g
for 5 min, Minispin Eppendorf, Hamburg, Germany) and 1:3 diluted using double dis-
tilled water. After mixing and another centrifugation step the dilution was filled into
vials and placed in the multisampler (G7167B) of the HPLC apparatus (Agilent 12900In-
finity II, Agilent Technologies Inc., Santa Clara, CA, USA). The HPLC system consited
of a binary pump (G7120A) and a Rezex ROA-Organic Acid H+ ion exclusion column
(300 mm × 7.8 mm, 8 µm) protected by a security guard Carbo-H+ column (Phenomenex
Inc., Torrance, CA, USA) kept in a column oven (G7116B) at 75 °C was used for separation.
Detection of malic acid and tartaric acid was conducted for diode array detector (G7117B)
at 210.4 nm. The sugars glucose and fructose were detected using a refractive index detector
(G1362A) kept at 50 °C. Then, 5 µL of each sample was injected and analyzed in a 16.5 min
run under an aqueous phase of 0.4 mM sulfuric acid with a flow rate of 0.6 mL/min. As
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multi-component standard a four-stage dilution series was created containing 1.5 g/L to
90 g/L fructose and glucose and 0.15 g/L to 9 g/L malic acid and tartaric acid, respectively.
Analysis of data was performed with Agilent OpenLab Chemstation software (Agilent
Technologies, Santa Clara, CA, USA).

If the recording of a spectrum had to be repeated later than on the day of sampling,
the levels of the target substances were determined again using HPLC.

2.2.2. Fourier-Transform Infrared Spectroscopy

FTIR is a rapid and commonly used spectroscopic method for the measurement of
a wide range of wine and must parameters. Therefore, reference values for the sugars
and acids content were also recorded using FTIR (WineScan SO2, Foss, Denmark) on the
same day when the berries were sampled and the respective must was gained. The system
was coupled with an ASX-260 auto sampler (Teledyne CETAC, Omaha, NE, USA). Au-
tomatically 10 ml of the centrifuged grape must was injected and measured in duplicate.
Values for glucose, fructose, malic acid, and tartaric acid (in g/L) were gained, as well
as for density (g/mL), pH, total acidity (g/L), volatile acids (g/L), gluconic acid (g/L),
ethanol (%), glycerol (g/L), ammonia (mg/L), and alpha amino nitrogen (mg/L). For
the quantification of these parameters, the default wavelength range of the system was
used. Calibration was verified against classical detection methods and in inter-laboratory
proficiency tests every year.

2.3. NIR Apparatus and Acquisition of Spectral Data

The samples were examined using Fraunhofer IOSB SmartSpectrometer system [13]
using a SpectralEngines spectrometer. The NIRONE Sensor S 1.4 detects wavelengths
between 1100 nm and 1350 nm with a resolution of 12–16 nm using a single element InGaAs
detector and a Fabry–Pérot interferometer for optical filtering. According to the manufac-
turer, this sensor has a signal-to-noise ratio of 15,000. A halogen lamp HL-2000-HP (Ocean
Optics, Orlando, FL, USA) was used as light source which has a wide spectral range from
360 nm to 2400 nm.

The samples were inserted into a 1/4′′ flow cell (Avantes, Apeldoorn, The Netherlands)
extended with a hose at the end of which a tap was attached, to hold the sample stable.
For accurate measurement, the optical path (5 mm) was perpendicular to the flow cell and
is accordingly as long as the diameter. A step-index fiber optic cable with a diameter of
365 µm and a numerical aperture of 0.22 (Thorlabs, Newton, NJ, USA) was used to connect
light source, flow cell and spectrometer. This enabled the conducive use of the dynamic
spectrometers and prevents overloading.

Due to hydrogen bonding, the sample temperature has an impact on the spectral data.
To decrease this influence during harvest, all samples must be measured at precisely defined
temperatures for reference. Therefore, each sample had to go through a temperature profile
and was measured after reaching specific points. The flow cell mentioned above were
attached to a Peltier element with thermal adhesive. The advantage of Peltier elements are
that the surface can be heated and cooled by changing the direction of the electric current.
The DT-AR-075-24 (European Thermodynamics, Kibworth Harcourt, UK) fits our need
and has a maximum cooling power of 74.5 W and an operating range from −10 °C to 47 °C,
depending on ambient temperature. To improve the heating process, a fan was located on
the opposite side. A classical Pt100 is mounted near the edge of Peltiers surface for temper-
ature measurement. Experiments have shown that the temperature at this position is equal
to the temperature of the sample in the flow cell. With this configuration, the temperature
can be controlled via a proportional-integral-derivative (PID) controller. However, due to
non-linearities of the Peltier element, a classically configured PID controller is not suitable
for this task. Therefore, the controller has a non-linear I component that increases faster as
temperature is not changing and time is progressing. The setup is shown in Figure 3. Final
size of the prototype NIR apparatus was 320 mm× 280 mm× 265 mm.
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For temperature reference, each sample is measured at 10 °C to 18 °C in 4 degree
increments. Before starting a series of measurements, the system must be referenced with
water and 20 °C.

Figure 3. Schematic structure of the miniaturized prototype apparatus: the proportional-integral-
derivative (PID) controller (1) regulated the Peltier element (2) depending on the sample temperature
(3) and triggered / read out the sensor (6); optical path from left to right (4–6): lamp (4), tube (5), and
sensor (6), coupled by fibers.

2.4. Spectral Processing and Statistical Analysis

The NIR spectra were pre-processed by reducing multiplicative scattering effects using
standard normal variates. For smoothing and de-trending of the spectra a Savitzky–Golay
filter with 7 points and a polynomial of order 2 in combination with the first derivative
was used. Analysis of spectral data and modelling was performed using spectraltoolbox
framework from Fraunhofer IOSB based on Python 3.8.

Partial least square regression was used to calibrate sugars and acids from near-
infrared (NIR) spectra. The number of required latent variables was determined as 6. The
PLSR calibration model was validated, using leave-one-out cross-validation. Therefore,
the root mean square error of prediction (RMSEP) and R2 are calculated based on samples
that are not used for optimization.

Results were visualized using R (Version 4.1.0) [14] and the packages ggplot2 [15],
ggpubr [16], and sf [17].

3. Results
3.1. Reference Data

Data of sugars and acids content of grape must were collected throughout the ripening
period at 8 to 10 time points. The dataset for the calculation of the models consisted of the
values of the respective six last sampling time points for the different varieties. The amounts
and the variances of the ingredients in these given moments can be found in Table A4.

Modelling was performed using reference values gained from HPLC. These data
included values in minimum and maximum of 27.63 g/L to 112.19 g/L fructose, 32.37 g/L to
111.70 g/L glucose, 4.54 g/L to 24.38 g/L malic acid, and 5.06 g/L to 12.49 g/L tartaric acid
(Table 1). The median limits of quantification (LOQ) over the whole measurement period
were 3.34 g/L and 3.85 g/L for fructose and glucose, as well as 0.59 g/L and 0.95 g/L for
malic acid and tartaric acid, and could be determined using the calibration measurements
according to the guideline on validation of analytical procedures from the International
Council on Harmonization.

Comparing the reference values measured using HPLC with one of the common
standard methods for the determination of ingredients, FTIR, using simple linear regression
(see Figure 4) revealed root mean square errors (RMSE) of 3.38 g/L and 4.84 g/L (r2 = 0.99)
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for the sugars fructose and glucose, respectively. For the acids, values measured with both
methods correlated better for malic acid (RMSE = 1.25 g/L, r2 = 0.99) than for tartaric acid
(RMSE = 0.87 g/L, r2 = 0.96).

Table 1. Value range (minimum and maximum contents) of the analyzed ingredients in the different
Vitis vinifera (L.) varieties from the dataset used for model calculations and their respective root mean
square errors of prediction (RMSEP), determination coefficients (R2), as well as the number of the
must samples (nsamples) and used corresponding spectra (nspectra) recorded from 10 °C to 18 °C in
4 °C increments.

Variety Substance Value Range RMSEP R2
(nsample/nspectra) (g/L) (g/L)

‘Chardonnay’ Fructose 27.63 – 112.19 8.08 0.90
(26/78) Glucose 37.12 – 111.70 7.37 0.90

Malic acid 4.89 – 24.38 1.84 0.88
Tartaric acid 5.32 – 9.30 0.70 0.63

‘Riesling’ Fructose 28.49 – 103.68 5.16 0.95
(22/66) Glucose 32.37 – 101.87 5.17 0.94

Malic acid 6.34 – 21.44 0.89 0.97
Tartaric acid 6.76 – 12.49 0.43 0.93

‘Dornfelder’ Fructose 59.02 – 104.79 5.26 0.84
(23/69) Glucose 66.93 – 104.82 4.09 0.87

Malic acid 4.54 – 9.90 0.41 0.94
Tartaric acid 5.22 – 6.65 0.25 0.56

‘Pinot Noir’ Fructose 39.59 – 105.64 6.84 0.87
(18/54) Glucose 47.09 – 109.32 6.49 0.88

Malic acid 6.73 – 23.00 1.72 0.86
Tartaric acid 5.06 – 8.55 0.51 0.76

Figure 4. Linear regression of the contents of (a) fructose (light blue) (r2 = 0.99, RMSE = 3.38), (b) glu-
cose (dark blue) (r2 = 0.98, RMSE = 4.83), (c) malic acid (dark red) (r2 = 0.99, RMSE = 1.37), and (d) tar-
taric acid (light red) (r2 = 0.52, RMSE = 1.66) in reference must samples (n = 87) of four Vitis vinifera (L.)
varieties, measured using high-performance liquid chromatography (HPLC) and Fourier-transform
infrared spectroscopy (FTIR) and the respective root mean square errors (RMSE) and determination
coefficients (r2).

3.2. Spectra and Modelling

Spectral data recorded at the first few time points represented outliers, which had to
be excluded due to insufficient referencing with the water blank. Average recorded, normal-
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ized, and filtered spectra for each Vitis vinifera (L.) cultivar used for modelling are shown
in Figure 2. Models were created individually for each grapevine variety (Figures 5–8)
using the respective reference values gained with HPLC. The resulting different regression
coefficients (R2) and root mean square errors of prediction (RMSEP) are summarised in
Table 1.

Figure 5. Regression of predicted and measured (true) fructose (a), glucose (b), malic acid (c), and
tartaric acid (d) contents (g/L) in 100 berries samples from Vitis vinifera (L.) cv. ‘Chardonnay’ used
for calibration (blue) and validation (green) of the models and the respective root mean square
errors of prediction (RMSEP) and determination coefficients (R2) of the validation set. Solid line
(Prediction = Measurement) indicates ideal prediction, dashed line (Regression) is a regression of the
validation data.

Figure 6. Regression of predicted and measured (true) fructose (a), glucose (b), malic acid (c), and
tartaric acid (d) contents (g/L) in 100 berries samples from Vitis vinifera (L.) cv. ‘Riesling’ used for
calibration (blue, triangle) and validation (green, circle) of the models and the respective root mean
square errors of prediction (RMSEP) and determination coefficients (R2) of the validation set. Solid
line (Prediction = Measurement) indicates ideal prediction, dashed line (Regression) is a regression of
the validation data.
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Figure 7. Regression of predicted and measured (true) fructose (a), glucose (b), malic acid (c) and
tartaric acid (d) contents (g/L) in 100 berries samples from Vitis vinifera (L.) cv. ‘Dornfelder’ used for
calibration (blue, triangle) and validation (green, circle) of the models and the respective root mean
square errors of prediction (RMSEP) and determination coefficients (R2) of the validation set. Solid
line (Prediction = Measurement) indicates ideal prediction, dashed line (Regression) is a regression of
the validation data.

Figure 8. Regression of predicted and measured (true) fructose (a), glucose (b), malic acid (c), and
tartaric acid (d) contents (g/L) in 100 berries samples from Vitis vinifera (L.) cv. ‘Pinot Noir’ used for
calibration (blue, triangle) and validation (green, circle) of the models and the respective root mean
square errors of prediction (RMSEP) and determination coefficients (R2) of the validation set. Solid
line (Prediction = Measurement) indicates ideal prediction, dashed line (Regression) is a regression of
the validation data.
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On average, for red and white Vitis vinifera (L.) varieties quality of prediction was
comparable. Reliable results were obtained for the sugars that were well predicted by the
models, with the RMSEP ranging from 6.86% to 11.49% of the ingredient variance (RMSEP
from 4.09 to 8.08 g/L, R2 0.84–0.95). For the acids, the results were mixed and the RMSEP
(0.25–1.84 g/L, R2 0.63–0.97) was 5.89% to 17.57% of the respective value range. Over all
the must samples from ‘Riesling’ (Figure 6) and ‘Chardonnay’ (Figure 5) performed best
and were followed by the predictions for ‘Dornfelder’ (Figure 7) and ‘Pinot Noir’ (Figure 8).
The accuracy of the predictions for the two sugars were very similar within and between
the respective varieties. The forecasts of the malic acid contents were comparable to the
sugars, too. The tartaric acid was well predictable for the variety ‘Riesling’ and, in an lesser
extent, for the variety ‘Pinot Noir’ (see Table 1).

A comparison of the NIR predictions at 14 °C with the results from the FTIR and HPLC
measurements for the must of the 100-berries samples revealed excellent predictions for
the two sugars and malic acid in all varieties. Tartaric acid prediction was only possible
for the variety ‘Riesling’, as the HPLC values did not correlate well with the values gained
with FTIR for the varieties ‘Pinot Noir’, ‘Chardonnay’, and ‘Dornfelder’ (see Table A3) due
to delays in spectral data acquisition.

4. Discussion

A fast and reliable method for the quantification of substances that determine quality
in viticulture is the FTIR. This method is based on the indirect determination of compounds
using infrared light over broad spectral ranges in the mid-infrared light. Its calibration
with the reference methods of the OIV (International Organisation of Vine and Wine) and
the advantages of measuring with it led to its widespread use in viticulture. In wineries,
any new technology will have to compete with it.

Another highly precise method to quantify non-volatile compounds is the HPLC.
It is restricted to laboratories and not used in wineries due to its sensitivity and the
knowledge required. Both methods were used for the reference measurements in this study.
The participation of the methods in a round robin test with several other participating
laboratories (data not shown) confirmed their correct measurements. Comparing HPLC and
FTIR showed high correlation coefficients and low root mean square errors (see Figure 4)
for the two sugars and malic acid. The so gained high-quality dataset provided the
opportunity to calibrate the miniaturized prototype sensor system for estimating sugars
and acids contents with an accuracy at the laboratory level.

Adequate and reliable models for all varieties could be built for the both sugars
glucose and fructose, as well as for the malic acid with comparable prediction accuracies
(see Table 1). RMSEPs were lowest for all substances in ‘Riesling’ and, except for tartaric
acid, R2 values also showed good prediction accuracies for the other three varieties. Due
to the high dependence of the RMSEP and R2 on the span of values, a direct comparison
of the models for the respective varieties is difficult. However, with regard to the range
of values, predictions for ‘Riesling’ were best for all substances. The RMSEP accounts for
only 5.89% to 7.50% of the total variance in this variety. These results are followed by the
predictions for ‘Chardonnay’, ‘Dornfelder’, and ‘Pinot Noir’.

The used spectrometer was chosen due to its wavelength range. Krause et al. [13]
showed that the wavelength ranges from 1100 nm to 1160 nm and from 1300 nm to 1350 nm
could be attributed to acids and sugars, respectively, in red grapevine varieties. Addition-
ally, spectral influences of temperature were minimized in this experiment by recording
the spectra of the samples at defined temperatures to calculate the models. Moreover,
sugar concentration has a similar effect on the spectra [18]. Ripe berries contain 22% to
25% sugar, so their concentrations are near the tipping point between structure-breaking
and structure-making effects of the different sugar concentrations. Variance in the dataset
could not been eliminated, but this could have additionally changed differences of the
RMSEPs in different content ranges. Therefore, lower variations and lower RMSEPs could
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be calculated for must of ripe berries. Thus, the predictions of the sugars at higher, as well
as malic acid at lower concentrations are best (see Table A2).

In the literature, sugar content in grape must is often measured with the total sol-
uble solids content and great predictions were possible using NIRS [19]. Investigations
of fruit composition using NIR above 1100 nm and, in particular, for measuring in trans-
mission mode are rare. For the respective sensors used by Fernández-Novales et al. [12]
(700–1060 nm) and González-Caballero et al. [11] (380–1650 nm) calibration, as well as
validation for sugar contents worked well, with coefficients of determination (R2) of cross-
validation of 0.98 and 0.86, respectively. However, for must of ripe grapevine berries
standard errors of 0.47 °Brix to 1.82 °Brix would lead to measurement uncertainties of the
equivalent of circa ±8 g/L to ±20 g/L sugar. In comparison, the correlation coefficients
and prediction accuracies in the presented study were excellent (see Table 1).

However, despite good predictions for the sugar contents so far, it has hardly been
possible until now to calibrate the acidity well using NIRS, let alone predict it. [19]

In the study of Fernández-Novales et al. [12] it was possible to successfully calibrate
pH and titratable acidity with R2 values of 0.81 and 0.76, respectively. However, calibration
failed with correlation coefficients below 0.30. González-Caballero et al. [11] were able to
achieve slightly better results for the validation of pH values using a higher wavelength
range. Additionally, attempts were made to predict individual acids, as was performed in
the presented study. Although calibration for malic acid was possible (R2 = 0.77), validation
failed due to the low correlation coefficient in the study of González-Caballero et al. [11].
The current results confirm that modelling was more successful for malic acid. In fact,
in the presented study it was predictable in an equal extent like the sugars glucose and
fructose for all varieties.

Tartaric acid was also not predictable in the study of González-Caballero et al. [11],
as the correlation coefficients of calibration and cross-validation were near zero. In the
actual study, tartaric acid, except for the variety ‘Riesling’ (RMSEP = 0.43 g/L, R2 = 0.93),
had the lowest prediction accuracies with RMSEPs ranging from 0.25 g/L to 0.70 g/L and
R2 from 0.56 to 0.76 for the other three varieties. Since the range of contents of this acid are
much smaller in these varieties compared to that for ‘Riesling’, it is very likely that the poor
prediction accuracy is evident from the dataset. The majority of tartaric acid in the berries
can probably be diluted by their growth from véraison onwards. In the larger berries, its
content drops particularly sharply [20], resulting in only a small range of values as soon as
the berries begin to increase in volume. Since the ‘Riesling’ has the smallest berries and a
late ripening start compared to the other varieties, there was a wider range of values. With
the help of these data, however, it could be shown that the prediction of tartaric acid in
biological samples with complex matrices, such as grapevine berries, is quite possible if the
mathematical basis is given. For this a larger value range should be considered, possibly
by collecting more unripe and small berries. These could then be used to compute models
for better prediction results. In addition, the measurements of the ingredients with both
reference methods should be carried out at the same time as the recording of spectral data.
Since tartaric acid contents decreases rapidly when the sample is stored, accuracy of the
NIR predictions compared to FTIR reference values were lowered. Chemometric models
were unaffected by this, since they were calculated using HPLC values recollected when the
spectral data were acquired on a different day. However, delays in spectral data acquisition
led to a reduction in the already small range of values.

For wines, it has already been shown that NIRS can be used to distinguish the origin of
wine over large and small distances. It was assumed that climatic differences, microclimatic
influences and differences in soil composition and topology could be the cause for this
possibility of differentiation [21–23]. This could even be shown for grapevine berries in the
study of Arana et al. [24], in which berries of two white varieties (‘Chardonnay’ and ‘Viura’)
could be assigned to their closely spaced origins with the help of NIRS. Therefore, the origin
of the musts could also be a factor influencing the evaluation, since ‘Riesling’ plots that
achieved the best results, were located close to each other. For all other varieties, the plots
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were further apart. In particular, the ‘Chardonnay’ and ‘Pinot Noir’ datasets each contained
an area in the northern Rhine plain where slightly contrasting growth conditions prevail.

In addition to the measurements carried out, a promising attempt was made to im-
plement the sensor on a grape harvesting machine. For calibration, spectra at different
temperature steps were used for each sample. During harvest, each sample would then
only have to be measured once, with the recorded temperature contributing as additional
information to the prediction accuracy. A device for sampling, a filter unit (20 µm) and an
identically constructed prototype sensor system were set up on a harvester. Automatic
acquisition of a low number of spectra was possible, but further improvements are needed.
The system has to be optimized for high-throughput spectra collection and an adequate
sample flow must be ensured on the grape harvesting machine. Being able to automatically
estimate the average quality of the grapes in the harvester’s tank would close the large
gap between guesswork and a true estimate. If the method is established for the grape
harvesters, this would help save time and money during the busiest part of the year and
help the viticulturists making decisions. It will be a big step towards digitization in viti-
culture and is a basis for the development of complex systems for selective harvest, or the
identification of target areas for quality-improving methods, such as fertilization and yield
adjustment. A future expansion of the system with additional sensors and new calibrations
to record more quality-determining properties will be possible and probable. If this sensor
is coupled with a non-destructive, near-infrared handheld device measuring ripeness in
the field by winegrowers and making these data available, the cooperatives will have more
planning security and the current successes of viticulture in the region could be tracked
and possibly also used scientifically.

5. Conclusions

Taking all data and results into account, it can be concluded that the models devel-
oped are well suited for predicting the sugars and acids contents in must of different
Vitis vinifera (L.) varieties with a miniaturized near-infrared sensor in the wavelength range
of 1100 nm to 1350 nm. A semi-automated prototype near-infrared spectrometer with a
temperature control and a flow cell was built, with which the must samples were measured
at different temperatures. Using corresponding reference measurements and chemometric
methods models for the prediction of quality determining ingredients could be calculated
and successfully applied. The accuracies achieved for high sugar and low acid contents,
which are prevalent in ripe berries, predestines this technique for high-quality estimates
during harvest. Further investigations should be addressed to the implementation of the
apparatus on a grape harvester for automated determination of the major quality traits
during harvest. Since the grapes in the vineyard ripen unevenly, no exact prediction of
harvested grape quality can be made and until now there is no commercial available de-
vice that can be incorporated on the grape harvester during the harvesting process. This
could simplify and accelerate processes in viticulture, advance digitalization, and increase
sustainability through planning security.
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Appendix A

Table A1. Table of the vineyards in Rhineland Palatinate (Germany) including the abbreviations used,
the planted variety, as well as the year of planting, the applied farming practise (Org: organic, Con:
conventional), the corresponding planted rootstocks, and the orientation of the plots.

Abbreviation Vitis vinifera Planting Farming Root- OrientationVariety Year Practice Stock

DH 01 Pinot Noir 2000 Org 26 G W-O
KF 02 Chardonnay 2016 Con SO 4 N-S
MH 01 Dornfelder 1997 Org 5 C N-S
NK 01 Chardonnay 2010 Org SO 4 N-S
WH 01 Riesling 2005 Org 5 C N-S
WH 02 Chardonnay 2001 Org SO 4 N-S
WH 03 Dornfelder 1997 Org 5 C N-S
WH 04 Riesling 1991 Con 5 C N-S
WH 05 Pinot Noir 1990 Org SO 4 N-S
WH 06 Dornfelder 2002 Con 125 AA N-S
WH 07 Chardonnay 2005 Con SO 4 N-S
WH 08 Riesling 1991 Org Binova N-S
WH 09 Pinot Noir 2004 Con 125 AA N-S
WH 10 Riesling 2006 Con 5 C N-S
WH 11 Chardonnay 1990 Con SO 4 N-S
WH 12 Dornfelder 2004 Con 125 AA N-S
WH 13 Pinot Noir 2001 Con SO 4 N-S

Table A2. Root mean square errors of prediction (RMSEP) from the validation set for the ranges
below (RMSEP low) and above (RMSEP high) the median content of the four substances and their
corresponding number of samples (n).

Vitis vinifera Substance Median Content RMSEP low n low
RMSEP high n highvariety (g/L) (g/L) (g/L)

Chardonnay Fructose 85.67 9.89 39 5.73 39
Glucose 92.43 9.17 39 4.96 39
Malic acid 9.76 1.3 39 2.25 39
Tartaric acid 7.29 0.73 39 0.66 39

Riesling Fructose 89.12 6.31 33 3.66 33
Glucose 91.66 6.33 33 3.65 33
Malic acid 7.57 0.64 33 1.08 33
Tartaric acid 8.27 0.42 33 0.44 33

Dornfelder Fructose 89.07 6.29 36 3.98 36
Glucose 94.25 4.84 36 3.21 36
Malic acid 6.04 0.38 36 0.45 36
Tartaric acid 5.63 0.22 36 0.27 36

Pinot Noir Fructose 80.81 7.27 27 6.37 27
Glucose 87.95 6.88 27 6.08 27
Malic acid 12.46 1.26 27 2.08 27
Tartaric acid 7.55 0.57 27 0.43 27
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Table A3. Root mean square errors (RMSE) and correlation coefficients (r2) of the comparisons
between NIR predictions and FTIR measurements (RMSE / r2

F), NIR predictions and HPLC measure-
ments (RMSE / r2

H) and between HPLC and FTIR measurements (RMSE / r2
HF); NIR predictions

for spectra recorded at 14 °C were used for calculation.

Vitis vinifera Substance RMSE F r2
F

RMSE H r2
H

RMSE HF r2
HF nVariety (g/L) (g/L) (g/L)

Chardonnay Fructose 10.11 0.88 9.89 0.88 3.65 0.99 26
Glucose 9.50 0.88 8.63 0.89 5.47 0.99 26
Malic acid 2.43 0.86 2.01 0.88 1.38 0.99 26
Tartaric acid 2.55 −0.04 0.60 0.70 2.36 −0.02 26

Riesling Fructose 3.29 0.98 3.54 0.98 2.73 0.99 22
Glucose 4.21 0.97 4.03 0.96 4.04 0.98 22
Malic acid 1.41 0.97 0.71 0.98 1.36 0.98 22
Tartaric acid 0.69 0.92 0.39 0.95 0.64 0.94 22

Dornfelder Fructose 6.03 0.89 4.60 0.88 4.06 0.99 23
Glucose 6.59 0.88 3.67 0.90 5.27 0.97 23
Malic acid 1.35 0.90 0.42 0.95 1.42 0.95 23
Tartaric acid 0.63 0.09 0.22 0.63 0.60 0.29 23

Pinot Noir Fructose 7.19 0.87 6.55 0.88 2.73 0.99 18
Glucose 7.26 0.88 5.73 0.90 4.28 0.98 18
Malic acid 2.03 0.87 1.67 0.86 1.32 0.99 18
Tartaric acid 2.28 −0.03 0.5 0.76 2.23 0 18

Table A4. Variation in the contents of fructose, glucose, malic acid, and tartaric acid in g / L over
different timepoints (Day), additionally shown are the respective numbers of the spectra (n) used for
modelling, the minimum and maximum (min–max), the median, as well as the respective standard
deviation of the contents (sd); depicted are the reference values measured with RID/DAD HPLC
used for chemometry; sampling took place weekly, the timepoints T3–T8 correspond to the weeks
from 23 August 2021–29 August 2021 (T3) to 27 September 2021–10 October 2021 (T8), for Riesling
further samples were taken until 14 October 2021 (T9, T10).

Timepoint (n) Fructose (g / L) Glucose (g / L) Malic Acid (g / L) Tartaric Acid (g / L)

‘Chardonnay’
T3 (4) min–max 27.63–35.10 37.12–43.62 19.59–24.38 6.51–7.87

median (sd) 33.58 (3.03) 41.52 (2.48) 20.70 (2.03) 7.22 (0.65)
T4 (4) min–max 47.34–62.81 54.35–71.31 13.97–16.82 5.32–6.19

median (sd) 56.90 (5.93) 63.35 (6.47) 15.20 (1.28) 5.86 (0.33)
T5 (4) min–max 71.48–83.97 79.90–91.38 9.52–12.16 8.51–8.83

median (sd) 74.25 (5.03) 81.63 (4.84) 11.69 (1.10) 8.63 (0.14)
T6 (5) min–max 77.47–95.96 86.61–106.30 6.89–14.10 7.86–9.30

median (sd) 92.27 (7.01) 96.19 (6.76) 8.42 (2.59) 8.16 (0.54)
T7 (5) min–max 94.12–106.36 98.33–107.94 5.56–10.00 5.32–8.50

median (sd) 98.87 (4.36) 100.68 (3.63) 7.50 (1.46) 6.21 (1.17)
T8 (4) min–max 103.84–112.19 105.02–111.70 4.89–6.68 6.68–7.37

median (sd) 106.09 (3.49) 106.06 (2.77) 6.46 (0.75) 7.12 (0.26)
‘Riesling’
T5 (3) min–max 28.49–38.26 32.37–42.81 20.53–21.44 11.99–12.49

median (sd) 37.39 (4.68) 41.34 (4.90) 21.10 (0.40) 12.02 (0.24)
T6 (3) min–max 60.63–68.40 67.23–75.31 12.39–13.06 9.72–10.36

median (sd) 66.17 (3.47) 72.24 (3.53) 12.60 (0.30) 10.22 (0.29)
T7 (4) min–max 73.99–85.99 77.63–91.37 9.03–9.99 7.58–8.94

median (sd) 79.85 (4.57) 83.72 (5.64) 9.93 (0.41) 8.39 (0.52)
T8 (4) min–max 85.69–94.41 87.30–95.76 7.27–7.53 7.55–8.22

median (sd) 93.83 (3.78) 94.61 (3.53) 7.39 (0.11) 7.97 (0.28)
T9 (4) min–max 92.24–101.12 91.94–101.87 6.34–7.62 6.76–7.53

median (sd) 98.93 (3.68) 98.02 (3.83) 6.80 (0.51) 6.89 (0.32)
T10 (4) min–max 96.16–103.68 94.25–100.39 6.73–6.83 8.10–8.75

median (sd) 102.77 (3.16) 100.08 (2.69) 6.81 (0.04) 8.50 (0.28)
‘Dornfelder’
T3 (3) min–max 59.02–69.39 66.93–76.55 9.47–9.90 6.22–6.65

median (sd) 64.08 (4.49) 73.20 (4.23) 9.70 (0.19) 6.36 (0.19)
T4 (4) min–max 66.88–77.26 73.07–82.53 8.45–9.23 5.79–6.19

median (sd) 71.02 (4.62) 76.66 (4.06) 8.81 (0.32) 5.95 (0.16)
T5 (4) min–max 77.59–89.73 83.29–94.25 6.87–7.44 5.52–5.91

median (sd) 84.51 (4.66) 89.09 (4.17) 7.13 (0.23) 5.58 (0.16)
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Table A4. Cont.

Timepoint (n) Fructose (g / L) Glucose (g / L) Malic Acid (g / L) Tartaric Acid (g / L)

T6 (4) min–max 84.46–95.00 92.75–101.84 5.42–6.04 5.35–5.99
median (sd) 91.49 (4.38) 99.36 (3.85) 5.72 (0.23) 5.54 (0.26)

T7 (4) min–max 93.25–99.10 95.06–100.11 5.05–5.66 5.29–6.20
median (sd) 97.00 (2.25) 97.11 (1.90) 5.52 (0.25) 5.43 (0.39)

T8 (4) min–max 96.09–104.79 97.16–104.82 4.54–5.96 5.22–6.04
median (sd) 102.43 (3.44) 102.29 (2.91) 5.11 (0.54) 5.57 (0.31)

‘Pinot Noir’
T3 (1) 39.59 47.09 23 7.44
T4 (4) min–max 43.37–69.58 49.63–77.49 12.61–22.57 5.06–6.43

median (sd) 55.90 (9.71) 60.88 (10.45) 17.82 (3.73) 5.90 (0.55)
T5 (4) min–max 61.44–87.62 67.11–94.97 10.42–17.69 7.65–8.55

median (sd) 74.05 (10.19) 80.47 (11.39) 14.43 (2.86) 8.03 (0.36)
T6 (4) min–max 75.74–99.25 83.91–104.12 7.71–14.42 7.26–8.27

median (sd) 89.59 (9.15) 93.10 (7.51) 11.30 (2.59) 8.15 (0.43)
T7 (3) min–max 83.24–105.64 92.19–109.32 6.73–11.83 5.48–7.32

median (sd) 95.01 (9.71) 101.18 (7.42) 10.05 (2.24) 7.03 (0.85)
T8 (2) min–max 87.68–102.57 88.84–105.61 8.84–10.78 7.86–8.16

median (sd) 95.12 +(8.16) 97.23 (9.18) 9.81 (1.06) 8.01 (0.16)
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