
Citation: Habets, J.G.V.; Spooner,

R.K.; Mathiopoulou, V.; Feldmann,

L.K.; Busch, J.L.; Roediger, J.; Bahners,

B.H.; Schnitzler, A.; Florin, E.; Kühn,

A.A. A First Methodological

Development and Validation of

ReTap: An Open-Source UPDRS

Finger Tapping Assessment Tool

Based on Accelerometer-Data.

Sensors 2023, 23, 5238. https://

doi.org/10.3390/s23115238

Academic Editors: Ioannis

Yiannis Kompatsiaris,

Stefanos Vrochidis,

Georgios Meditskos,

Periklis Chatzimisios and

Athina Tsanousa

Received: 28 April 2023

Revised: 24 May 2023

Accepted: 29 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A First Methodological Development and Validation of ReTap:
An Open-Source UPDRS Finger Tapping Assessment Tool
Based on Accelerometer-Data
Jeroen G. V. Habets 1,*,†, Rachel K. Spooner 2,†, Varvara Mathiopoulou 1, Lucia K. Feldmann 1 ,
Johannes L. Busch 1 , Jan Roediger 1, Bahne H. Bahners 2,3 , Alfons Schnitzler 2,3, Esther Florin 2,‡

and Andrea A. Kühn 1,‡

1 Movement Disorder and Neuromodulation Unit, Department of Neurology,
Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany

2 Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty,
Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany

3 Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty,
Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany

* Correspondence: jeroen.habets@charite.de
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: Bradykinesia is a cardinal hallmark of Parkinson’s disease (PD). Improvement in bradyki-
nesia is an important signature of effective treatment. Finger tapping is commonly used to index
bradykinesia, albeit these approaches largely rely on subjective clinical evaluations. Moreover, re-
cently developed automated bradykinesia scoring tools are proprietary and are not suitable for
capturing intraday symptom fluctuation. We assessed finger tapping (i.e., Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) item 3.4) in 37 people with Parkinson’s disease (PwP) during routine
treatment follow ups and analyzed their 350 sessions of 10-s tapping using index finger accelerometry.
Herein, we developed and validated ReTap, an open-source tool for the automated prediction of
finger tapping scores. ReTap successfully detected tapping blocks in over 94% of cases and extracted
clinically relevant kinematic features per tap. Importantly, based on the kinematic features, ReTap
predicted expert-rated UPDRS scores significantly better than chance in a hold out validation sample
(n = 102). Moreover, ReTap-predicted UPDRS scores correlated positively with expert ratings in over
70% of the individual subjects in the holdout dataset. ReTap has the potential to provide accessible
and reliable finger tapping scores, either in the clinic or at home, and may contribute to open-source
and detailed analyses of bradykinesia.

Keywords: Parkinson’s disease; bradykinesia; finger tapping; accelerometer; open-source; machine
learning; motor monitoring; symptom prediction

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative movement disorder, afflicting nearly
10 million people worldwide, with the number of diagnoses expected to increase sub-
stantially in the coming years (e.g., 1.6 factor increase by 2050) [1–4]. Bradykinesia and
akinesia, defined as slowness and lack of movement initiation, respectively, are cardinal
symptoms of PD and negatively impact the quality of life in people with PD (PwP) [5]. For
example, one such impairment contributing to poor quality of life in PwP is a bradykinesia-
induced decrement in fine motor control of the hands, causing individuals to lose their
ability to perform rudimentary daily activities such as handwriting, brushing teeth, or even
buttoning a shirt [6]. Typically, treatment for bradykinesia in PD consists of pharmaco-
logical therapies to restore the pathologically depleted extracellular dopamine levels in
the striatum [7]. However, long-term dopamine replacement therapy, parallel to disease
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progression, eventually leads to motor fluctuations (e.g., diminishing therapeutic effects,
shorter periods in optimal medication conditions, and more frequent periods with severe
bradykinesia or dyskinesia in between medication intakes) in approximately 50% of all PD
patients [8]. Such motor fluctuations have a large burden on patients and caregivers alike,
and, importantly, are often a clinical indication for advanced therapies that may also be
required for more optimal motor symptom reduction (e.g., duodenal levodopa infusion or
deep brain stimulation (DBS)) [9–11]. Thus, motor fluctuation assessment is an essential
part of PD clinical care, and valid automated, technology-based solutions for characterizing
clinical features of bradykinesia would substantially improve the reliability, reproducibility,
and accessibility of motor symptom assessments in PD [12–14]. Despite technological and
computational advances in movement monitoring, bradykinesia assessments, in practice,
still largely depend on labor-intensive and subjective physical examinations by expert raters
(e.g., Unified Parkinson’s Disease Rating Scale: UPDRS Part III Motor Examination), which
often yield poor reliability and reproducibility [15–18]. Thus, there remains a need for
developing quantitatively derived estimates of motor fluctuations in order to complement
existing gold standards for symptom monitoring in PD.

An accurate and reliable motor assessment tool for PD would ideally provide reliable
symptom severity scores per category (e.g., bradykinesia, tremor, gait disorders, dyskinesia,
etc.) based on passive movement monitoring (e.g., general changes in body movement
frequency/speed), which would not require the individual to perform structured motor
tasks [15]. However, the development of such passive, naturalistic bradykinesia monitoring
in short time windows (e.g., on the order of minutes to an hour) is especially challenging
compared to other symptom subtypes in PwP (e.g., tremor) [19–21]. In contrast, an open-
source, validated, and easy-to-use bradykinesia assessment tool would allow clinicians
to profit from task-relevant motor fluctuation monitoring without reliance on subjective
clinical ratings. Moreover, the emerging possibilities of collecting other chronically moni-
tored physiological data (e.g., subcortical local field potentials, heart rate, or sleep metrics)
via sensing-enabled devices (e.g., DBS pulse generators or smartphones and -watches)
further underscores the timely relevance of simultaneous behavioral monitoring in order to
aid symptom and therapy-related assessments in PwP [22,23]. Importantly, task-relevant
assessments of bradykinesia which are feasible to perform multiple times per day have the
potential to support the further development of passive movement monitoring approaches.
They can provide information on task-specific symptom severity, and also potentially
reduce or replace lengthy in-person clinical visits and/or labor-intensive training periods
that are currently required for passive monitoring [20,21,24–26].

Proposed methods for objective, task-related bradykinesia assessments often make use
of accelerometry, video-based motion capture, and keyboard- or smartphone-based tapping
tasks (for a review comparing movement monitoring devices for bradykinesia monitor-
ing) [27–33]. Overall, video-based recordings of movements are useful in predicting expert-
rated UPDRS bradykinesia symptoms (both single and composite bradykinesia scores) with
intraclass correlation coefficients (ICC) around 0.7–0.8 [30,32]. However, these methods
require excellent self-recording by the individual and/or investigator, and the algorithms
are often proprietary or not validated in an external or holdout validation sample, limiting
comparability and reproducibility. Similarly, keyboard- and smartphone-based methods us-
ing finger tapping tasks report overall correlations with UPDRS sub scores around 0.4–0.5,
with excellent performance exceptions of rho circa 0.8 also observed [28,29,31]. In contrast,
despite the accessibility and the relatively low cost of accelerometry, there are no validated,
automated, open-source accelerometer-based algorithms published so far to the best of
our knowledge.

Therefore, we aim to fill this gap by developing and validating an open-source al-
gorithm, ReTap, which provides automated bradykinesia assessment using a UPDRS-
based finger-tapping task (i.e., tapping scores, according to UPDRS Part III Item 3.4). Of
note, finger-tapping assessments were chosen as our primary focus for this algorithm, as
finger-tapping performance may reflect reliable markers of general bradykinesia-related
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impairments in motor function for movement disorder patients (e.g., PwP, progressive
supranuclear palsy, dystonia, ataxia) [33,34]. ReTap’s algorithm first detects blocks of tap-
ping activity, as well as single-trial taps, in raw or pre-processed accelerometer (acc) data.
Next, it extracts clinically relevant kinematic features (e.g., indices of movement amplitude,
frequency, variability, and their decrement) to predict expert-rated UPDRS Part III Item
3.4 finger-tapping scores using a random forest classification that was validated in an
unseen holdout dataset. By providing validated UPDRS Part III Item 3.4 score predictions,
as well as relevant kinematic features for movement blocks automatically, ReTap has the
potential to support accessible, out-of-hospital motor fluctuation monitoring (i.e., tracking
of treatment responses and symptom progression) for PwP in the future.

2. Materials and Methods
2.1. Study Sample

We studied PwP who were originally enrolled as part of larger projects examining
motor network dysfunction (“Retuning dynamic motor network disorders using neuromod-
ulation,” TRR295-424778381) from two academic movement disorders clinics in Düsseldorf
and Berlin, Germany (for relevant demographic information, see Table S1). Our inclusion
criteria required patients to have a PD diagnosis and that they were treated with both
dopamine replacement medication and DBS at the time of study enrollment. Subjects who
were not able to perform finger tapping due to comorbidities were excluded. Moreover,
individuals with a history of other neurological or psychiatric disorders, severe cognitive
impairment, or depression were excluded from the study. All participants gave informed
consent to the locally approved study protocols (Düsseldorf: No. 2019-626_2 approved by the
medical ethical committee of the University Hospital Düsseldorf, Berlin: Protocol EA2/256/20
approved by the medical ethical committee of Charité Universitaetsmedizin Berlin).

2.2. Accelerometer Data Recording Protocol

PwP performed finger tapping tasks in clinically defined therapeutic conditions (i.e.,
ON and OFF clinically effective medication (med) and stimulation (stim)). Specifically,
PwP performed a unilateral finger tapping task for ten seconds. Start and stop times were
verbally indicated by the instructor. Participants were seated in a chair and instructed to
“raise their hand and to perform index-to-thumb taps as largely and quickly as possible”,
according to the UPDRS Part III Item 3.4 instructions. Participants recorded in Düsseldorf
performed one unilateral tapping sequence with their right hand per therapeutic condition.
Participants recorded in Berlin performed three unilateral tapping sequences with their left
and right hand per therapeutic condition. Where applicable, each tapping sequence was
preceded by at least 10 s of rest.

Data were collected with a tri-axial accelerometer mounted on the distal part of the
index finger. The accelerometer collected data through a digital amplifier with sampling fre-
quencies ranging from 250 to 5000 Hertz (Hz) (Berlin: TMSi Saga or TMSi Porti, TMSi Inter-
national, Oldenzaal, NL; Düsseldorf: ADXL335 iMEMS Accelerometer, Analog Devices Inc.,
Norwood, MA, USA recorded using Elekta/MEGIN System, MEGIN, Helsinki, Finland).
All tapping tasks were simultaneously recorded with a standard video camera.

2.3. Clinical Motor Symptom Assessment

Clinical ratings of motor symptom severity were provided for each tapping se-
quence by one experienced rater (resp. RS, VM, and JH) according to the UPDRS Part III
Item 3.4 recommendations.

2.4. ReTap Algorithm

The ReTap algorithm consists of five major parts: (i) raw accelerometer data pre-
processing, (ii) active tapping block detection, (iii) single tap event detection within a
tapping block, (iv) kinematic feature extraction per tapping block, and (v) prediction of
UPDRS Part III Item 3.4 tapping score based on the extracted kinematic features. Impor-
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tantly, although ReTap does not require any prior preprocessing of raw accelerometer
signals, it is optimized to process both raw and preprocessed tri-axial accelerometer traces
that do not contain other movement tasks. We will describe all functionality of the algo-
rithm in detail (see Sections 2.4.1–2.4.5 below) and refer to the publicly available code on
github.com/jgvhabets/ReTap (accessed on 27 April 2023) for all syntax-related details of
the algorithm [35].

2.4.1. Raw Accelerometer Data Preprocessing

First, ReTap resamples the raw tri-axial time series, if necessary, to 250 Hz to create
uniform data samples across recording sites and to facilitate translation to future studies
in this area. A sampling frequency of 250 Hz was chosen to maintain sufficient samples
per tapping event, assuming that PwP usually tap 1–5 times per second. A bandpass filter
between 2 and 48 Hz was then applied to detrend the data and remove 50 Hz line noise.
To rectify potential differences in the order of magnitude between traces due to variations
in recording equipment, the preprocessing function controls for an order of magnitude in
g (i.e., m/s2). The model detects the orientation of typical double sinusoid accelerometer
patterns and automatically inverts the time series in the case of flipped patterns where
appropriate. In addition, the function detects potential noise- or movement-related artefacts
(e.g., samples larger than 10 ∗ 99th percentile) and replaces them with missing values.

2.4.2. Active Tapping Block Detection

During the tapping block detection, the algorithm segments every second of data in
the accelerometer trace into eight non-overlapping windows and calculates their percentage
of activity (i.e., activity-%). For this, we calculate the signal vector magnitude (SVM) as a
fourth time series by taking the square root of the sum of the squared values of the x-, y-,
and z-sample. The activity-% equals the part of a segment (i.e., 125 milliseconds (ms)) that
exceeds an activity threshold (i.e., the SVM standard deviation (sd) * 0.5). These thresholds
were determined empirically based on visual inspection of the final analyzed cohort. Next,
a sliding, non-overlapping window of 10 segments (i.e., 1.25 s) will label a respective time
window as active if more than two segments had an activity-% of more than 30%. Finally,
the detection function merges active windows closer than 2 s and afterwards discards active
windows shorter than 0.32 s. The function plots the block detection result per acc-trace for
visual inspection.

2.4.3. Single Tap Event Detection

To calculate clinically relevant kinematic features per tap, the algorithm detects all
single tapping movements within the aforementioned tapping block. We define a tapping
movement here as the period between two consecutive closings of the index finger and
thumb. The closing of the index finger on the thumb (i.e., the moment that the index finger
touches the thumb) causes a sharp positive peak in the accelerometer trace due to the
relatively large deacceleration of downwards movement, described as the contact force by
Okuno et al. [36]. We will refer to this moment as the ‘impact’ moment, and the model uses
this characteristic acc-peak of the impact to identify the moments where the index finger
touches the thumb and to define the ending of one tap and the beginning of the next tap.
To find the impact moments, the algorithm first finds all peaks in the SVM-signal exceeding
a threshold (i.e., 20th percentile of the maximum (max) of the SVM signal). Second, the
model excludes peaks where the first differential of the SVM signal did not exceed a certain
threshold (i.e., ±20th percentile of the max or the minimum (min) of the differential signal,
respectively). Finally, probable tapping peaks were required to be at least 166 ms apart
from one another. The function plots all detected impact moments and the acc-trace per
block for visual inspection (for visualization, see Figure 1).

github.com/jgvhabets/ReTap
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Item 3.4 finger tapping scores, we split the included dataset into a development (75%) and 

validation (25%) dataset. Creating a validation dataset which is not used during the 

Figure 1. Automated finger tapping detection functions. (A): The automated tapping block detection
results in two exemplary accelerometer traces containing three 10-s blocks of tapping activity. The
function successfully detects repetitive 10-s tapping blocks present in the tri-axial accelerometer
data, highlighted as the red blocks. The function performs well for taps with high (left panel) and
low (right panel) amplitudes. (B): The automated single tap detection, performed on the tapping
block between the dotted lines in the panel above. The blue dots represent the time points that the
function detected impacts, which are used to recognize the moment of index finger and thumb closing.
(C): Exemplary accelerometer trace snippet highlighting the temporal time points used for single
tap feature extraction. Yellow shades indicate index finger opening and light-blue shades indicate
index finger closing. The vertical yellow and blue lines indicate the moments of maximum speed
within the finger opening and closing, respectively. Finger opening speed increases until the positive
peak (in g) crosses 0 (vertical yellow line). Similarly, finger closing (downwards movement) speed
increases during the negative acc-peak until the acc-signal crosses 0 g (vertical blue line). The vertical
gray dotted lines represent the impact moment detected. The three accelerometer axes are shown in
black and gray.
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2.4.4. Kinematic Feature Extraction per Tapping Block

To enable the machine learning prediction of finger tapping scores, ReTap extracts
several kinematic features per tapping block. These features are the input vectors for the
machine learning classification models. Moreover, ReTap stores the kinematic features,
per single tap and per tapping block where appropriate, to enable more detailed analyses
of motor symptom fluctuations outside the use of this algorithm alone. ReTap extracts
the following features across the tapping block: the total number of taps, the tapping
frequency (in taps per second), tap duration (in seconds), the normalized root mean square
(i.e., normed to tap duration in seconds; SVM-RMS in g), and the Shannon’s entropy (in
arbitrary units, a.u.). Additionally, ReTap extracts the following kinematic features per
single tap (one tap is defined as the period between two consecutive index finger-to-thumb
closings): inter-tap-interval (i.e., the duration between two tap-starts; ITI), normalized
SVM-RMS of the full tap (in g), SVM-RMS around the impact (in g), the velocity during
finger raising in m/s, the jerkiness (as the number of directional changes i.e., rate of change
of acceleration in m/s3), and the entropy (representing the stability and predictability of the
signal, in a.u.). We defined the period of finger raising as the positive acc-peak between an
impact moment (start of tap raise) and the end of the first sinusoid pattern (end of upwards
movement). From all single-tap features, the model calculates the following single values
per tapping block: mean, coefficient of variation (coefVar), and the decrement (i.e., the
linear slope in each feature as time elapsed during the tapping block). For entropy and ITI,
we used the absolute decrement value.

These kinematic features were chosen based on their performance in previous studies
of accelerometer-based tapping assessments [19,20,33,37,38] (for a recent review comparing
kinematic tapping features, see [27]). The rationale behind the feature selection was that
they represent the clinically relevant kinematic concepts of the UPDRS Part III Item 3.4
rating instruction, namely evaluating changes in tapping frequency, tapping amplitude,
and the consistency and decrement of movement amplitude and pacing over the course of
the task [16]. For details regarding the computational formulas of the features, we refer to
our publicly available code [35].

2.4.5. Development and Validation of Tapping Score Prediction Model

To ensure the statistical validity and reproducibility of our predicted UPDRS Part
III Item 3.4 finger tapping scores, we split the included dataset into a development (75%)
and validation (25%) dataset. Creating a validation dataset which is not used during the
development of the algorithm enables a true validation of the model on unseen data and is
good practice in predictive analysis. A data split with equal distributions of tapping score
values (i.e., UPDRS Part III Item 3.4 scores) and clinical site of recording (i.e., Düsseldorf
and Berlin) was found with the help of an iterative function in the development and
validation datasets. Importantly, all recording sessions from a single subject were included
in either the development or the validation dataset to ensure independence between the
two datasets. We developed ReTap’s algorithm using the development dataset with a
cross-validation that stratified the tapping scores in different folds. Finally, we trained
our final model on the full development dataset, which was then validated in the holdout
validation dataset. Of note, as there were too few tapping blocks expert-rated as a 4 in our
total dataset (0.3%), we excluded all tapping blocks rated as a 4 from classification analysis.

As a first step in the classification model, we classify tapping blocks with less than nine
detected taps as a score of 3. In practice, this step classifies tapping blocks with very few or
very small amplitude taps as a score of 3, since ‘tapping-like movements’ with very small
amplitudes are not always detected by the single tap detection (see right panel in Figure 1B).
This was meant to adhere to current UPDRS rating recommendations, which categorize
finger tapping item-scores of 3 as amplitude decrements occurring near the beginning of
the tapping block or very slow movement, i.e., very few taps. We thereby assume that
our single tap detection successfully detects the majority of taps, which can be confirmed
based on visual inspection of the processed accelerometer traces (see Figure 1). To prevent
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the classification of blocks with a few, large, well-performed taps as item-scores of 3, the
algorithm will return blocks with few taps, but exceeding an empirically defined finger
raise velocity threshold, to the classification model for regular tapping score prediction.

The core of ReTap’s classification paradigm is the machine learning-classification
based on all extracted kinematic features (see Section 2.4.4 above). The kinematic features
are the basis of the classification model and contain clinically relevant information that may
differentiate motor fluctuations in finger tapping performance. Therefore, by evaluating
the predictive performance of such kinematic-based UPDRS Part III Item 3.4 tapping
scores, it may help scientists and clinicians to assess finger tapping in a more objective,
systematic fashion. Specifically, we tested several classifiers and found that Random Forest
classification (RF) was superior to Logistic Regression, Support Vector Machines, and Linear
Discriminant Analysis classifiers based on relevant performance metrics (see Statistical
Evaluation below). Furthermore, we compared predictive performances of classification
models using features derived from the first 15 detected taps in the sequence versus all
possible detected taps in the task block in order to evaluate the generalizability of ReTap’s
performance, regardless of instruction set (see Table S2).

2.5. Statistical Evaluation

First, to ensure equivalent distributions of expert-rated tapping scores in the devel-
opment and validation datasets identified herein, we conducted a non-parametric one-
way analysis of variance (Kruskal-Wallis) to test equal distributions of UPDRS Part III
Item 3.4 scores. Next, in order to determine the statistical validity of our classification
model, we reported the model’s predictive performance in mean prediction error expressed
in raw UPDRS Part III Item 3.4 scores (ranging from 0 to 3) and the Intraclass Correlation
Coefficient between the predicted and true, expert-rated tapping scores (ICC, two-way
mixed effect model for k-different raters, ICC-3k) [39]. Moreover, we report the Pearson
correlation coefficient between expert-rated and predicted UPDRS Part III Item 3.4 scores.
With the selected metrics and the reported multiclass confusion matrix, we assess predic-
tive performance robustly and transparently while respecting the multiclass and naturally
unbalanced nature of UPDRS Part III Item 3.4 tapping scores [40].

Significance testing of the mean prediction error and the ICC-3k was done with a
random-labels permutation test (n = 1000), in which we randomly shuffled the true-labels
(expert-rated tapping item-scores) and repeated the prediction. Preserving the tapping
score distribution in the permutation test instead of using a chance level distribution (one
out of four categories, 25%) improved the validity and robustness of our significance testing.
Significance levels of 0.05 were applied following Bonferroni correction for multiple com-
parisons.

To assess ReTap’s ability to capture intra-individual symptom fluctuations, we ana-
lyzed the expert-rated and predicted tapping-scores per individual within the validation
dataset separately. We extended this analysis by testing individual feature fluctuations
between therapeutic conditions for significance. We compared the mean feature values
in the medication-OFF and stimulation-OFF conditions both with all other conditions
(medication-ON, stimulation-ON; medication-ON, stimulation-OFF; and medication-OFF,
stimulation-ON), as well as with the best ON-condition (defined as the condition with
the lowest mean tapping-scores). We considered the five most important features of
the RF-classifier. We tested statistical significance using Mann-Whitney-U analyses and
Bonferroni-corrected p-values for multiple comparisons.

Finally, we reported the relative importance of each kinematic feature within the RF
classifier based on the Mean Decrease Impurity method [41]. Briefly, this method represents
how often each feature is used within the classification model to split between different
nodes and demonstrates the importance of these nodes (i.e., the prediction of how many
samples were affected by these nodes).
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2.6. Software

We performed all analyses in publicly available custom-written Python-scripts. We
used the following standard software packages for different functionalities within the
custom scripts: Python v3.9.13 [42], pandas v1.4.4 [43], numpy v1.23.3 [44], sci-py v1.9.1,
sklearn 1.1.2 [45], and matplotlib v3.5.2 [46]. Statistical testing was done using sklearn
and penguin.

The presented algorithm is available as an open-source, ‘out-of-the-box’ functioning
model including a detailed instruction [35]. We included a summary of the algorithm’s
user instructions in the Supplemental Material.

2.7. Code and Data Availability

ReTap’s full algorithm is publicly available under MIT-license at www.github.com/
jgvhabets/ReTap (accessed on 27 April 2023) [35]. Analysis scripts are available under MIT-
license at www.github.com/jgvhabets/updrsTapping_repo (accessed on 27 April 2023).

Pseudonymised accelerometer data and labels will be made available after reasonable
request to the corresponding author.

3. Results
3.1. Study Population and Recorded Data

We included 38 PwP in total, 20 in Düsseldorf and 18 in Berlin. Due to variations in
the acquisition protocols across sites (i.e., the number of tapping blocks performed per
subject), 66 tapping observations from the Düsseldorf subjects and 313 from the Berlin
subjects, resulting in a total of 379 10-s tapping blocks, were included for further analysis.
However, 29 accelerometer traces were excluded from the current analysis due to technical
recording issues or incomplete data. This resulted in the inclusion of 350 tapping blocks in
the final predictive analysis, with a tapping score distribution of 0:11.6%, 1:42.2%, 2:30.9%,
and 3:15.3%.

The balanced data split led to 248 included traces originating from 26 subjects in the
development dataset and 102 included traces originating from 10 subjects in the validation
dataset. Stratifying for tapping score and center of origin caused a small deflection of the
75%/25% data split. Each data split contained equivalent distributions of expert-rated
UPDRS scores compared to the total data set, and importantly, did not differ from one
another (development data: 0:11%, 1:43%, 2:30%, and 3:16%; validation data: 0:12%, 1:42%,
2:33%, and 3:14%; F = 0.25, p = 0.617).

3.2. Automated Tapping Block and Single Tap Detection

The automated tapping block detection algorithm successfully detected 10-s tapping
blocks with a sensitivity of 99.5% (i.e., 377 detected tapping blocks out of 379; Figure 1),
which corresponded well with the onset and offset of tapping sequences based on visual
inspection. However, we excluded 21 automatically detected tapping blocks as false
positives based on visual inspection, leading to a positive predictive value of 94.7% (see
Figure 1). Detected tapping blocks had a mean duration of 11.8 s (standard deviation (sd):
2.5 s). On average, a tapping block consisted of 29.5 (sd: 13) detected taps.

3.3. Finger Tapping Score Prediction

The holdout validation analysis of predicting expert-rated UPDRS Part III Item 3.4
scores from accelerometer-based kinematic features showed relatively good predictive
performance, significantly better than chance level (i.e., 25%, see Methods 2.5), with a mean
tapping score error of 0.56 (sd: 0.65, p < 0.001) and an ICC of 0.62 (p < 0.001) (see Figure 2,
left panel) [47]. The true and predicted scores correlated moderately (Pearson’s r = 0.46,
p < 0.001). The final selected model obtained features over the first 15 taps detected. For full
summaries of model performance for the holdout dataset based on partial or total numbers
of detected taps (i.e., results based on first 15 taps vs. all taps), see Table S2.

www.github.com/jgvhabets/ReTap
www.github.com/jgvhabets/ReTap
www.github.com/jgvhabets/updrsTapping_repo
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Figure 2. Prediction of finger tapping scores (UPDRS Part III Item 3.4) in the holdout validation. Left
panel: Violin plots (with jittered scatter points representing one tapping block each) demonstrate
single predicted tap scores versus true, expert-rated UPDRS Part III Item 3.4 scores. The horizontal
lines represent the mean true UPDRS Part III Item 3.4 score per predicted tap score across the holdout
validation sample. Middle panel: Multiclass confusion matrix showing prediction results per true
UPDRS Part III Item 3.4 tap score during holdout validation. Right panel: Individual Pearson’s
coefficients between the expert-rated scores and the ReTap-predicted scores per individual subject
within the holdout validation (i.e., for which a correlation coefficient could be calculated). The
dot size represents the number of tapping observations included per subject. See Figure S2 in the
Supplementary Materials for the individual subject-level observations leading to these correlations.

On an individual subject level, the holdout validation showed a positive correlation
between predicted and true scores in five out of seven subjects (71%) with calculated correla-
tions (see Figures 2 and S2). Of note, we could not calculate correlation coefficients for three
subjects in which equivalent true UPDRS Part III Item 3.4 scores were observed regardless of
recording/therapeutic session. Interestingly, two subjects with small numbers of included
tapping blocks (i.e., three and four observations) exhibited moderate negative correlations
between true and predicted UPDRS Part III Item 3.4 scores (see Figures 2 and S2).

The kinematic features with the greatest importance for the RF classifier were full
block jerkiness, the impact-RMS coefVar, the mean raise velocity, the full block normalized
RMS, and the ITI coefVar as evidenced by larger mean decrease impurity scores per metric
(see Figure S1). Since the individual analysis of the holdout results only considers a subset
of the total included cohort, we additionally analyzed the sensitivity of ReTap’s kinematic
features on the total cohort. We included the five most important features (mentioned
above) and assessed their mean differences between individual therapeutic conditions (see
Figure S3). We showed significant differences between individual best ON-conditions and
medication-OFF or stimulation-OFF conditions for three out of five features (normalized
RMS of full trace, jerkiness of full trace, and the mean finger-open velocity, p < 0.001). The
normalized RMS values increased, the mean finger-opening velocity increased, and the
coefficients of variation of inter-tap-intervals decreased under better therapeutic conditions
(e.g., ON medication or stimulation) as expected. Additionally, while trace-jerkiness and the
coefficient of variation of the RMS values were expected to be higher in worse therapeutic
conditions (e.g., OFF medication or stimulation), these features demonstrated higher values
under better therapeutic conditions. The latter might be explained by too high sensitivity
of these features for the overall quantity of movement.

3.4. Feature Extraction

As an additional output, ReTap provides all extracted kinematic features per detected
tapping block from preprocessed accelerometer traces. Figure 3 shows the course of four
single-tap features in two exemplary subjects. It shows the differences in feature-course
between tapping blocks with different expert-rated, true scores. For this example, we
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display data for four single-tap kinematic features that were relevant for the RF classification
(impact-RMS, finger raising-velocity, ITI, and entropy per tap, see Figure S1). Expected
differences in impact-RMS and raising-velocity are visible between the tapping scores,
and in some of the cases, we observe a decrement over time characteristic for PD. Both
the tap-entropy and the ITI were higher and more variable in tapping blocks, with worse
tapping performance as expected.
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Figure 3. Exemplary cases of the kinematic features with the highest predictive performance. A total
of two subjects from the holdout validation cohort are shown, each in one column. The four features
are chosen based on the random forest feature importance (see Figure S2). Every thin line represents
the feature values during one tapping block. Lines have various lengths of observations due to
the various number of detected taps per tapping block. The thick lines represent the mean values
of detected taps within tapping blocks of the same expert-rated score (i.e., mean value of first tap
values in blocks with score 1, mean value of second tap values in blocks with score 1, etc.). Line
colors indicate the expert-rated tapping score; olive green: 0, dark green: 1, blue: 2, purple: 3.
ITI: inter-tap-interval.

4. Discussion

In the current study, we describe the development and validation of ReTap, a fully
automated, open-source algorithm to predict index finger-to-thumb tapping scores (UPDRS
Part III Item 3.4) based on accelerometer recordings from the index finger. Importantly,
ReTap successfully predicted finger tapping symptom severity significantly better than
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chance level in an unseen holdout validation dataset. Moreover, ReTap-predicted UPDRS
scores were moderately associated with expert-rated UPDRS scores, with intra-individual
fluctuations in motor symptoms observed based on ReTap-predicted outcomes in 71% of
the validation cohort. Below we discuss the implications of these findings and the methods
used herein for future applications of automatically assessing PD-specific symptom severity.

4.1. Predictive Performance of ReTap

Quantifying bradykinesia symptoms and their severity based on task-relevant and
naturalistic wearable sensor approaches has been a topic of scientific and clinical interest for
over 30 years [48,49]. However, despite the accessibility of low-cost accelerometers, more
computational resources, and their potential value for clinical care, there is no validated
open-source model currently available to assess PD-relevant motor fluctuations. This
notion emphasizes the theoretical and practical challenges of implementing automated
UPDRS scoring procedures, which may be partially attributable to the multidimensional
nature of UPDRS finger tapping assessments (i.e., considering the amplitude, rhythmicity,
and associated decrements), as well as the inherently subjective ratings, especially on single
items [16–18,50].

ReTap’s classification performance of tapping-related bradykinesia is good compared
to benchmark paradigms that predict single-item UPDRS Part III scores without using
individual training data, as evidenced by a mean prediction error of 0.56 (scale ranging from
0 to 3) and an ICC between true and predicted UPDRS scores of 0.62. Other non-proprietary
algorithms demonstrating better performance based their predictive modeling approaches
on acc-data collected from more than one sensor [51], or used video-based motion caption
methods [30,52–54]. The slightly better performance from video-based approaches (i.e.,
ICC = 0.79) may be explained, in part, by the lower noise levels expected in video-based
data. In contrast, recent studies of non-proprietary keyboard-based finger tapping methods
did not exceed ReTap’s predictive performance on the single task level [28,29,31].

Morinan et al. recently reported a promising step towards automated UPDRS assess-
ment. Their commercially available video-based assessment predicted full body bradyki-
nesia with good predictive performance for all symptom severities (i.e., ICC = 0.74) [32].
However, their single item predictive performance model was restricted to the classification
of two binary classes (i.e., good and bad), making comparability with current gold stan-
dards in symptom indexing (i.e., along a 5-stage scale) more difficult. Thus, there remains
a need to empirically and automatically categorize single-item UPDRS outcomes on the
traditional 0–4 scale.

4.2. Clinical Relevance and Potential Future Implementation of ReTap

ReTap’s main objective to produce an automated, clinically relevant prediction of
finger tapping performance has potential to be used as an out-of-hospital assessment to
collect reliable, validated scores of bradykinesia symptom severity. Moreover, the predicted
scores may improve upon current standards for PD symptom monitoring by providing
objective assessments of finger tapping performance in clinical settings. However, it is
important to note that our results and benchmark results from prior studies of automated
finger tapping assessments do not suggest that these models will outperform in-person
assessments by experienced raters or clinicians on the single-item level (Figure 2) [18,32,52].
Instead, we propose that ReTap may complement current gold standards of symptom
indexing (e.g., UPDRS Part III Motor Examination), which may ultimately lead to more
reliable, comprehensive outlooks of clinical impairment in the future.

To be successfully applied as an “out-of-hospital” motor assessment, the task, device,
and algorithm all need to be valid, reliable, and easily accessible. The relatively good
predictive performance of the classification model at both the group and individual subject
level demonstrates ReTap’s potential significance for generating reliable symptom scores for
single observations, but also for longitudinal fluctuations in motor function (e.g., changes
in medication/stimulation state/disease progression). The expected positive correlation
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between predicted and true UPDRS Part III Item 3.4 scores in 71% of the subjects in our
validation cohort and the significant individual feature differences between therapeutic
conditions (see Figure S3), which suggests that ReTap may be sensitive enough to detect
individual fluctuations in finger tapping performance. It should be noted that ReTap’s
application for at home monitoring has to be tested in patients’ natural environment still,
and that the data quality is expected to be less consistent when self-recorded in the natural
environment. The collection of gold standard, parallel bradykinesia assessments will be
a major challenge here, and self-reported outcomes may partly solve this challenge [55].
Due to the low costs of accelerometers and the potential easiness to self-record data,
accelerometer-based bradykinesia assessments such as ReTap have the potential to capture
intraday fluctuations (multiple assessments per day) over longer periods. This is an
evident advantage compared to video-based assessments, which provide scores with
higher accuracy, but can be repeated less frequently due to technical difficulties in the
recording set-up [32,52].

In addition to generating important task-related information regarding bradykinesia
symptom severity, finger tapping scores may also be relevant for the further development
of naturalistic passive sensing algorithms. Passive bradykinesia monitoring in shorter
windows (e.g., minutes to an hour) is challenging [20,21]. Moreover, the passive prediction
of bradykinesia severity in naturalistic settings seems to be more challenging than tremor
and dyskinesia prediction [19,20]. A recent large in- and out-of-hospital trial showed
that the reliability of passive measurements decreased with smaller time windows of
assessments [21]. Additionally, in a prior study we were able to differentiate medication-
ON vs. –OFF conditions on a minute basis, but could not predict bradykinesia severity [20].
Therefore, studies with more data containing task-relevant, short-windowed assessments
of bradykinesia (i.e., finger tapping) are needed to provide true labels that can be used as
‘ground truth’ reflections of symptoms and their severity in order to aid the development
of passive bradykinesia algorithms. Active monitoring of finger tapping performance as
demonstrated using the ReTap algorithm may have the potential to fill this gap and to help
overcome the current limitations of passive monitoring.

Furthermore, ReTap has the potential to improve finger tapping assessments in and out
of the clinic by providing objective kinematic features of tapping performance at the single-
tap and task-averaged level. This was an important consideration when developing ReTap
in order to enable investigators to conduct more comprehensive, specialized analyses of
clinically relevant tapping features in PwP. Other recent studies underscored the relevance
of finger tapping analyses to assess bradykinesia and general motor improvement related
to therapeutic outcomes. For example, in a prior study by Spooner et al. [56], the authors
could demonstrate performance-related differences in movement kinematics (e.g., impact
RMS, impact RMS coefVar, ITI, ITI coefVar) based on the direction of current administration
within the subthalamic nucleus in PwP implanted with STN-DBS. Similarly, Feldmann et al.
used accelerometry trace RMS values to detect motor performance differences explained
by increasing subthalamic DBS amplitudes [57]. Detailed finger tapping analyses based on
tapping speed, frequency, and variability were used as well to assess novel pharmacological
PD treatment by Page et al. [58].

4.3. Importance of the Model’s Fully Automated and Open-Source Nature

The translation of model development and validation to clinical impact is notoriously
difficult. To optimize the clinical impact of ReTap, we ensured that no signal preprocessing
is required, and that the algorithm is publicly available. This will increase the accessibility
of ReTap’s methods and the reproducibility of our results in future study cohorts imple-
menting this approach. Importantly, the overwhelming number of sensor types, algorithms,
and kinematic features used to assess bradykinesia-related deficits currently threatens the
reproducibility of sensor-based finger tapping models [27]. Additionally, our methods may
potentially improve the reproducibility of hand activity monitoring in a broader scope
than merely UPDRS Part III Item 3.4 finger tapping performance alone. It is likely that
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our automated tapping activity detection and single tap detection functions may be use-
ful for similar hand movement tasks (e.g., pronation-supination movements, open-close
flexion-extension palm movements) and for other datatypes capturing hand movement
(e.g., video-based motion caption), albeit future investigation is required in this area. Lastly,
the automated generation of full feature time series per tapping sequence makes ReTap a
useful toolbox for clinicians and researchers in neurology and movement studies.

4.4. Limitations

Our study is subject to several limitations. First, our holdout dataset contained
102 10-s tapping blocks originating from only 10 different subjects. A total of three of these
ten subjects did not have any variability in their tapping scores. Although the chosen
study design (i.e., including a holdout validation stratified for subjects) maximizes the
validity of our predictive analysis, this number is relatively low. However, the large total
sample size still allows for validated conclusions about ReTap’s predictive performance.
Future reproduction of our results in new cohorts, ideally from other centers, would be
valuable, nevertheless.

Second, the unbalanced nature of UPDRS Part III Item 3.4 tapping scores ranging
from 0 to 4 across our sample may hinder certain predictive performance assessments.
However, this imbalance aligns well with the natural distribution of bradykinesia severity
commonly observed in PD populations. We ensured the same distribution in the devel-
opment and holdout data in order to maximize statistical validity of the model results.
We selected the reported predictive metrics (see Section 2.5) due to their applicability for
unbalanced datasets. The minimal amount of UPDRS 4 scores observed in our dataset
(<0.3%) prevented a validated detection of 4′s in the current study. We included a pragmatic
solution for future applications of ReTap to identify tapping blocks containing barely any
movement/detectable taps as UPDRS scores of 4. Among the tapping blocks with less
than nine taps, the open-source model selects the blocks with RMS values lower than the
10th percentile of the tapping blocks with too few taps in the cross-validation data and
classifies them as 4 s. This approach is pragmatic, although it is not validated in the current
study cohort, but instead uses the validated detection of 3 s, which reflects the UPDRS
assessment instructions.

Lastly, our cohort consists of subjects recruited and recorded at two different move-
ment disorder clinics. Although subjects performed finger tapping paradigms with similar
instruction sets, minor differences in acquisition protocols were inevitable. To account for
site-related differences in the current study, we equally stratified subjects based on the
recording site in both development and holdout datasets. However, ReTap’s performance,
despite site-related factors, argues for a site-independent predictive performance, which is
required for a real-world clinical implementation.

5. Conclusions

ReTap is a fully automated open-source tool to assess 10-s UPDRS Part III Item 3.4
finger tapping tasks based on index finger accelerometer data. We described ReTap’s
algorithm to detect tapping blocks and single taps based on accelerometer data from the
index finger and to predict expert-rated tapping scores. We validated its predicted scores
by showing good predictive performance in a holdout validation dataset.

ReTap can provide objective, in-hospital finger tapping scores, including kinematic
features for an in-detail tapping analysis. Moreover, ReTap has the potential to collect
unsupervised, longitudinal finger tapping scores in an out-of-hospital environment. The
future out-of-hospital application requires at-home validation but holds potential to pro-
vide validated bradykinesia estimates multiple times per day that can inform clinicians
about intraday motor fluctuations. The latter could also provide repetitive predicted
tapping scores that can function as ground truth labels for the development of passive
bradykinesia monitoring.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23115238/s1, Table S1: Patient demographics and clinical infor-
mation. Table S2: Predictive performance of different classification methodologies; Figure S1: Clas-
sification feature importance; Figure S2: Individual predictive performance in holdout validation;
Figure S3: Group level feature fluctuations between different individual therapeutic conditions. Short
overview of ReTap’s repository workflow [35].
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