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Abstract: Effective force modulation during tissue manipulation is important for ensuring safe,
robot-assisted, minimally invasive surgery (RMIS). Strict requirements for in vivo applications
have led to prior sensor designs that trade off ease of manufacture and integration against force
measurement accuracy along the tool axis. Due to this trade-off, there are no commercial, off-the-
shelf, 3-degrees-of-freedom (3DoF) force sensors for RMIS available to researchers. This makes
it challenging to develop new approaches to indirect sensing and haptic feedback for bimanual
telesurgical manipulation. We present a modular 3DoF force sensor that integrates easily with an
existing RMIS tool. We achieve this by relaxing biocompatibility and sterilizability requirements and
by using commercial load cells and common electromechanical fabrication techniques. The sensor
has a range of ±5 N axially and ±3 N laterally with errors of below 0.15 N and maximum errors
below 11% of the sensing range in all directions. During telemanipulation, a pair of jaw-mounted
sensors achieved average errors below 0.15 N in all directions. It achieved an average grip force error
of 0.156 N. The sensor is for bimanual haptic feedback and robotic force control in delicate tissue
telemanipulation. As an open-source design, the sensors can be adapted to suit other non-RMIS
robotic applications.

Keywords: force sensing; minimally invasive surgical robotics; medical robotics

1. Introduction

Respect for tissue [1] or force sensitivity [2], is considered an important skill for per-
forming safe surgery and requires good control of applied forces. Thus, knowledge of
the force exerted by a robotic system on the surgical environment is important during
robot-assisted, minimally invasive surgery (RMIS) to enable safe tissue handling. Force
information can be used to provide haptic feedback to the surgeon, automatically and ob-
jectively evaluate their force sensitivity for training and credentialing purposes, and inform
the decisions and movements of an autonomous agent.

Force information has been difficult to obtain for the above purposes in RMIS because
there is no native distal force sensing in commercial RMIS systems. This is due in part to
designers needing to meet the strict requirements for biocompatibility and sterilizability
of RMIS instruments while ensuring cost-effectiveness [3–5]. Researchers have explored
many approaches to developing force sensors that attempt to address the above con-
straints, with features that allow the overall sensing setup to be biocompatible, sterilizable,
and miniature in size. However, none have gained commercial adoption. Furthermore,
many designs contain complex electromechanical components that require specialized
knowledge to manufacture, assemble, or integrate. This limits their adoption even in the
research community.
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To make up for the lack of feasible force sensing options for RMIS tools, researchers
investigating methods for surgical skill evaluation have often relied on existing, general-
purpose, commercially available force sensors like those from ATI Industrial Automation
(Apex, NC, USA) that are placed in or under the artificial tissue being manipulated. In such
a setup, researchers are limited to RMIS studies using only a single-end effector [6,7] or
measuring a single force value for both-end effectors [8,9]. This approach prevents the
study of bimanual force-critical tasks such as those shown in Figure 1 and thus limits
applicability to real surgery.

a

b

c

d
Figure 1. Concept renderings of the 3DoF force sensor design in example use cases requiring
bimanual manipulation. (a) View of sensorized patient-side manipulators during suturing. Close-up
of sensorized forceps during (b) blunt dissection, (c) running the bowel, and (d) suturing.

One approach that has been identified as a promising potential solution that circum-
vents the need for end effector force sensors is “contactless” force sensing [5]. This has been
explored using physics-based [10,11] or neural network models [12] of the robot to predict
joint torques and using vision-based finite element [13] or deep learning methods [14–19].
However, these approaches need to be trained or benchmarked against a ground truth.
To achieve this, researchers have often used a single environmental force sensor like the
ATI sensors noted above. For methods that rely entirely on the robot’s internal state, this
approach is feasible because each end effector can be trained separately. However, for meth-
ods that rely on measuring environmental changes, such as vision-based methods, this
approach has limited applicability to bimanual manipulations where internal ground truth
force data cannot easily be resolved.

In this work, we present the design and characterization of a 3-degrees-of-freedom (3DoF)
force sensor for RMIS research. The novelty of this sensor is that, compared to jaw-based
research sensors, it is easy to manufacture and integrates readily with existing hardware.
Compared to prior shaft-mounted sensor designs, it achieves comprehensive lateral, axial,
and grip force sensing, making it suitable for a wide variety of research use cases. Compared
to commercial off-the-shelf sensors that are mounted to the external environment, our sensor
enables bimanual as well as grip force sensing. We achieve this by relaxing the strict constraints
on size, biocompatibility, and sterilizability that are necessary for clinical sensors to satisfy,
but are less critical for benchtop research applications. To capitalize on its manufacturability
and modularity, we have open-sourced the design to enable researchers to adapt the sensor for
their desired application both within RMIS and for other robotic applications where deploying
commercial sensors is difficult due to size, cost, and customizability requirements.
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2. Background

Previous works have placed sensors at different locations on the RMIS instrument.
These include the jaws, wrist, lower shaft, trocar, upper shaft, and the instrument base.
These works have also employed various types of sensing technology, with metal strain
gauges, capacitive sensors, fiber Bragg gratings, and infrared (IR) light intensity measure-
ment being the most common technologies employed.

Force sensors located at the jaw have been implemented as both 2DoF [20] and 3DoF
sensors [21] using strain gauges and custom jaw flexures. Custom jaw flexures were also
employed in [22] for 3DoF force and 2DoF moment sensing using capacitive elements. Such
jaw flexures allow forces to be sensed when any part of the tool tip interacts with the envi-
ronment. This is important during tasks such as blunt dissection (Figure 1b) and running
the bowel (Figure 1c), where the tip and back of the tool tip are used for manipulation.
This is in contrast to approaches that place sensors on the grasping surface of each jaw and
thus only allow forces to be sensed when the environment is grasped [23,24]. By locating
the sensors at the jaw, grip force can also be computed from the force measurements at
each jaw.

Locating force sensors above the articulated tool wrist reduces the electromechanical
integration complexity typical of sensors located at the jaw. Li et al. [25] used a Stewart
platform with strain gauges to measure 3DoF forces at the articulated wrist of a custom
RMIS tool, while Lee et al. [26] measured 6DoF forces and moments at the articulated wrist
using capacitive sensors. Torque sensors were also embedded in the drive pulleys and
used to both measure grip force and compensate for noise in the wrist force sensors due
to drive cable actuation. Sensors have also been located on the lower shaft of RMIS tools.
Shazada et al. [27] and Du et al. [28] used fiber Bragg gratings to measure 2DoF lateral
forces. Machaca et al. [29] measured forces using custom strain gauge films for wrist-
based haptic feedback, and Wee et al. [30] adopted a similar sensing approach for manual
laparoscopic instruments. For Wee et al. [30], the performance of the sensor was only
reported for lateral bending.

Sensors have also been placed at the interface of the patient’s body (at the trocar),
or outside the body, for example, on the upper shaft or instrument base. Kim et al. [31]
used strain gauges at the trocar to measure 2DoF lateral forces, while Fontanelli et al. [32]
used IR intensity measurement to do so. At the upper shaft, Hosseinabadi et al. [33] used
IR intensity to measure 3DoF forces and moments, although for the three directions of
force, precision metrics were reported for only the two lateral directions of force. At the
instrument base and upper shaft, Novoseltseva [34] used strain gauges to measure 3DoF
forces, with force measurements along the main axis of the tool showing poorer accuracy
relative to those along the lateral directions.

3. Methods
3.1. Target Design Requirements

To realize a force sensor that is accessible to the research community, the sensor design
should be easily manufacturable and integrated into existing RMIS tools. This makes
sensors located on the upper shaft of the instrument base particularly suitable [4]. However,
these designs typically lack accuracy along the main axis of the RMIS tool. Furthermore,
they are unable to measure grip force, which can be useful for evaluating surgical skill or
for providing feedback to improve tissue manipulation.

RMIS research is often performed with ex vivo or dry lab tasks. This relaxes the
requirements on biocompatibility, sterilizability, and size. Thus, placing sensors at the tool
jaws does not require complex jaw designs and can use small-size commercial load cells.
At the same time, locating the sensor at the jaw reduces measurement noise and enables
more accurate measurement of force along the main axis of the tool. Additionally, jaw
sensor placement allows for straightforward grip force measurement.

Based on these considerations, we designed a jaw-mounted sensor that can be cus-
tomized to suit different RMIS tools and different use cases. Our target use case of tissue
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manipulation requires that all parts of the jaw be able to sense force, and thus, unlike in
Kim et al. [23] and Dai et al. [24], the sensing elements cannot be solely mounted on the
grasping surfaces of each jaw.

Tissue manipulation forces can be up to 3.8 N in the lateral direction, −10.3 N in
the axial compression direction, and 7.8 N in the axial retraction direction [35]. However,
there is a need to balance these requirements against the current capabilities of small-
size commercial load cells. Based on these considerations, our sensor target force ranges
are ±3 N in the lateral direction and ±5 N in the axial direction. In terms of accuracy
requirements, the average kinesthetic force difference just noticeable for the human hand
is 12.5% [36], and thus the sensor requires a minimum sensor accuracy of 0.375 N in all
directions for error imperceptibility.

3.2. Electromechanical Design

Based on the above design requirements, we designed a 3-degrees-of-freedom force
sensor located at the tool jaws. As shown in Figure 2a, the sensor comprises five main parts:
(1) the base, (2) bottom load cell array, (3) top load cell array, (4) the sensing plate and rod,
and (5) the jaw attachment. An optional strain relief bracket (also shown in Figure 2a) can
be added to help secure and route wires.

The base is 3D-printed in 6061 aluminum, and its geometry can be modified to interface
with different RMIS tool jaws. In this paper, we present a design that interfaces with the
da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA) large needle driver
jaw using an M2 × 3 set screw. One of two load cell arrays is placed above the top surface
of the base and is electrically isolated using Kapton tape.

jaw
attachment

load
cell
arrays

base

large
needle
driver

strain
relief
bracket

wire
clamp

sensing
plate and
rod

HSFPAR003A
load cells x4

2mm

a b

c

Figure 2. (a) Exploded view of the force sensor mounted to one jaw of the da Vinci large needle driver.
(b) Arrangement of the load cells on the PCB of the load cell array. (c) Fully assembled force sensor.

Each load cell array is a 9.5 × 8.5 × 1.6 mm, 2-layer, FR4-printed circuit board with
4 HSFPAR003A load cells (Alps Alpine, Tokyo, Japan) soldered along the perimeter
(Figure 2b). The load cells measure compression forces of up to 8 N and rely on a piezore-
sistive full Wheatstone bridge, which allows for good temperature stability. The bridge
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outputs are amplified using AD623 (Analog Devices, Norwood, MA, USA) instrumentation
amplifiers with a gain of 21. This results in a sensor response of 3.063 N V−1. The amplified
analog signals from each sensor were recorded on a PC using an Arduino Mega with serial
communication at 125 Hz.

The sensing plate and rod were machined out of 303 stainless steel for high stiffness.
A second load cell array was placed on the top face of the plate in opposition to the first
load cell array. The 2 load cell arrays and the sensing rod and plate were attached to the
base using 4 M1.2 × 8 mm screws.

A jaw attachment, which replaces the original tool jaws for grasping, was machined
out of 6061 aluminum and was attached to the sensing rod by an M2 × 3 mm set screw.
The jaw attachment is interchangeable, allowing for researchers to machine different shapes
to suit the task they are studying. Here, we fabricated a generic shape for tissue retraction
and palpation that had a height of 12 mm. During manufacturing of the load cell arrays,
there are small deviations in the heights of each load cell after soldering. Thus, we enabled
consistent contact between the sensing plate and the individual load cells on each side by
inserting metal shims. The sensors were preloaded up to a maximum of 1.5 N. The fully
assembled sensor is shown in Figure 2c with overall dimensions of 9.5 × 8.5 × 23.8 mm
and a weight of 3.33 g. A video of the assembly process is provided in the Supplementary
Material (Video S2).

3.3. Sensing Principle

The sensing principle relies on the moment balance about the lateral axes of the
device, henceforth referred to as the sensor x- and y-axis, and force balance in the main
axis, henceforth referred to as the sensor z-axis. Assuming an interaction at the tip of the
jaw attachment, and neglecting the contribution of shear forces to the moment balance,
the resulting force and moment equations are

Mx = Fy H − Lc
2
(v2 + v6 − v4 − v8), (1)

My = Fx H − FzD− Wc
2

(v1 + v7 − v3 − v5), and (2)

Fz = c(v1 + v2 + v3 + v4 − v5 − v6 − v7 − v8), (3)

where H = 15.85 mm, D = 5.50 mm, L = 3.45 mm, and W = 2.95 mm. c = 3.063 NV−1 is
the voltage change per unit force, and vi the voltage output of the ith sensor as labeled in
Figure 3. From Equations (1)–(3), we can express the measured forces as

Fx
Fy
Fz

 = A

v1
...

v8

, (4)

where A ∈ R8×3 is a sensitivity matrix that maps sensor voltage outputs to forces. Using
the values of H, L, W, D, and c, the theoretical value of A is given as

A =



1.728 0 3.063
1.062 −0.570 3.063
0.396 0 3.063
1.062 0.570 3.063
−1.728 0 −3.063
−1.062 −0.570 −3.063
−0.396 0 −3.063
−1.062 0.570 −3.063



T

, (5)
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where each element of A has units of NV−1. Using A, we can compute the pseudo-inverse,

A† = A(AAT)−1

=



0.375 0 −0.089
0 0.439 0.041

−0.375 0 0.171
0 −0.439 0.041

−0.375 0 0.089
0 0.439 −0.041

0.375 0 −0.171
0 −0.439 −0.041


,

(6)

which provides the least-norm solution, allowing us to predict the theoretical sensor
response to variations in forces applied to the sensor,v1

...
v8

 = A†

Fx
Fy
Fz

. (7)

The configuration of the load cells with respect to the sensing plate produces a
predicted sensor response in x-, y-, and z-directions of force that is described by A†.
Sensor 1 and Sensor 7 voltages increase when the sensor is loaded in the positive x-
direction while their opposing sensors, 3 and 5, decrease, and vice-versa for the negative
x-direction. Sensor 2 and Sensor 6 voltages increase when the sensor is loaded in the pos-
itive y-direction while their opposing sensors, 4 and 8, decrease, and vice-versa for the
negative y-direction. All sensors respond to loading in the z-direction. Because the loading
in the z-axis of the force sensor is offset from the principal axis of the sensing rod, loading
in the z-direction produces a moment about the y-axis. Thus, during loading in the positive
z-direction, the voltage of Sensors 1 and 7 decrease, while those of their opposing sensors,
3 and 5, increase. Since in pure z-direction loading there is no moment about the x-axis,
the voltages at Sensors 2 and 4 increase, while their opposing Sensors 6 and 8 decrease.

Z

Fx
FxFz

Fz

Fy
Fy

X
Z

Y

XY
85

6 7

XY
21

4 3

L

H

LW

D

Figure 3. Front and side views of the force sensor with top views of the load cell arrays. Load cells
are numbered 1 through 8 corresponding to Equations (1)–(3).
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3.4. Calibration Method

The actual value of A can be estimated through linear least-squares fitting to calibration
data. To improve the quality of calibration, we also fit a constant offset term for each
direction of force. This results in the estimated sensitivity matrix A† having a dimension of
3× 9.

To perform the calibration, the sensor was mounted on a Nano17 force sensor
(ATI, Apex, NC, USA). The tip of the jaw attachment was affixed to a 3-axis linear stage as
shown in Figure 4 and loaded in each Cartesian axis in increments of 0.5 ± 0.1 N through
the target sensing range of 0 to ±3 N in the x- and y-directions and 0 to ±5 N in the
z-direction. To reduce calibration errors due to possible hysteretic behavior, data were
collected during loading and unloading. The quality of the calibration was evaluated using
the root mean square error (RMSE), the normalized root mean square deviation (NRMSD),
which is the RMSE normalized by the measurement range of the sensor, the coefficient of
determination (R2), and the hysteresis, which is the maximum difference between corre-
sponding measured forces during loading and unloading normalized by the maximum
force [37].

3-axis linear
stages

�p transla�on
fixture

force sensorATI Nano17
force sensor

Figure 4. Setup used for static calibration of a single force sensor.

3.5. Performance Evaluation
3.5.1. Single-Jaw Evaluation

The single-jaw evaluation was performed by exerting varying loads on the tip of
the jaw attachment in all three Cartesian directions while the sensor was mounted to a
Nano17 force sensor using the calibration setup shown in Figure 4 without the tip transla-
tion fixture. The sensor accuracy was determined by computing the RMSE and NRMSD
of the force measurements and averaging them over three trials. To quantify the worst
case error in each sensor axis, the maximum error of the sensor during evaluation was
measured. This is defined as the largest error measured in each of the sensor axes over all
three evaluation trials. It is expressed as an absolute force value and as a percentage of the
range of the sensor.

3.5.2. Dual-Jaw Evaluation

To measure the manipulation forces at the end effector, each jaw of the da Vinci large
needle driver needs to be instrumented with a force sensor. The forces measured in the
reference frame of each sensor are first resolved into the reference frame of a da Vinci
Research Kit (dVRK) [38]. This is done using the robot forward kinematic model and the
joint position estimates from the motor encoders (6 joints and the gripper angle) to obtain
the individual jaw poses in the robot reference frame. The resultant force, Fr, is thus

0Fr =
0
6T(θ1, . . . , θ5, θ6, θG)

6
RT(θR)

RF + 0
7T(θ1, . . . , θ5, θ7, θG)

7
LT(θL)

LF, (8)
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where j
iT are transformation matrices describing transformations mapping frame i to j,

with frame 0 being the dVRK origin, frames 6 and 7 describing the left and right tool
gripper jaws respectively, and the L and R frames describing the local coordinate frames
of each force sensor. The values of θ0 to θ7 are joint rotation angles, θR and θL are fixed
rotation angles, and θG is the angle between the x-axis of frame 5 and the bisector of θ6 and
θ7 (Figure 5a).

θG

oG,6,7,R,L

xG

xRx6

xL

x7

o5
x5

z5

yG

θjawθR

θL
θ6
θ7

θjaw

θ'jaw

a b

Figure 5. (a) Definitions of angles and coordinate frames at the gripper of the sensorized RMIS tool.
(b) Angle definitions for the software reported jaw angle θ

′
jaw and the actual jaw angle θjaw.

Due to backlash and stretching of the tool actuation tendons, the computed jaw
angle θ

′
jaw during grasping, as derived from the estimates of θ6 and θ7 and values of

θR and θL, is smaller than the actual sensorized tool jaw angle θjaw (Figure 5b). To ensure
that the correct joint angles are used during the pose computation, we define θjaw such that

θjaw = (θ6 − θR) + (θ7 − θL) =

{
θ
′
jaw, if θ

′
jaw > θmin

θmin, otherwise
(9)

where θ6 = θ7, and θmin is the minimum jaw angle during grasp.
Because each jaw is instrumented with a force sensor, the grasp force between the two

jaws can be obtained. The grasp force was computed by using a two-point grasp model
and resolving the forces measured at each sensor into the line of action between the two
grasp points. Applying the rules derived by Yoshikawa and Nagai [39], the grasp force for
a two-point grasp is

Fg = min( |(G
RT RF) · ĵ| , |(G

LT LF) · ĵ|), (10)

where G denotes the gripper frame of reference as shown in Figure 5a, and ĵ =
[
0 1 0

]ᵀ.
To evaluate the sensor on realistic tissue manipulation tasks, we designed two environ-

ments that enable different types of manipulation forces to be exerted by an instrumented
RMIS tool mounted on a teleoperated dVRK. As shown in Figure 6a, the first environment
consisted of artificial silicone tissue (Limbs and Things, Savannah, GA, USA) placed over a
sponge. The artificial tissue and sponge were then clamped down to a rigid stage using
a plastic flange. A Nano17 force sensor was placed underneath the stage, such that the
stage was fully supported by the sensing element of the Nano17. Thus, all tool–tissue
interaction forces are transmitted directly to the Nano17. In this environment, the tool can
be teleoperated to perform palpation, scraping, and tissue retraction. However, due to the
low friction of the silicone as well as the need to limit grasp forces in software to protect
the sensor from damage, the tissue retraction force achievable in this environment was
low compared to the sensor’s operating range. The second environment consisted of a
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cylindrical silicone stem mounted on top of a Nano17 force sensor (Figure 6b). This setup
thus allowed the teleoperator to exert higher retraction forces on the environment. In these
two setups, the ground truth force during the teleoperated interactions could be obtained
and used to evaluate the RMSE, RMSD, and maximum error of the resultant force was
measured from the dual-jaw sensors over three trials of each task. However, the grip forces
cannot be evaluated.

a b c

ATI Nano17
force sensor

ATI Nano17
force sensor

ATI Nano17
force sensor

retraction palpation scraping

Figure 6. Setups for evaluating performance of force sensors (shown here with strain relief brackets)
when mounted on the da Vinci large needle driver tool. (a) The flat tissue manipulation (with inset
showing, from left to right, retraction, palpation and scraping movements), (b) the cylindrical stem
manipulation, and (c) the grip force measurement setups.

To evaluate grip force, a separate experiment was devised. This involved attaching
3D-printed cantilevers to each interface of the Nano17 force sensor, leaving the sensor
ungrounded, as shown in Figure 6c. The sensorized RMIS tool was then teleoperated to
grasp and release the opposing cantilevers five times each in three different trials. The sen-
sor accuracy was determined by computing the RMSE and normalized root mean square
deviation of the force measurements and averaging them over three trials. The maximum
error over three trials was also calculated.

4. Results and Discussion
4.1. Static Calibration

As described in Section 3.5.2, sensing of manipulation and grip forces at the end
effector required two sensors to be fabricated. Thus, the calibration was performed on
two sensors, A and B, each corresponding to one jaw. The estimated sensitivity matrix for
sensor A was

A†
A =



1.685 0.084 3.016
0.940 0.663 3.148
0.140 0.099 3.049
1.088 −0.622 3.099
−1.795 0.0274 −3.158
−0.895 0.569 −3.241
−0.349 0.010 −3.191
−0.898 −0.866 −3.016
0.029 0.001 0.004



T

, (11)
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while for sensor B it was

A+
B =



1.506 0.195 2.563
1.216 0.723 3.107
0.488 0.016 3.114
1.114 −0.474 3.108
−1.931 −0.016 −3.084
−1.104 0.572 −3.107
−0.231 −0.153 −2.342
−1.064 −0.950 −3.136
0.045 0.073 0.020



T

. (12)

The load cell responses during loading in each Cartesian direction during calibration
are shown in Figure 7 and indicate that, when the sensing principle described in Section 3.3
predicted a response (dashed lines) from a given load cell, there was an appropriate
response from that corresponding load cell. Additionally, there were some unexpected
responses when no response was predicted due to sensor cross-talk and uneven plate
contact that arose from slight errors in manufacturing. Overall, the sensors displayed good
linearity over their functional range (Figure 8), with the redundant sensing architecture of
the sensor mitigating any detrimental effects of crosstalk on sensor performance. The low
deviation from unity in both loading and unloading seen in Figure 8 also indicates that the
sensor has low hysteresis despite its non-monolithic design. The results of the calibration
procedure are summarized in Table 1.

0

3

0

3

0

3

0

3

0

3

0

3

0

3

−3 0 3
load force (N)

0

3

−3 0 3
load force (N)

−5 0 5
load force (N)

load
cell 1

load
cell 2

load
cell 3

load
cell 4

load
cell 5
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cell 6

load
cell 7

load
cell 8

lo
ad
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l r
es

po
ns

e 
(V

)

sensor A sensor B theoretical response

loading direction
x y z

Figure 7. Load cell (LC) response under loading in each Cartesian direction. Load forces were
measured using an ATI Nano17 force sensor within the calibration setup shown in Figure 4.
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Table 1. Summary of static calibration results for both sensors.

Sensor RMSE (N) NRMSD (%) R2 Hysteresis (%)
x y z x y z x y z x+, x− x+, x− z+, z−

A 0.023 0.056 0.044 0.388 0.876 0.438 0.999 0.996 0.999 3.96,
3.48

3.25,
2.85

2.78,
2.37

B 0.032 0.048 0.045 0.531 0.814 0.445 0.999 0.997 0.999 2.13,
2.73

2.15,
1.62

3.17,
3.36

−5

−3

0

3

5

−3 0 3
load force (N)

−5

−3

0

3

5

−3 0 3
load force (N)

−5 0 5
load force (N)

loading direction
x y z

m
ea

su
re

d 
fo

rc
e 

(N
)

sensor
A

sensor
B

x-force
y-force
z-force

unity

Figure 8. Forces measured by the force sensors in each axis when loaded and unloaded independently
in each Cartesian direction.

4.2. Single-Jaw Evaluation

The results of the single-jaw evaluation are summarized in Table 2. The low RMSEs
(up to 0.146 N for sensor B in the y-direction) showed that the sensor performance seen in
calibration translated to a good performance in the dynamic loading scenario of the single-
jaw evaluation. As seen in Figure 9a, from 25 s to 40 s, the sensor could accurately track fast
changes in applied force while maintaining the desired accuracy of below 0.375 N RMSE.

Table 2. Summary of single-jaw evaluation results for both sensors.

Sensor RMSE (N) NRMSD (%) * Max Error (N) *
x y z x y z x y z

A 0.111 ±
0.016

0.105 ±
0.015

0.064 ±
0.004

1.845 ±
0.278

1.745 ±
0.246

0.635 ±
0.036

0.483
(8.05%)

0.415
(6.76%)

0.325
(3.24%)

B 0.117 ±
019

0.146 ±
0.013

0.126 ±
0.012

1.945 ±
0.316

2.43 ±
0.220

1.264 ±
0.123

0.573
(9.55%)

0.654
(10.90%)

0.536
(5.36%)

* Normalized over the range of forces in evaluation, which are ±3 N in x and y and ±5 N in z.
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Figure 9. Selected results from single-jaw evaluation of sensor B. (a) Recorded forces over
time. (b) Measured force from the force sensor versus the reference force in each of the three
Cartesian directions.

The sensor showed a maximum error of 0.654 N for sensor B in the y-direction.
The maximum errors occur when the device is loaded in multiple directions, with the
z-direction being loaded above 2.2 N. For sensor B, the maximum force error of 0.573 N in
the x-direction was measured when −0.844 N, −0.062 N, and 2.19 N of force was exerted
in the x-, y-, and z-directions, respectively. The y-direction maximum force error of 0.654 N
was measured when the force exerted was−1.27 N, 0.245 N, and−4.94 N in the x-, y-, and z-
directions, respectively. The z-direction maximum force error of 0.536 N was measured
when the force exerted was 0.353 N, −0.223 N, and −2.537 N in the x-, y-, and z-directions,
respectively. The observed inaccuracies are due to the use of a load cell array for sensing,
as opposed to a single unified sensing element. The moderate loading in the z-direction
reduces the contact force of the plate with the load cell sensing elements. This can cause
the sensing plate to shift within the mechanical tolerances of the assembly when combined
with a lateral load, resulting in the observed deviations from the static calibration. Thus,
the measured versus reference force plot in Figure 9b shows some deviation from unity for
all three Cartesian directions.

4.3. Dual-Jaw Evaluation

For both of the dual-jaw evaluation tasks, we used a minimum jaw angle of θmin = 8.4◦.
This was required because the gripper does not fully close during grasping; thus, the
dVRK would report an incorrect gripper pose. This minimum jaw angle was empirically
determined to reduce the error in the x-direction force measurements of both tasks with the
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RMSE of the sensor being below the minimum target of 0.375 N, as summarized in Table 3.
The force measurements from the sensor with respect to the ground truth for selected trials
of the flat tissue and cylindrical stem manipulation tasks are shown in Figure 10. The plots
show good tracking performance for lateral forces (x- and y-direction in Figure 10a,b),
as well as for palpation (z-direction in Figure 10a) and tension (z-direction in Figure 10b).
A video showing examples for each of the dual jaw evaluation tasks is provided in the
Supplementary Materials (Video S1). The maximum error in the x-direction of the flat tissue
task is 0.725 N, as shown in Table 3. This maximum error was measured when the resultant
force applied to the artificial tissue was −0.354 N, −0.499 N, and −2.808 N in the x-, y-,
and z-directions of the da Vinci reference frame, respectively. In this configuration, the local
z-axes of the sensors are aligned with the z-direction of the da Vinci reference frame. Thus,
in the sensor reference frame, there is cross-loading of lateral forces with a primary axial
(sensor z-direction) component of force similar to the scenario described in Section 4.2. This
contributed to a larger error compared to the other occurrences of maximum error shown
in Table 3.
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Figure 10. Selected results for the (a) flat tissue and (b) cylindrical stem manipulation tasks.
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Table 3. Summary of dual-jaw evaluation results for the flat tissue and cylindrical stem manipula-
tion tasks.

Task RMSE (N) NRMSD (%) Max Error (N) *
x y z x y z x y z

Flat tissue 0.142 ±
0.020

0.078 ±
0.013

0.097 ±
0.008

2.367 ±
0.338

1.300 ±
0.225

0.980 ±
0.082

0.725
(12.09%)

0.452
(7.54%)

0.458
(4.85%)

Cylindrical
stem

0.089 ±
0.020

0.149 ±
0.023

0.139 ±
0.012

1.485 ±
0.327

2.481 ±
0.389

1.392 ±
0.117

0.357
(5.94%)

0.484
(8.07%)

0.458
(7.64%)

* Normalized over the range of forces in evaluation, which are ±3 N in x and y and ±5 N in z of the da Vinci
reference frame.

In addition to the sources of error from the single jaw, we identified three extrinsic
sources of error. First is the pose uncertainty of the jaws during grasping due to the cable-
driven design of the dVRK robot, where encoders are not placed directly on each joint of
the surgical tool. Second is the varying point of force application on the sensor, in which
its calibration was accomplished with forces applied only to the tip of the jaw attachment
(Figures 3 and 4). Third is the small misalignment between the robot base coordinate frame
and the reference force sensor coordinate frame.

4.4. Grip Force Evaluation

For the grip force evaluation, the RMSEs and standard deviations over three trials
were 0.156± 0.017 N, and the maximum errors were 0.287 N (19.79% of the peak grip force).
A sample force plot over time using the default minimum jaw angle is shown in Figure 11.
A video of an example of the grip force evaluation task is provided in the Supplementary
Materials (Video S1).
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Figure 11. Selected grip force measurement results. Estimated jaw torque is derived from the motor
current measurements at the instrument base as reported through the dVRK API.

The dVRK requires the teleoperator to momentarily close the jaws to trigger teleopera-
tion, this movement causes the tool jaws to snap together, resulting in an impulsive load
on the sensors. To prevent damage to the sensors during this movement, we limited the
maximum grip force in software. Because of this limit, the highest peak grip force achieved
during the evaluation was 1.45 N, and the average peak grip force was 1.35 N, which is
below the range of our sensor. The limit also prevented us from evaluating the dual-jaw
performance of the sensor in both manipulation tasks up to the same range used in single-
jaw evaluation. The sample would slip from grasp before the higher forces were reached.
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With modification of the underlying dVRK teleoperation code, it would be possible for the
sensors to be tested to their lateral force upper range of 3 N.

5. Conclusions

In this work, we presented a 3DoF force sensor designed to facilitate RMIS research.
The sensor can be used with an existing RMIS tool, is manufacturable using low-volume
manufacturing techniques, and has interchangeable jaws that allow for adaptation to
different RMIS tasks.

The current design is tolerant to manufacturing variability, leading to robust perfor-
mance. In both single-jaw standalone evaluation and dual-jaw evaluation on an RMIS tool,
the sensor met the target accuracy specification of less than 0.375 N RMSE. In single-jaw
evaluation, this accuracy was verified within the target sensing range of±3 N for the lateral
(x and y) directions and ±5 for the axial (z) direction of force.

Future work will investigate approaches to expand the sensor range. We will also
investigate approaches to mitigate the uncertainty that arises from cross-talk between
load cells. One promising approach is to reduce the number of load cells to three per
array, which would produce a statically determinate design that comes at the expense of
reduced sensing range. This approach also reduces the reliance on manual shimming of
the sensor assembly components. To reduce the shifting of the plate, which contributes
to high maximum errors of up to 11% under cross-loading, we will develop deformable
inserts that can be placed in the gaps between the load cell arrays and the sensing plate.

In the dual-jaw evaluation, the chief contributor to error was the pose uncertainty of
the tool wrist and jaws. The uncertainty was most pronounced during high force manipu-
lations and in grasping. To enable consistent and maximally accurate force measurements
in cable-driven RMIS platforms such as the dVRK, pose measurement approaches such
as those based on stereovision [40,41] or robot state information [42–44] will need to be
further developed to improve real-time accuracy. Even with the limitation in pose mea-
surement accuracy, the dual jaw sensor meets the human perception-based performance
specifications and is a promising tool for enabling RMIS research that requires force infor-
mation for bimanual tasks. The sensor designs have been made freely available online to
allow researchers to manufacture and modify the sensor for use in applications such as
providing haptic feedback, performing robotic force control, and collecting bimanual RMIS
manipulation datasets that inform data-driven computational methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23115230/s1, Video S1: Demonstration of force sensors for
dual-jaw manipulation. Video S2: Assembly instructions for a single-sensor assembly.
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