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Abstract: Recently, animal welfare has gained worldwide attention. The concept of animal welfare
encompasses the physical and mental well-being of animals. Rearing layers in battery cages (con-
ventional cages) may violate their instinctive behaviors and health, resulting in increased animal
welfare concerns. Therefore, welfare-oriented rearing systems have been explored to improve their
welfare while maintaining productivity. In this study, we explore a behavior recognition system
using a wearable inertial sensor to improve the rearing system based on continuous monitoring
and quantifying behaviors. Supervised machine learning recognizes a variety of 12 hen behaviors
where various parameters in the processing pipeline are considered, including the classifier, sampling
frequency, window length, data imbalance handling, and sensor modality. A reference configuration
utilizes a multi-layer perceptron as a classifier; feature vectors are calculated from the accelerometer
and angular velocity sensor in a 1.28 s window sampled at 100 Hz; the training data are unbalanced.
In addition, the accompanying results would allow for a more intensive design of similar systems,
estimation of the impact of specific constraints on parameters, and recognition of specific behaviors.

Keywords: animal activity recognition; wearable sensors; inertial measurement units; animal welfare;
machine learning

1. Introduction

Recently, animal welfare has been gaining interest worldwide; however, livestock
management laws following animal welfare have been developed generally in European
countries. Animal welfare refers to an animal’s physical and mental state concerning the
conditions under which it lives and dies [1]. Particularly, five freedoms [2] should be
considered basic concepts in animal welfare: (1) freedom from hunger or thirst; (2) freedom
from discomfort; (3) freedom from pain, injury, or disease; (4) freedom to express (most) usual
behavior; and (5) freedom from fear and distress. Laying hens have been reared in battery
cages (conventional cages) consisting of several cage layers equipped with feeders, water
suppliers, and egg outlets. Although this method is highly productive, the cage space per
bird is small, thus restricting the expression of instinctive behaviors such as dust bathing
and comfort behaviors, violating the third and fourth freedoms. Thus, rearing systems
are among the most active topics in animal welfare research on layers, and attempts to
develop welfare-oriented rearing systems while increasing productivity are underway.
The Office International des Epizooties (OIE) (now World Organization for Animal Health)
is developing a guideline, “Animal Welfare and Laying Hen Production Systems.” Hence,
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the presence or absence of behaviors such as dust bathing, fear, resting behaviors, physical
condition, water and feed intake, illness incidence, mortality rate, and egg-production
performance may be used to assess the welfare of layers [3]. Because these normal behaviors
can be observed in cage-free systems such as floor rearing and multi-tiered aviary systems,
where laying hens can move freely in a wide range of areas in a hen house, the dynamic
transition from cage to cage-free has occurred.

The layers’ behaviors are identified visually at regular intervals (e.g., 3 min [4],
10 min [5], 60 min [6]) from video recordings or direct visual scans; however, this method
requires considerable time for detailed observation and relies on the observer’s ability.
Therefore, automatic observation methods have been explored and classified into two
major categories: those using images recorded by cameras installed in the environment
(i.e., image-based [7–9]), and those using sensors attached to individual hens (i.e., wearable
sensor-based [10–13]). The image-based methods enable the observation of many hens
simultaneously without any constraint on the individual hens. However, tracking each
individual’s behavior is challenging in an environment where the structures are complex
and occlusion is likely to occur, such as in an aviary of layers or where a number of hens
are flying around. Moreover, the wearable sensor-based system requires hens to wear
sensor units with unique IDs, which help in readily tracking their activity; an image-based
approach cannot do this because occlusion may occur if there are numerous hens. Therefore,
continuous monitoring of a hen’s behavior is possible, and a satisfactory understanding
on the welfare of hens is expected. Thus, we take the wearable sensor-based approach
and attach inertial sensors (i.e., accelerometers and angular velocity sensors) to layers. We
believe that attaching sensors to all individuals in order to observe hundreds of hens in an
actual poultry farm is impractical. In this case, we attach the sensors to a few sampled hens.

Wearable sensor-based behavior recognition has already been applied for conservation
and management in wild animals [14–16] and healthcare and communication with humans
for pets [17,18]. Wearable sensors have also been attached to livestock such as cows [19–21],
sheep [13,22], and goats [23] for welfare and production management. However, mini-
mal work exists in chicken behavior recognition using wearable sensors, and the target
behaviors are limited to two to six types [10–13,24–27]. In contrast, we aim to increase
comprehensiveness by extending the recognition target to 11 behaviors, thus enabling a
multifaceted welfare evaluation. In addition, there has been little in-depth evaluation of
the components of the chicken behavior classification system, such as sensor modality,
sampling frequency, window length in time, beneficial sensor modalities, and classifier.
The behavior recognition model is constructed using supervised machine learning. Unlike
human behavior recognition, the training data for animal behavior recognition generally
constitute a significant imbalance in the data amount among behavior classes because ani-
mals are not cooperative in data collection like humans [12]. Herein, we aim to understand
handling imbalanced data by existing balancing methods. The findings of this study may
provide useful information for designing similar systems by showing the impact of the
components on the system’s performance, which would allow for improving the rearing
system based on continuous monitoring and quantifying a large number of behaviors.

The remainder of this study is organized as follows: Section 2 presents the data
collection, including the target behavior classes, labeling method, and the collected data
statistics. The relevant components of the behavior recognition pipeline are defined in
Section 3, which also presents the evaluation schemes. Section 4 demonstrates the in-depth
experimental results listed above, followed by a discussion in Section 5. Finally, Section 6
concludes the article.

2. Data Collection
2.1. Study Site and Animals

The study was conducted for four days from April to July 2020 between 10:00 a.m. and
4:00 p.m., when the hens were considered to be more active, in indoor floor rearing of the
agricultural department at Tokyo University of Agriculture and Technology, Tokyo, Japan.
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The Animal Experiment Committees of Tokyo University of Agriculture and Technology
approved all animal experiments (Permit Number: R03-134). We used eight commercial
layers (Boris Brown) at 61 weeks of age at the beginning of the experiment.

2.2. Method

We caged four hens in a 100 cm × 76 cm floor rearing with a nest box, a perch, and a
feeding and drinking area, as depicted in Figure 1. The floor was covered with wood
shavings. The data for four hens were collected simultaneously. The reason for separating
two groups of four hens is that four is an appropriate density to observe various behaviors.

Figure 1. Experimental site and sensor attachment.

We used a Bluetooth-based wireless inertial measurement unit (TSND151; ATR-Promotions
Inc., Kyoto, Japan, weight 27 g) containing a three-axis accelerometer (±19.62 m/s2 (±2 G)) and
three-axis angular velocity sensor (±500 degree/s) (i.e., gyroscope). We sampled the data
at 1000 Hz, which were later down-sampled to verify the impact of sampling frequency on
the recognition accuracy. We confirmed approximately 7.5 h of measurement at 1000 Hz.
Each hen wore a harness designed for small dogs for a week before actual measurement for
habituation, and the measurement unit was positioned in a dustproof and waterproof bag.
It was attached to the harness to be on the hen’s back. Colored markers were attached to the
surface of each sensor and used for individual identification during labeling. Additionally,
colored makers were utilized for automatic position detection; however, this study does
not consider automatic position detection.

Furthermore, for labeling by human annotators, the behaviors were video-recorded at
30 fps using a web camera (C920 HD Pro; Logicool Co., Ltd., Tokyo, Japan) positioned at
the top of the cage to capture the entire coop. We collected data from wireless sensors and
the video data on the same computer (CPU: Intel Core i7 7700 3.6 GHz, Intel, Santa Clara,
CA, USA; Memory: 32 GB, OS: Windows 10, Microsoft Corporation, Redmond, WA, USA)
running software (ALTIMA; ATR-Promotions Inc., Kyoto, Japan) for recording sensor data
and video images synchronously.

2.3. Labeling

The collected accelerometer and angular velocity data were labeled by experienced
human annotators, in which software (SyncPlay; ATR-Promotions Inc., Japan) was utilized
to annotate the start and end periods of particular behaviors by observing the recorded
video. We selected the target behaviors to enable a multifaceted welfare evaluation with
categories including grooming, food seeking, migration, resting, food and water intake,
and self-defense. Furthermore, various behaviors were observed during the data collection,
such as pecking sensors, stretching, and breaking balance, which were included in the
recognition targets. Because more ambiguous behaviors would appear in an actual environ-
ment, we considered it crucial to design a classifier under such an assumption and labeled
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it as one class (“Others”) that includes miscellaneous behaviors. In total, 12 behaviors,
including “Others,” were labeled as depicted in Table 1.

Table 1. Behavior types and their descriptions.

Behavior Symbol Category Description

Moving MV Migration Walking or running to another place
Eating ET Intake Eating feed by own beak from feeder
Drinking DK Intake Drinking water from water cup
Preening PR Self-defence Arranging or oiling own feather by own beak
Body shaking BS Grooming Shaking body with standing
Head scratching HS Grooming Scratching own head by one leg with standing
Tail flapping TF Grooming Flapping tail right and left with standing
Stopping ST Resting Stopping with standing
Resting RS Resting Lying down and being still
Dust-bathing DB Grooming Head-rubbing and scratching litter by leg

with lying down
Litter scratching LS Seeking Scratching litter by leg on floor with standing
Others OT N/A Other behaviors such as pecking sensor, stretching,

breaking balance, beak scratching, head shaking,
jumping up and down perches and nest boxes
looking around, etc.

Not all the collected data were labeled with the 12 behavior classes. A considerable
bias exists in the probability of the occurrence of individual behaviors. Hence, frequent
behaviors were partially sampled and labeled. Table 2 summarizes the collected data,
including the number of labels (i.e., the observations of the target behaviors, the sum,
the mean, and the standard deviation (SD) of the duration of the observations). The table
exhibits that the mean duration varies from a few seconds to 30 s or more, depending
on the behavior. This information was utilized to determine the window length in time
in Section 3.2.2. The examples of collected acceleration and angular velocity signals are
depicted in Figures 2 and 3, respectively. The figures display that BS is quite the char-
acteristic waveform. In addition, the resting behaviors, that is, ST and RS, appear to be
distinguishable from other behaviors; however, the two classes might be easily mistaken.
Furthermore, we discovered that the acceleration and angular velocity signals had corre-
lated change patterns; however, the acceleration signal kept the posture information due to
the gravitational information. The benefit of these sensors and the validity of the features
calculated from the signals are subsequently verified.

Table 2. Summary of collected data.

MV ET DK PR BS HS TF ST RS DB LS OT

Number of labeled duration 95 78 183 264 105 156 23 29 12 134 37 650
Sum of duration [s] 433.4 2321.5 280.9 1669.0 141.2 425.7 31.7 1470.2 1071.9 468.7 80.3 2157.7
Mean duration [s] 4.6 29.8 1.5 6.3 1.3 2.7 1.4 50.7 89.3 3.5 2.2 3.3
SD of duration [s] 3.0 28.0 0.4 7.2 0.3 1.3 0.3 48.8 95.1 1.0 0.8 13.9
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Figure 2. Examples of acceleration signals of each behavior, down-sampled to 100 Hz.

Figure 3. Examples of angular velocity signals of each behavior, down-sampled to 100 Hz.
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3. Experiment
3.1. Evaluation Items

Behavior recognition follows a standard supervised machine learning process with
training and run (test) phases. In the training phase, a particular classifier with the best
hyperparameters via hyperparameter tuning learned the characteristics of the signal for
each behavior. Then, the trained classifier model was utilized in the run phase. In both
phases, the time-series data of raw acceleration and angular velocity signals are divided into
fixed-size windows, and a multi-dimensional feature vector is calculated from each window.
Note that our preliminary experiments with feature learning approaches (i.e., long short-
term memory (LSTM) and convolutional LSTM [28]) showed relatively poor classification
performance of 0.419 and 0.246, respectively. Thus, we took a feature engineering-based
classification pipeline. We evaluated the following items in the experiment to investigate
the impact on classification performance.

• Sampling frequency
• Windowing (the number of data points and the length (duration) of a window)
• Sensor modality
• Handling training data imbalance
• Classification model (classifier)
• Robustness against the difference in individual hens

3.2. Experimental System

Figure 4 illustrates the processing flow in the experimental system, where the under-
lined text represents the evaluation items described above and their values. The labeled
dataset was used as input to the experimental system, and cross-validation (CV) schemes
were applied to obtain reliable results for analysis. The following sections describe the
design and implementation of the items; Python 3.10.4 running on Mac Pro (late 2013,
CPU: Intel Xeon E5 3.5 GHz 6 Core, Memory: 32 GB, OS: macOS 11.6) implemented the
experimental system.

Figure 4. Processing flow. The underlined parts are evaluation items and their values.

3.2.1. Sampling Frequency

The literature on behavior recognition of chicken utilizes a wide variety of sampling
frequencies (SF) for body-mounted accelerometers (i.e., 5 Hz [24], 10 Hz [12], 20 Hz [13],
100 Hz [10,11,27], and 1000 Hz [26]). However, none of them demonstrated the impact of
the frequency on the classification performance. In the experiment, we utilized a variety
of SFs: 50 Hz, 100 Hz, 250 Hz, 500 Hz, and 1000 Hz. The frequencies except for 1000 Hz
were down-sampled similarly as [29] (i.e., the data for 500 Hz, 250 Hz, 100 Hz, and 50 Hz
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were obtained by selecting the first sample in every 2, 4, 10, and 20 samples, respectively).
The result is presented in Section 4.1.

3.2.2. Windowing

As described in Section 2.3, the behavior start and end periods were recorded, and a
particular label was assigned to the periods. Thus, the length of a behavior period is a
factor for determining the window length (WL). Considering WL exceeds a labeled period,
the window contains other behaviors that occur before and after the behavior, which
may result in misclassification. Nonetheless, a short-length window generally degrades
the classification accuracy [12,20,30]. Because the lower limit of the mean duration of
behavior was approximately one second: 1.5, 1.3, and 1.4 s for DK, BS, and TF, respectively,
as displayed in Table 2, we specify the base WL to “approximately” one second.

To make a window fast Fourier transform (FFT)-friendly, the number of data points in
a window (i.e., window size (WS)), should be a power of two. According to Equation (1),
substantial WS and WL prepared for the evaluation were 64, 128, 256, 512, and 1024 samples
and 1.28, 1.28, 1.024, 1.024, and 1.024 s for 50, 100, 250, 500, and 1000 Hz, respectively.
A window was slid by 50% overlap between two consecutive windows. Because of the
difference in the number of data points in a window due to SF, the number of instances for
the classification differed by up to 25%. Therefore, the number of training and test data
for each SF were standardized by down-sampling to correspond to the nominal one (at
50 Hz). Figure 5 summarizes the distribution of the number of instances per behavior and
individual hens, which depicts the imbalance between classes and individuals.

WL =
WS
SF

(1)

In addition, WL was set to half of the base WL in the data of specific SF to evaluate the
signal duration impact to be segmented as a window. This aspect resulted in the number
of half-sized windows approximately doubling because of 50% overlapped sliding win-
dowing. Therefore, to analyze the effect of WL and the number of instances in the dataset,
classification in the halved windows was performed under two conditions: equalizing the
number of instances to the case with base length windows (EQ) and without equalization
(INEQ). We realized EQ by under-sampling the dataset of INEQ so that the number of
instances in each behavior class could satisfy that of the base WL. Note that not doubling
the number of data points (approximately 2 s) was to avoid further reducing the number of
instances because some behaviors (BS, TF, and DK) had an average duration of fewer than
2 s, as listed in Table 2. The result is explained in Section 4.4.

Figure 5. The distribution of the instances per behavior and individual hens.
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3.2.3. Classification Features

Classification features are crucial in determining a recognition system’s performance.
The features convey behavior-specific information about chickens regarding posture, rota-
tional movement, complexity, intensity, and swiftness of motion. We specified 14 features,
as summarized in Table 3, often used in animal activity recognition [12,22–24,31–34] and
human activity recognition [35–38].

Table 3. Classification features.

Name Symbol Description

Minimum [22–24,32,33,35] MIN Minimum value of time-series data
Maximum [22–24,32,33,35] MAX Maximum value of time-series data
Mean [12,22–24,31–33,35–37] MEAN Average of time-series data
Standard deviation [22–24,31–33,35–37] SD Standard deviation of time-series data
Skewness [32,33] SKEW Skewness of time-series data that represents the degree of asymmetry

of the signal distribution
Kurtosis [22–24,31–33] KURT Kurotis of time-series data that represents the degree of peakedness

of the signal distribution
Inter-quartile range [22–24,31,32,35] IQR Difference between the third quartile and the first quartile in time-series data
Mean absolute deviation [32] MAD Average of absolute difference from mean in time-series data
Median absolute deviation [35] MedAD Median of absolute difference from median in time-series data
Mean crossing [18,24,36] MCRS The number of crossing the mean value
Correlation coefficient [35–37] CORR Pearson’s correlation coefficient of signals from two axes in time-series data
Spectral energy [33,35,37] ENGY Sum of the squared discrete component in energy spectrum
Frequency entropy [12,22,23,33,35,37] ENTR Frequency entropy
Dominant frequency [22,24] DOMIF Frequency that gives maximum magnitude in the frequency spectrum

We calculated the 14 features from the time and the frequency domains of acceleration
and angular velocity signals to capture the characteristics of behaviors from different
aspects. In addition to the three axes of an accelerometer (i.e., x, y, and z), we introduced
the magnitude of the acceleration signal (the l2-norm of a vector of three axes) as the fourth
dimension (m) and an orientation-independent feature.

In total, 97 features were calculated, that is, (four axes from accelerometer and three
axes from angular velocity sensor) × 13 types and (three combinations correlation of
coefficients between two of three axes) × (accelerometer and angular velocity sensor).
The effectiveness of the features in classification is evaluated per the following (sub) set,
where the numbers in brackets represent the dimension of the features:

• Entire feature set (97)
• Acceleration-based features (55)
• Angular velocity-based features (42)
• Features without magnitude of acceleration (42)

The comparison between acceleration-based features and angular velocity-based
features was expected to emphasize the significance of modality, which could result in the
reduction of the sensor for energy conservation and miniaturization of the sensor node.
Additionally, the significance of orientation-independent features was investigated by
extracting the features derived from the magnitude of acceleration (i.e., the m-axis) from
the entire dataset and comparing them with the result of the complete dataset. The result is
explained in Section 4.5.

3.2.4. Imbalance Data Handling

Because animals do not follow instructions as humans do in the data collection process
for behavior recognition, the amounts of data in the behavior classes generally were
excessively imbalanced. The classifiers were trained to reduce the overall error. Therefore,
the trained models were biased in classifying the majority class satisfactorily. We applied
training data sampling techniques to address this issue where the number of training
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data in each class is equalized (i.e., balanced, by either under-sampling or over-sampling,
or both). We utilized synthetic minority over-sampling techniques (SMOTE) [39] so that the
amount of training data of minority classes could be artificially increased by interpolating
the nearest samples. In addition, we adopted a combination of SMOTE for over-sampling
and edited nearest neighbors (ENN) for under-sampling, called SMOTEENN [40]. Here,
ENN filters out majority class data as noise where only the data of the minority class
exist in the neighborhood. We utilized imbalanced-learn 0.8.1 [41] to implement SMOTE
and SMOTEENN. Note that the data balancing process was only applied to training data.
The result is explained in Section 4.3.

3.2.5. Classifier and Its Training

We applied classification models, which are often used for animal behavior recognition.
The models use various learning concepts. We evaluated them using evaluation metrics
to identify the most suitable algorithm. They include naïve Bayes (NB) as a probabilistic
method, k-nearest neighbor (kNN) as an instance-based method, decision tree (DT) as a
rule-based method, and random forests (RF) [42] as a bagging-based ensemble learning
method. Additionally, light gradient boosting machine (LightGBM, in this study, simply
LGBM) [43] was a boosting-based ensemble learning, support vector machines (SVM) [44]
was a kernel function-based method, and multi-layer perceptron (MLP) was an artificial
neural network-based method. Among them, RF demonstrated success in other studies of
animal behavior recognition [15,22,27,45,46]. LGBM is a relatively new model, and very few
examples in animal behavior recognition have used LGBM [24]; however, the effectiveness
of LGBM in human activity recognition has been reported [47–49]. In MLP, one hidden
layer was applied (i.e., a simple three-layered network).

Each classifier has inherent parameters that control the learning process, called hyper-
parameters. As described in Section 3.3.1, the classification performance was evaluated
by cross-validation (CV) on the training and test data. To avoid overfitting the entire
dataset, we adopt the nested CV approach [50,51]; the inner CV was applied to obtain the
most suitable combination of hyperparameters, and the outer CV was used to evaluate
the classifier model trained with the selected parameters. In this study, we performed
the inner CV with a five-fold CV on the training data. The classifier models, including
related processing (e.g., hyperparameter tuning and cross-validation) were implemented
by scikit-learn 1.0.2 [52] and LightGBM 3.2.1 [53]. The hyperparameters and their candidate
values are summarized in Table 4; the default values were used for other hyperparameters.
Please refer to the dedicated API references for details of the hyperparameters, such as
their meaning and default values.

As the scale of the features differs between features, we applied a standardization that
extracts the mean and scale to unit variance; the parameters, that is, the mean and variance,
were calculated from training data and used for training and test data. Scaling was not
applied to tree-based classifiers (i.e., DT, RF, and LGBM).

Section 4.1 explains the classification performances using the seven classifiers with
variable SFs.
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Table 4. Hyperparameters and their candidate values in each classifier model.

Classifier Model Class Names in Scikit-Learn Hyperparameters Candidate Values

Naïve Bayes (NB) GaussianNB N/A N/A
k-Nearest Neighbor (kNN) NearestNeighbors n_neighbors 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

weights uniform, distance
Decision Tree (DT) DecisionTreeClassifier max_depth 5, 7, 10, 12, 15, 20

criterion gini, entropy
spitter best, random

RandomForest (RF) RandomForestClassifier n_estimators 100, 200, 300
criterion gini, entropy
max_depth 5, 10, 50
max_features sqrt, log2

LightGBM (LGBM) LGBMClassifier min_child_samples 0, 5, 15, 300
num_leaves 15, 31, 127
reg_alpha 0, 0.1, 1.0, 10.0
reg_lambda 0, 0.1, 1.0, 10.0

Support Vector Machines (SVM) SVC C 0.01, 0.1, 1.0, 10.0
kernel linear

Multi-layer Perceptron (MLP) MLPClassifier hidden_layer_sizes 50, 75, 100
learning_rate_init 0.0001, 0.001, 0.01
alpha 0.00001, 0.0001, 0.001
early_stopping True

3.3. Evaluation Schemes
3.3.1. Cross Validation

As described in Section 3.2.5, we applied a nested CV where the outer CV is responsible
for evaluating the classifier; the evaluation includes the classifier model and various aspects
noted above, such as sampling frequency and window size. It is because the data used
for training and testing rely on these elements. We performed two types of outer CV:
10-fold-CV and Leave-One-Hen-Out (LOHO)-CV. In 10-fold-CV, we randomly split the
entire dataset into ten mutually exclusive subsets; we integrated nine subsets into one
training dataset and used the remaining subset for testing the classifier. We iterated this
process ten times by changing the test and training subsets combinations. The kfold-CV
assumes that the distribution of features in the dataset is identical for the training and test
data [54] and can be considered to represent the average performance of the classifier on
the dataset. In actual use, it can also represent the performance under the condition that
new data with similar feature distributions as the dataset are obtained, such as when data
from the same population are newly provided for classification. Note that the entire dataset
is split into ten subsets in a stratified method; therefore, each split contains almost similar
proportions of classes as the original dataset.

LOHO-CV can examine the robustness against data distribution and individual differ-
ences. LOHO-CV was performed by testing a dataset from a particular individual using a
classifier trained without a dataset from the individual. This process is iterated until all indi-
viduals become test individuals. Unlike kfold-CV, the training dataset does not contain data
from a test individual. Thus, LOHO-CV was regarded as a more appropriate and practical
evaluation method than kfold-CV because individual differences inherently exist among
chickens. Particularly, the nested LOHO-CV approach is even more rigorous because the
data from test individuals are never exhibited in the tuning and training process. Whereas
in the non-nested LOHO-CV, the data leakage would occur when the hyperparameters are
tuned using the data from test individuals. This leave-one-individual-out type of CV is
also demonstrated in human activity recognition and is often called leave-one-subject-out
(LOSO-CV) or leave-one-person-out CV (LOPO-CV).

We obtained a confusion matrix at each fold and calculated an average confusion
matrix subsequently to the outer CV. A set of common performance metrics, described
below, was then calculated from the confusion matrix.
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3.3.2. Performance Metrics

We evaluated the performance of the classification by three metrics: precision, recall,
and F1-score. Precision refers to the degree to which the same result is obtained when
repeated measurements were performed under similar conditions. Thus, precision can
be considered an indication of the certainty of the judgment determined by the classifier.
In contrast, recall indicates the degree to which the original class can be correctly detected.
F1-score is a harmonic mean of the two metrics (i.e., precision and recall) to combine
them into one and is often used as a metric for an imbalanced dataset. Thus, we utilized
F1-score as a primary performance metric. Equations (2)–(4) represent precision, recall,
and F1-score, respectively; Ncorrectk , Ntestedk

, and Npredictedk
represent the number of cases

correctly classified into classk, the number of test cases in classk, and the number of cases
classified into classk, respectively, whereas k is the index corresponding to 1 of 12 classes.
For each of these three metrics, an average of 12 classes is calculated, which is called a
macro-average metric (Equation (5)) and is unaffected by the majority classes because each
class is considered equal weight.

precisionk =
Ncorrectk

Npredictedk

(2)

recallk =
Ncorrectk

Ntestedk

(3)

F1-scorek =
2

1/precisionk + 1/recallk
(4)

macro-average metric =
1

12

12

∑
k=1

metrick (5)

Furthermore, Equation (6) defines each metric individual independence ratio (IIR).
IIR aims to evaluate the robustness of a model or behavior class to the training and test
data consisting of different individuals. Smaller values of IIR indicate that classification
performance generally is more individual-dependent. The metrics obtained by LOHO-
CV also represent an individual’s robustness; however, we consider IIR that effectively
compares the robustness among models and classes because of relative values.

I IR =
metric by LOHO-CV
metric by 10 f old-CV

(6)

To understand the impact of a particular condition, we define a difference of confusion
matrices under two conditions by Equation (7), where M, a, and b represent the confusion
matrix and conditions a and b, respectively. A positive value for a diagonal element
indicates that condition a contributed more to the correct classification of the class than
condition b. Moreover, a positive value for a non-diagonal element signifies that condition
a increased misclassification. The visualization of ∆Ma,b in a heat map would allow us to
understand the differences between conditions a and b in detail.

∆Ma,b = Ma − Mb (7)

As additional information for the classification system, we also measured the execution
time for feature calculation and classification. In the experimental system, these processes
were separated and performed as batch processing. Thus, the execution time was measured
separately by obtaining the start and end timestamps of each process and dividing by the
number of instances.
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4. Results
4.1. Basic Classification Performance by Sampling Frequencies and Classifiers

Tables 5–7 list the F1-score, precision, and recall for 10-fold-CV and LOHO-CV schemes
per sampling frequency (SF) and classifier, respectively. Regarding the result in 10-fold-CV,
LGBM demonstrated the highest F1-score and precision at 1000 Hz and on average, whereas
MLP was highest in recall at 250 Hz. However, LOHO-CV had the highest F1-score and
recall with MLP and precision with LGBM at 100 Hz. LGBM, SVM, and MLP were the top
three for both CV methods regarding F1-score and recall for the mean values per classifier.
Moreover, for precision, RF, LGBM, and MLP were the top three for 10-fold-CV; RF, LGBM,
and SVM were the top three for LOHO-CV.

Table 5. F1-scores per sampling frequencies (SF) for different evaluation schemes and classifiers. Text
in bold style indicates the highest scores in each column. Furthermore, the underlined text indicates
the highest value in each CV scheme.

10-fold-CV LOHO-CV
SF [Hz]

NB kNN DT RF LGBM SVM MLP NB kNN DT RF LGBM SVM MLP

50 0.599 0.854 0.741 0.841 0.866 0.862 0.877 0.406 0.612 0.506 0.587 0.651 0.674 0.665
100 0.599 0.863 0.776 0.854 0.887 0.878 0.884 0.400 0.638 0.514 0.597 0.681 0.690 0.710
250 0.581 0.866 0.748 0.849 0.889 0.869 0.879 0.403 0.643 0.529 0.636 0.673 0.687 0.698
500 0.590 0.859 0.765 0.870 0.896 0.874 0.862 0.389 0.616 0.515 0.631 0.645 0.651 0.675

1000 0.594 0.872 0.760 0.872 0.898 0.871 0.872 0.408 0.620 0.535 0.651 0.648 0.668 0.660

Mean 0.593 0.863 0.758 0.857 0.887 0.871 0.875 0.401 0.626 0.520 0.620 0.660 0.674 0.682

Table 6. Precision per sampling frequencies (SF) for different evaluation schemes and classifiers. Text
in bold style indicates the highest scores in each column. Furthermore, the underlined text indicates
the highest value in each CV scheme.

10-fold-CV LOHO-CV
SF [Hz] NB kNN DT RF LGBM SVM MLP NB kNN DT RF LGBM SVM MLP

50 0.582 0.885 0.747 0.920 0.912 0.891 0.908 0.433 0.650 0.511 0.628 0.711 0.726 0.698
100 0.581 0.906 0.773 0.927 0.923 0.902 0.926 0.427 0.650 0.524 0.709 0.755 0.743 0.741
250 0.572 0.894 0.756 0.922 0.937 0.894 0.881 0.437 0.670 0.536 0.737 0.732 0.719 0.724
500 0.575 0.886 0.771 0.923 0.934 0.894 0.889 0.417 0.630 0.517 0.745 0.707 0.687 0.695

1000 0.578 0.893 0.760 0.930 0.940 0.894 0.878 0.441 0.672 0.546 0.751 0.718 0.709 0.690

Mean 0.578 0.893 0.761 0.924 0.929 0.895 0.896 0.431 0.654 0.527 0.714 0.725 0.717 0.710

Table 7. Recalls per sampling frequencies (SF) for different evaluation schemes and classifiers. Text
in bold style indicates the highest scores in each column. Furthermore, the underlined text indicates
the highest value in each CV scheme.

10-fold-CV LOHO-CV
SF [Hz] NB kNN DT RF LGBM SVM MLP NB kNN DT RF LGBM SVM MLP

50 0.720 0.840 0.737 0.818 0.839 0.843 0.855 0.473 0.612 0.521 0.589 0.636 0.660 0.660
100 0.722 0.842 0.780 0.825 0.864 0.861 0.859 0.469 0.640 0.524 0.596 0.659 0.675 0.700
250 0.707 0.851 0.743 0.828 0.860 0.850 0.877 0.476 0.640 0.537 0.624 0.660 0.682 0.689
500 0.714 0.844 0.760 0.843 0.871 0.859 0.844 0.468 0.615 0.525 0.624 0.642 0.648 0.671

1000 0.710 0.858 0.760 0.846 0.871 0.855 0.867 0.479 0.611 0.538 0.637 0.642 0.661 0.655

Mean 0.715 0.847 0.756 0.832 0.861 0.854 0.860 0.473 0.623 0.529 0.614 0.648 0.665 0.675

The trends of the best and worst SF varied by classifiers. Considering the F1-scores of
the top three classifiers, that is, LGBM, SVM, and MLP, the averages for each SF were as
follows, beginning from 50 Hz: 0.868, 0.883, 0.879, 0.877, and 0.880 for 10-fold-CV and 0.663,
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0.694, 0.686, 0.657, and 0.659 for LOHO-CV; the highest values were obtained at 100 Hz for
both evaluation methods.

IIRs of the F1-score by SF and models are presented in Table 8, where all models had
the highest IIR at 100 Hz or 250 Hz, and MLP exhibited the highest IIR of 0.804 at 100 Hz.
Furthermore, the highest average IIRs per model and SF were obtained by MLP (0.779
and 0.747) at 250 Hz, respectively. However, MLP had the highest average IIR for each
SF (0.786) for the classifiers with the top three highest average IIRs, that is, LGBM, SVC,
and MLP. The subsequent evaluation is based on the performance of these three classifiers
at 100 Hz. In particular, the results obtained by MLP at 100 Hz sampling data are regarded
as the baseline because of the highest IIR. Section 4.2 presents a detailed performance of
the baseline.

Table 8. IIRs by SF with different classifiers. Text in bold style indicates the highest scores in each
column; underlined text indicates the highest value of all.

SF [Hz] NB NN DT RF LGBM SVC MLP Mean (All) Mean (Top-3)

50 0.677 0.717 0.682 0.697 0.752 0.781 0.758 0.724 0.764
100 0.668 0.740 0.662 0.698 0.768 0.785 0.804 0.732 0.786
250 0.693 0.742 0.707 0.749 0.757 0.790 0.794 0.747 0.780
500 0.660 0.717 0.673 0.725 0.720 0.745 0.783 0.718 0.751

1000 0.687 0.711 0.704 0.746 0.722 0.766 0.758 0.728 0.757

mean 0.677 0.725 0.686 0.723 0.744 0.774 0.779 0.730 0.768

The processing time for feature calculation is presented in Table 9 and varied by SF
because the number of data points in a window varied (i.e., 64, 128, 256, 512, and 1024 for
50 Hz, 100 Hz, 250 Hz, 500 Hz, and 1000 Hz, respectively); the feature calculation time
increased linearly with SF. Table 10 shows the classification time per classification model.
DT was the fastest, followed by MLP, NB, LGBM, RF, SVM, and kNN; however, when the
time for feature calculation and classification were combined, more than 99% of the time
was spent on feature calculation. Thus, we can say that there is no difference between
classifiers in execution time.

Table 9. Time for feature calculation by SF.

SF [Hz] 50 100 250 500 1000

Calculation time [×10−3 s/instance] 21.446 24.369 29.237 40.180 58.660

Table 10. Time for classification per model.

Model NB kNN DT RF LGBM SVM MLP

Classification time [×10−3 s/instance]0.007 0.196 0.001 0.082 0.027 0.112 0.002

4.2. Detail Classification Performance in Baseline Case

Figure 6 depicts the confusion matrices of the baseline, where mutual confusion
between ET and PR, PR and HS, ST and RS, MV and OT, ET and OT, and PR and OT
was discovered in 10-fold-CV; considerable confusion existed in LOHO-CV. The common
characteristics in these confusion matrices are that the heads of the hen moved, which could
generate identical movement patterns in acceleration and angular velocity. Additionally,
because behaviors such as pecking sensors and other individuals were included in the OT,
confusion between ET, PR, and OT may have occurred.
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Figure 6. Confusion matrices in the baseline condition (MLP, 100Hz, 128 samples): (a) 10-fold-CV
and (b) LOHO-CV.

Figure 7 depicts the F1-scores per behavior class calculated from these confusion
matrices, which show that the F1-scores of 10-fold-CV ranged from 0.686 for TF to 0.974 for
ET, whereas those of LOHO-CV ranged from 0.554 for HS to 0.926 for DB, indicating that
the values varied from behavior to behavior. The Pearson’s correlation coefficient between
the values of 10-fold-CV and LOHO-CV is 0.634. This indicates similar trends between the
two evaluation schemes. The difference between the values of 10-fold-CV and LOHO-CV
is considered to represent the robustness to the differences in training and test data; the
smaller the value, the more robust it is. In Figure 7, there are some cases, such as BS and
DB, with almost no difference, whereas there are other cases with large differences, such as
HS, ST, RS, and OT.

Figure 7. F1-scores per behavior class in the baseline condition (MLP, 100Hz, 128 samples).

4.3. Classification Performance by Imbalance Data Handling Methods

Figure 8a,b depict F1-scores and IIRs of F1-scores by imbalance data handling tech-
niques per classifiers, where ORG represents the original condition and equals the case
with the rows at 100 Hz in Tables 5 and 8 for 10-fold-CV and IIR, respectively. In Figure 8a,
it illustrates that the highest values were obtained in ORG (i.e., original imbalance data) in
SVM and MLP, followed by SMOTE except for SVM. In contrast, in Figure 8b, the ORG
condition achieved higher values than SMOTE and SMOTEENN. This outcome signifies
that the data without balancing are less affected by individual differences.
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Figure 8. Classification results by imbalance handling techniques with different classifiers (128 sam-
ples at 100 Hz): (a) F1-scores in 10-fold-CV and (b) IIRs of F1-scores.

Figure 9 emphasizes the effects of imbalance handling by subtracting the F1-score of
each behavior class in the ORG condition from that of SMOTE or SMOTEENN, where the
positive values indicate that the techniques successfully increased the F1-score. Considering
the figure, SMOTE improved the F1-scores of 6 out of 12 classes. However, no improvement
in the F1-score was discovered in SMOTEENN.

Figure 9. Difference of F1-scores between imbalance handling techniques and ORG conditions per
behavior classes with 10-fold-CV in baseline condition.

Figure 10 depicts the difference in confusion matrices between SMOTE and ORG
(∆MSMOTE,ORG) (Figure 10a) and between SMOTEENN and ORG (∆MSMOTEENN,ORG)
(Figure 10b). Based on the definition of ∆M, SMOTE (Figure 10a) successfully improved
the classification between PR and ET, PR and HS, and ST and RS, observed in Figure 9.
In contrast, the correct classification of MV was decreased by SMOTE primarily due to the
increase in mutual misclassification with OT. The confusion with OT was often discovered
between other classes by locating positive values in the row and column of OT. Regarding
SMOTEENN (Figure 10b), correct classification into MV, BS, HS, TF, and LS was increased,
whereas that of ET, PR, ST, and OT decreased; the misclassification of PR, HS, ST, RS,
and OT into other classes increased.
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Figure 10. Differences between confusion matrices of classification with balancing and without
balancing (ORG) (MLP, 128 samples at 100 Hz): (a) ∆MSMOTE,ORG and (b) ∆MSMOTEENN,ORG.

4.4. Classification Performance by the Window Length and Number of Training Instances

WS was halved into 64 (sampled at 100 Hz), indicating that the classification fea-
tures were calculated in a WL of 0.64 s. Figure 11a depicts the F1-scores of the base
condition (WS128), halved WL with an equal number of instances to the base condition
(WS64_EQ), and halved WL with an inequal (double) number of instances to the base condi-
tion (WS64_INEQ) per classifier by 10-fold-CV, where the highest F1-scores were obtained
in WS128, except for INEQ of LGBM, and the lowest values were obtained in WS65_EQ
in all cases. IIRs are illustrated in Figure 11b, where the base condition demonstrated the
highest values in all classifiers, whereas the second highest relied on the models: WS64_EQ
in LGBM and SVM and WS64_INEQ in MLP, with very minimal differences except for
SVM (0.05). This aspect indicates that WS, and accordingly WL, was more significant than
the number of instances for the characteristics of training data.

Figure 11. Classification results by WS (128 and 64 samples at 100 Hz) and the equality of the number
of data to the baseline (EQ for equal and INEQ for inequal conditions): (a) F1-scores in 10-fold-CV
and (b) IIRs of F1-score.

Furthermore, the difference between the confusion matrices of WS64_EQ and WS128,
∆MWS64_EQ,WS128, is depicted in Figure 12. Mutual confusion between PR and ET, PR and
ST, PR and OT, and ST and RS increased in WS64_EQ. These pairs indicate that classification
might be more challenging with a window of 0.64 s than 1.28 s. In contrast, HS, TF, and LS
were more successfully classified in WS64_EQ than in WS128, signifying that these classes
are less likely to be negatively affected even with short windows.
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Figure 12. Differences between confusion matrices of WS64_EQ and WS128: ∆MWS64_EQ,WS128 (MLP
at 100 Hz).

4.5. Effective Feature Group

Figure 13 depicts the F1-scores in 10-fold-CV (Figure 13a) and IIRs of the F1-score
(Figure 13b) for each feature set with different classifiers. ACC and GYR comprise particu-
lar sensor modalities of acceleration and angular velocity, respectively, to understand the
contribution of these modalities in classification. However, the feature set wo_M was gen-
erated by extracting the features calculated using the magnitude of three-axis acceleration
from the entire feature set (ALL). The comparison between ALL and wo_M was expected
to explore the significance of the orientation-independent amount of force.

Figure 13. Classification results by by feature set with different classifiers, sampled at 100 Hz:
(a) F1-scores in 10-fold-CV and (b) IIRs of F1-score. ALL: all features, ACC: acceleration-derived
features, GYR: angular velocity-derived features, wo_M: features eliminating magnitude of three-
axis acceleration.

Our analysis demonstrated that the features derived from acceleration alone were
insufficient, although they contributed more to the classification than the features derived
from angular velocity in all classifiers. In addition, the magnitude of acceleration did not
contribute to LGBM and MLP in 10-fold-CV due to higher F1-scores than those of ALL;
however, the lower IIRs in LGBM and MLP indicate a significance of the magnitude of
acceleration in individual-independent classification. The heterogeneity of the feature space
due to the increase in dimensionality may have contributed to the absorption of individual
differences rather than overfitting.
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Figure 14 depicts the breakdown per behavior class in MLP. Overall, using all the
acceleration and angular velocity features resulted in higher scores than using them sepa-
rately. Regarding the acceleration and angular velocity features comparison, all cases in
ACC except for TF exhibited higher values than GYR. Figure 15a illustrates the difference
between confusion matrices of the classification using ACC and GYR (i.e., ∆MACC,GYR).
The matrix represents how the differences of F1-scores per behavior class were expedited
in more detail; the mutual confusion between ET, DK, PR, and OT was decreased in ACC,
in addition to another mutual confusion between ST and RS.

Figure 14. F1-scores per behavior class by feature set in MLP with 10-fold-CV, sampled at 100 Hz.
ALL: all features, ACC: acceleration-derived features, GYR: angular velocity-derived features, wo_M:
features eliminating magnitude of three-axis acceleration.

Figure 15. Differences between confusion matrices of classification (a) with features derived from
acceleration and angular velocity (∆MACC,GYR) and (b) without magnitude of acceleration and with
all features (∆Mwo_M,ALL) (MLP at 100 Hz).

In addition, the increase in wo_M compared to ALL was discovered in 7 out of
12 behavior classes in Figure 14. In particular, TF was considerably larger than that of
ALL by 0.143, which may be why wo_M in MLP had a higher average score than that of
ALL. Figure 15b depicts the difference between confusion matrices of the classification
using wo_M and ALL (i.e., ∆Mwo_M,ALL). Regarding TF noted above, the number of
misclassifications into HS was decreased by four, and that of correct classification increased
by five, resulting in considerable improvement of the F1-score of TF because the number of
TF instances was inherently minimal (40), as illustrated in Figure 5.
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5. Discussion
5.1. Classifiers

We sampled seven supervised classifiers often used in human and animal behavior
recognition. As presented in Section 4.1, LGBM, SVM, and MLP demonstrated generally
high classification performance, although there were some differences depending on the
performance metrics, SF, and evaluation schemes. Recent literature reveals the superiority
of LGBM [24,48,49], and LGBM demonstrated the highest F1-score at 1000 Hz (0.898) and
the average in all classifiers (0.887). However, in LOHO-CV, the average score degraded to
0.660 and exhibited the lowest score of the three classifiers. This outcome resulted in the
IIRs of LGBM being the smallest of all SFs of the three models.

The decrease in classification performance in LOHO-CV indicates the difference in
feature distribution between training and test data resulting from individual hens’ differ-
ences. The difference in the experiment resulted from the difference in the classifier because
the training and test data were unified for all classifiers in a particular SF. As described in
Section 3.3.1, the hyperparameters of the classifiers were adjusted in the process of nested
CV to avoid data leakage from the test data. We utilized the data sampled from the training
data to evaluate a particular set of hyperparameters, and thus the classifier was fit with
data composed of different populations of hens than the test data. We consider LGBM to be
the most over-trained of the three classifiers, whereas MLP was the least likely to be over-
trained. The 10fold CV approach assumes that the distribution of training and test data is
identical. Therefore, it is applicable when the study is conducted on a specific population
and training and testing are limited to that population. Otherwise, it is applicable if the
training data can be collected from a sufficiently diverse population to include data from
individuals with a distribution similar to that of the unknown individuals tested. In these
cases, we conclude that LGBM is worth using.

5.2. Sampling Frequency

Section 4.1 explained the sampling frequency for the highest F1-scores in the top three
classifiers obtained at 100 Hz for 10-fold-CV and LOHO-CV. An average IIR of the top three
models also exhibited the highest value of 0.786 at 100 Hz, subsequently 0.780 and 0.764
at 250 and 50 Hz, respectively. Higher sampling frequencies can improve the temporal
and spatial resolution of the signal and are considered to increase the expressiveness of
the signal features for each action. However, noise and individual differences may be
accentuated. It may be because the IIR for the top three classifiers increased at 100 Hz or
250 Hz and decreased at 500 Hz and 1000 Hz, specifically, the large decrease from 0.768 to
0.722 for LGBM. However, further investigation is required to determine the exact reasons
for this.

5.3. Handling Imbalance Data

As demonstrated in Section 4.3, the balancing techniques did not exhibit an overall
improvement in F1-score compared with the original imbalance data except for LGBM. The
analysis of F1-scores in 10-fold-CV of the baseline condition (Figure 9) shows that SMOTE
improved classification performance in half of the classes; however, the degradation of
MV, BS, TF, and OT outweighed the improvement. Although these classes, except for
OT, were minority classes, the number of instances was increased to match that of ET by
approximately 7, 17, and 77, respectively. We consider that the increase did not result in
clarification of the decision boundaries between classes.

5.4. Window Size (Length) and the Number of Training Instances

Section 4.4 explained the trend of the F1-score regarding WS (WL) and the number
of instances. First, it indicates that increasing the number of training instances by de-
creasing WS contributed to the classification performance in 10-fold-CV (WS64_INEQ >
WS64_EQ). It is reasonable because numerous training data generally facilitate learning the
characteristics of the data. The F1-score of WS64_INEQ of LGBM was highest in the three
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classifiers; however, its IIR was lowest, implying an effect of overfitting of LGBM, as noted
in Section 5.1. Second, the patterns of WS128 outperforming WS64_EQ in all situations
and WS128 outperforming WS64_INEQ in SVM and MLP suggest that a window of 1.28 s
may convey more information than a window of 0.64 s, although a halved window could
generate about twice as many training examples. However, it is challenging to generalize
that 1.28 s is the most satisfactory WL for the hen’s behavior recognition because we have
not tested other combinations of WL and the number of instances.

The depiction of ∆MWS64_EQ,WS128 in Figure 12 highlights the impact of halving the
windows on classification in more detail. As shown in Figures 2 and 3, the reasons for the
increase in mutual confusion between ET and PR in WS64_EQ may be as follows. Several
bursts (three for ET and two for PR) are discovered in the figures; however, decreasing the
WL decreased the number of bursts in a window and is presumed to result in difficulty
distinguishing between behaviors. In ET and PR of the figures, only one burst exists in
the first half of the 0.64 s window. Head movements in ST, where the hens stand still
but occasionally look around, could result in the sensor noticing movements similar to
preening. This aspect would result in difficulty distinguishing between the two behaviors
in a short window, as was the case for ET. However, several short windows created in ST
that contained only a stationary state without bursts in Figures 2 and 3 might increase
the confusion with RS, which is a stationary state with almost no head movement. In
addition, the increase in mutual confusion between many behaviors and OT might be
because the shorter window had more patterns similar to OT, primarily composed of
various behaviors. Moreover, HS and TF had similar or adequate classification accuracy in
a shorter window. The reason for this is unclear; however, it appears to be related to the
longer burst duration. These discoveries imply that window size has a large impact on hens’
behavior classification, and decreasing the window size can increase mutual confusion
between different behaviors.

5.5. Effective Sensor Modalities and Importance of Magnitude of Acceleration

Section 4.5 explains that, regardless of the classifier, GYR had lower F1-scores than
ACC in the 10-fold-CV due to increased mutual confusion between ET, DK, PR, and OT and
between ST and RS in GYR compared to ACC. The increase in confusion between ET and
OT in GYR may be because OT includes the action of pecking sensors of other individuals.
Although feeding and pecking are similar because they produce short impulse-like bursts,
the direction of head movement differs between feeding in the bait box and pecking at
another individual’s sensor due to the different positions of the target. An angular velocity
sensor measures the relative change in angle, whereas the force applied to the sensor,
including the acceleration of gravity, is obtained by an accelerometer, and an accelerometer
could therefore discriminate these differences in the direction of movement. Similarly,
the increased confusion in the GYR between ET, DK, and PR may have resulted from their
inability to discriminate between different target locations for beak use but a commonality
in the act of beak use.

As for ST and RS, ST is primarily a stationary behavior compared to the other be-
haviors, although hens occasionally move their heads when standing. In RS, the body
may tilt when lying on the ground, resulting in a variation in sensor posture compared
to standing firmly on both legs. Therefore, we believe an accelerometer is more effective
than an angular velocity sensor because an accelerometer can capture postural information
from the gravitational acceleration component and the force associated with the movement.
Moreover, TF was the only behavior with a higher value in GYR than in ACC. An angular
velocity sensor may have been more effective because tail wagging was mostly in a hori-
zontal plane. Thus, although an accelerometer demonstrated a high overall classification
performance, the combination with the angular velocity sensor (i.e., ALL) resulted in classi-
fication that is more accurate. Although an angular velocity sensor generally has a higher
power consumption than an accelerometer [55], we suggest the combination of the gyro
sensor with an accelerometer if there is no battery limitation.
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Similar to the above, in Section 4.5, more than half of the comparisons between wo_M
and ALL in Figure 14 depict that wo_M had higher F1-scores. Particularly, in TF with a
value of 0.143 higher, it might be the primary reason why the macro average of wo_M was
higher than that of ALL. The detail of classification in TF is depicted in Figure 6a with four,
three, two, and two misclassifications out of 23 instances of TF for HS, MV, PR, and OT,
respectively. In addition, they were reduced by four, zero, one, and one by excluding the
magnitude of acceleration. Moreover, the number of misclassifications to LS increased by
one; however, the number of correct classifications into TF increased by five. HS is a rapid
head-scratching behavior with one foot; therefore, the force applied to the body might be
similar to that of TF, even if the direction of movement was different from that of TF that
wags the tail at high speed. Therefore, we believe that the misclassification was suppressed
by extracting the magnitude value and emphasizing the directional component; however,
further experiments with a larger sample are required to determine the misclassification
source because the number of instances is only 23. Figure 15b exhibits that the number of
correct classifications into LS decreased by one, whereas the number of misclassifications to
LS increased by one in MV, TF, and DB and decreased by one in ST. This resulted in a 0.039
lower F1-score for LS, compared to ALL, as depicted in Figure 14; however, it is challenging
to generalize the cause of this difference because the individual differences were only plus
or minus one.

5.6. Existing Work on Chicken Behavior Recognition

We discuss the results compared with other work related to chicken behavior recogni-
tion. Table 11 summarizes relevant parameters discovered in each work: the number and
type of behaviors, sensor modality, number of axes, sampling frequency, window length,
classification method, and condition of data.

Table 11. Comparison with work on behavior recognition using wearable sensors. Underlines
indicate the values reported as having the best classification performance on average.

Literature Behavior 1 (Number and Type) Sensor 2 SF [Hz] WL [s] Classification 3 Data 4

[13] 6 (DB, PK, PR, RS, ST, MV) A (2) 20 1 thresholding N/A
[12] 6 (ET, DB, DK, RS, ST, MV) A (2) 10 3, 4 MLP, RBF, DT, NB IMB
[10] 3 (ET/PK, DB, PR) A (3) 100 variable NN IMB
[11] 3 (PK, DB, PR) A (3) 100 variable (DB, PR), NN with IMB

1 (PK) thresholding
[25] 4 (ET, DK, MV, RS) A (3) 40 1, 3, 5, 7, 10, 20 kNN, SVM B
[24] 2 (ET, DK) A (3), G (3) 5 2.8 LR, XGBoost, IMB

DT, NB, LGBM
[27] 3 (L, M, H) A (3) 100 1, 4 RF, BT, skNN IMB
[26] 3 (L, M, H) A (3), G(3), M(3) 1000 0.025, 0.05, 0.1 CNNs IMB
Our work 12 (MV, ET, DK, PR, BS, HS, A (3), G (3) 50, 100, 250 0.64, 1.024, 1.28 kNN, NB, DT, RF, B, IMB

TF, ST, RS, DB, LS, OT) 500, 1000 LGBM, SVM, MLP
1 PK: Pecking. L: Low-intensity, M: Moderate-intensity, H: High-intensity behaviors. Other abbreviations
follow those in Table 1. 2 A: Accelerometer, G: Gyro sensor (angular velocity sensor), M: Magnetic field sensor.
The numbers in parentheses indicate the number of axes. 3 CNN: Convolutional Neural Network, BT: Bagged
Trees, skNN: subspace kNN. Other abbreviations follow those in Table 4. 4 Condition of training data. IMB:
Imbalanced, B: Balanced.

The present study addressed 11 types of behaviors belonging to categories such as
migration, feeding, self-defense, grooming, resting, and searching and is characterized
by its aims to quantify various daily behaviors of chickens compared to other studies.
In the works of Abdoli et al. [10,11] and Quwaider et al. [13], a class PK was among the
classification targets we did not address. However, because Abdoli et al. used the term
“pecking” along with “feeding” in their study, it can be noted that our method also covered
what they called pecking. In Quwaider et al.’s study, the target of PK appears to be the
ground, sensors, etc. In the data collected in this study, we also discovered some behaviors
of pecking at other individuals’ sensors as strange objects; however, we included these
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behaviors in OT. Note that the introduction of OT was unique to our study. In a classification
task in machine learning, the input data are classified into one of the learned classes. Thus,
miscellaneous data obtained in the automatic processing of long-term data, expected in
practical applications, would be incorrectly classified into a behavior class with similar
characteristics. In this study, the behaviors included in OT contain pecking at the sensor
and various movements such as balance breaking, beak scratching, and looking around,
as listed in Table 1. We believe the introduction of OT would improve the discrimination
accuracy of the 11 types of behaviors other than OT. However, there are still movements
that are not included in OT. Therefore, the reliability of the classification results would
be further improved by post-processing the classifier output, such as using the rejection
option. The research group of Derakhshani and Shahbazi classified various behaviors into
three classes based on their intensity [26,27], which was intended to be used to control the
amount of fine dust produced by hens’ activity or to assess the health and welfare status of
hens. We focused on the recognition of individual behaviors because we intend to use the
frequency and transitions of the behaviors and the locations where the behaviors occur in
our attempts to improve hen’s welfare.

Regarding the sensor modality, all existing work except Li et al. [24], Shahbazi et al. [26],
and ours used only an accelerometer for behavior classification. Li et al. performed feature
selection by integrating acceleration and angular velocity-derived features and did not
investigate the classification performance for each sensor. However, we generated a subset
of features for each modality (ACC and GYR) and compared the performance with the
combined set (ALL). Our results demonstrated that the accelerometer is more beneficial
than the angular velocity sensor as a single sensor and that the combination of the two is
excellent. The results showed an overall trend and a trend for each action. This outcome
provides information to decide whether to adopt or reject the angular velocity sensor,
considering the power constraints of the measurement system and the type of behavior to
emphasize. Shahbazi et al. further combined a magnetic field sensor and confirmed that it
was more accurate than using the combination of accelerometer and angular velocity sensor
in an artificially generated high-level noise environment. We consider it an interesting
finding, and the applicability is worth considering while taking into account the influence
of metals present in the actual rearing environment on the magnetic field sensor.

For sampling frequency, we down-sampled data collected at 1000 Hz to generate data
sampled at five different frequencies for comparison, whereas other studies used a single
value. Although the optimal frequency varied with the classifier, we concluded that 100 Hz
was suitable from an individual-independent perspective. The results showed a trend
in classification accuracy at frequencies lower and higher than this value, which will be
beneficial in determining sampling frequency in future research.

Similar comparisons were made for window length; Banerjee et al. [12], Yang et al. [25],
and Derakhshani et al. [27] also compared two, six, and two different window lengths,
showing 4 s, 1 s, and 4 s as better window length than the other candidates, respectively.
For datasets collected in finite time, decreasing the window length increases the number
of data instances, which increases the training data. Therefore, the number of instances
required standardization to investigate the effect of the window length. Contrary to other
studies, we compared a window of 1.28 s and 0.64 s with and without standardizing the
number of instances based on these ideas. We demonstrated that 1.28 s is more effective
regarding informativeness even when the number of training instances is approximately
doubled in 0.64 s. We did not compare the results over 3 s in these studies because we
utilized an upper limit of about 1 s based on the duration of the target behaviors. Therefore,
it is challenging to generalize the results. Nevertheless, we could show a lower bound of
about 1 s.

We compared traditional classifiers, such as kNN and NB, and newer ones, such as
LGBM, and discovered that LGBM, SVM, and MLP were superior regarding F1-scores
in 10-fold-CV and IIR. The 10-fold-CV approach assumes identical data distribution dur-
ing training and testing, and IIR acts as an indicator of the independence of individual



Sensors 2023, 23, 5077 23 of 27

differences. The superiority of these classifiers was also found to be beneficial by Baner-
jee et al. [12], Yang et al. [25], and Li et al [24]. In the literature above, only [26] utilizes a deep
learning (DL)-based approach (i.e., convoluational neural networks (CNNs)). As described
in Section 3.1, we did not take DL-based approaches due to relatively poor classification
performance in a preliminary evaluation, which we consider because of the small number
of data. We are currently developing an interactive labeling tool using the present behavior
recognition pipeline to accelerate making a large dataset. The evaluation with DL-based
approaches remains for future work.

To address the imbalance in the training data, we compared the classification perfor-
mance using training data balanced by over-sampling and training data that remained
imbalanced. The results demonstrated that the training with imbalanced data was satis-
factory. Collecting labeled data in animal behavior recognition is more challenging than
in human behavior recognition because cooperation from the target (i.e., animals) is more
demanding to obtain, and imbalance is more likely to occur [10]. We consider the compari-
son significant: it demonstrated that balancing training data did not necessarily positively
influence classification performance. However, data balancing should be implemented per
new datasets because the result depended on data distribution.

To understand the applicability of features used in existing work to our recognition task
and dataset, the features used in the work of Banerjee et al. [12] and Derakhshani et al. [27]
were evaluated. The reasons for the choice of these studies are that they took a feature
engineering-based approach using fixed-size windows and they had sufficient information
for reproduction. In the work of Banerjee et al. [12], ENTR and MEAN were calculated
from each of the x and y axes of an accelerometer; these four features were included in our
feature set. A total of 31 features calculated from the acceleration signal were taken from
Derakhshani et al.’s work: SKEW, KURT, MEAN, SD, variance (VAR), MIN, MAX, ENTR,
ENGY, and covariance (COV) for each of three axes and the average signal magnitude
(ASM), in which all but VAR, COV, and ASM were a subset of our feature set. Figure 16
shows the F1-scores per behavior, in which the result of our features with the highest score
(i.e., ALL) are also presented as a comparison. Compared to the results of Derakhshani et al.,
our feature set (ALL) showed higher F1 scores for all behaviors but BS, including the mean,
particularly MV, TF, and LS, and the scores of their ET, ST, RS, and OT were comparable
to ALL. On the other hand, most scores using Banerjee et al.’s features were considerably
lower than ALL, but comparable for stable states such as ST and RS.

Figure 16. The result of applying the features used in existing work to our classification pipeline
(MLP at 100 Hz, 10-fold-CV).

To summarize, we increased the number of target behaviors, compared different
parameters that should be considered when designing a hen behavior recognition system
using wearable sensors, and demonstrated the superiority or inferiority of the candidate
parameters. We also showed that the sensor modality and features used in existing work
were insufficient to successfully classify the target behaviors. Considering this, we assume
it would contribute beneficial information for designing similar systems.
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5.7. General Discussion

The generality of the results of this study to hen behavior recognition is discussed. In
this study, we collected data from Boris Brown layers. However, we believe the results
apply to other breeds of layers and roosters, as there are almost no differences in their
behavioral patterns. However, there may be differences depending on the age in weeks.
When using the same acceleration sensor device, it may be challenging to distinguish
the behavior of a newborn hen because the sensor is large and heavy for its body size.
In addition, its movements are limited and different from the learned patterns; however,
we consider that there will be no problem when the hens are approximately three months
old or later when they begin to lay eggs.

In addition, although we collected data in an area of 100 cm × 76 cm, we assume
our results are applicable even if the hens are kept in a larger space because their basic
behaviors, such as dust bathing and feeding, do not change. Because the hens’ movements
are expected to be more dynamic in a larger space due to their long strides, it may be
possible to detect them accurately by retraining the classifier through data collection.
Similarly, the extra space will enable the hens to jump upwards; thus, we expect to notice
movements that could not be collected. As noted above, we believe that we can redirect
data from multiple behaviors; therefore, additional data collection limited to new behaviors
will allow us to include many behaviors in the recognition target.

6. Conclusions

We investigated a method of realizing a behavior recognition system for continuous
monitoring of hen’s behavior over a long period, which aimed at studying a hen-rearing
system based on animal welfare. We specified 12 behavior classes of 11 types of daily
and miscellaneous activities and developed a classifier using supervised machine learning.
Several significant components of the processing pipeline from the measured raw data to
the final behavior class were considered as parameters, including the classifier, sampling
frequency, window length, data imbalance handling, and feature group and sensor modality.
We specified a reference configuration based on the result: an MLP classifier using features
derived from an accelerometer and an angular velocity sensor calculated in a 1.28 s window
at 100 Hz sampling without balancing the training data. This configuration has the greatest
potential to achieve highly accurate hen behavior recognition in unbalanced environments
with large individual differences, such as the present dataset.

This study targeted more behaviors and verified the effect of more parameters than
previous studies in chicken behavior recognition using wearable sensors. However, not
all parameter combinations were exhaustively explored during the study, and validation
was conducted with fixed classifiers, sampling frequencies, window lengths, etc. Therefore,
the truly optimal parameter combinations were unidentified. Nevertheless, we consider
that the results are significant and can be utilized to recognize certain behaviors, design
similar systems, and estimate the impact of particular parameters on the system’s perfor-
mance. As an application of this work, we are currently working on a method to evaluate
rearing systems to improve hens’ welfare by visualizing and quantifying the frequency of
behaviors and the patterns of transition among behaviors.
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