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Abstract: This paper presents an assessment of the quality of selected filtration methods for the
postprocessing of multibeam echosounder data. In this regard, the methodology used in the quality
assessment of these data is an important factor. One of the most important final products derived from
bathymetric data is the digital bottom model (DBM). Therefore, quality assessment is often based on
factors related to it. In this paper, we propose some quantitative and qualitative factors to perform
these assessments, and we analyze a few selected filtration methods as examples. This research
makes use of real data gathered in real environments, preprocessed with typical hydrographic flow.
The methods presented in this paper may be used in empirical solutions, and the filtration analysis
may be useful for hydrographers choosing a filtration method for DBM interpolation. The results
showed that both data-oriented and surface-oriented methods can be used in data filtration and that
various evaluation methods show different perspectives on data filtration quality assessment.

Keywords: bathymetry; multibeam echosounder; digital bottom model; data filtration; hydrography;
surface modeling

1. Introduction

Bathymetry, understood as seabed topography, is one of the key attributes of the un-
derwater environment, and it has been used by humans since the beginning of exploration
of water environments. Traditionally, it has been used for onboard and onshore maritime
information systems [1]; however, nowadays more and more usages exist. For example,
in [2] the focus is on dredging operations, and in [3] an analysis of seabed changes is
presented. General environmental modelling is presented in [4], and in [5] multiple appli-
cations related principally to the safety of navigation for all sea users and digital terrain
modeling are explored. Further examples include the comparative navigation approach [6],
in which bathymetry plays a crucial role as a reference, and bathymetric measurement
methodologies are used to model water-column information, for example, in [7], where the
abundance of giant kelp in the water column was detected with echosounder backscatter.

The use of multibeam echosounders (MBESs) has become a standard approach in
seabed modelling, especially large-area surveys. They allow 100% coverage in a survey,
which is a requirement for the highest orders of surveys according to the International
Hydrographic Organization (IHO) standard [8]. MBES systems were developed and used
first in the 1980s, and since then have gained huge popularity; in the scientific field,
they have become a main target of interest. They did not, however, replace single-beam
echosounders (SBESs), the use of which is still considered reasonable for many applications.
For example, in [9], a method combining a low-cost SBES with a dual-frequency differential
high-precision global navigation satellite system (GNSS) is presented. An interesting
approach of using a smartphone to obtain reliable bathymetric data for 3D modelling is
given in [10], as another example. This shows that the use of SBESs can significantly reduce
costs while maintaining the required data accuracy in some cases and that SBESs can still
be a topic for research.
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MBES systems have become widely used due to their numerous assets, including
wide coverage and high accuracy (especially with technology development). However,
as complex systems, they have disadvantages compared to simpler ones. For example,
they require additional supporting sensors, and they are more vulnerable to environmental
factors. Data processing in MBESs is also more complicated and requires specialized knowl-
edge, including the important issue of data filtration. This basically means eliminating
false signals and erroneous soundings based on certain assumptions to provide reliable
information [11]. Each hydrographic dataset must be postprocessed with some kind of
data filtration prior to the visualization step. The typical flow for this postprocessing stage
involves the correction of raw data with basic settings and environmental factors (offsets,
water level, etc.), filtration with the use of specially designed filters to reject unreliable
and false data, and validation of the results, usually by an experienced hydrographer. The
filtration step is the most time-consuming and complicated part of the process. Many
authors refer to this step as data cleaning [5,12,13]. Data filtering was traditionally carried
out manually by an experienced hydrographer; however, as technology and computer
capabilities have evolved, more and more automatic approaches have been developed. The
authors of [5] found that more than 30 different algorithms have been published for this
purpose, with the aim of reducing the human workload required for manual processing.

The basic goals of MBES data filtering in modern hydrographic systems and software
are increasing data quality and data reduction [2]. MBESs provide dense point clouds,
which can be treated as big data. Therefore, proper techniques for data reduction have been
proposed in some approaches [14,15]. However, in most publications, the main impact of
filtering has been on data cleaning, and the algorithms have been focused on data quality.
Data cleaning mostly refers to outlier removal in the case of MBES-related research, and
the criterion for defining outliers can be different in various approaches. Ref. [12] stated
that “an outlier is any point z exceeding a given tolerance (not necessarily constant) from
the true ocean bottom at the same location that z is measured, otherwise z is said to be
valid”. A wider definition was given 20 years later in [5], where outliers were defined
as “an unordinary value, an unusual measure, an exception”. This shows an evolution
in the proposed approaches in the scientific community for MBES data cleaning, from
relatively simple point depth analysis to advanced algorithms based on statistical, spatial,
temporal, or surface analysis. In general, ref. [5] categorized data-cleaning approaches
based on outliers into two categories: data-oriented and surface-oriented approaches.
In the first group, the focus is on the manipulation of the data themselves and finding
patterns which can be used to find outliers. These are in most cases statistically driven;
however, other approaches, such as distance-based, density-based, and clustering-based
approaches, can also be used. The second group relies on a surface model to which the
soundings are compared for potential removal. Most publications include methods from
one of these groups.

Data-oriented approaches are represented in many applications; for example, ref. [12]
proposes outlier removal based on various statistics, such as minimum and maximum
values, as well as covariance filters. Additionally, a screening filter and local matrix
validation were proposed. The need for filtration was underlined, especially for shallow
waters. In [13], as another example of a median filter approach, which is a modification
of typical image filtering, it was proven that it can be useful in reducing random noise
while preserving edges in an image. An interesting and popular approach to data-oriented
cleaning is the CUBE algorithm, proposed in [16]. It has been implemented in several
hydrographic software applications. The method attributes each sounding with an estimate
of vertical and horizontal error and then uses a model of information propagation to transfer
information about the depth from each sounding to its local neighborhood. A relatively
new alternative is the Rolling Circle Transform algorithm proposed by [17], which takes
into account the statistical characteristics of the bathymetric data in Ping and analyzes the
concave and convex properties of multibeam bathymetric data.
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The most popular surface-oriented algorithms are those provided in [18,19]. In [18], an
approximation of bathymetry surface is searched that best explains the observed sonar data
given statistical models for acoustic noise, backscatter, spatial correlation of the seafloor and
prior models for seafloor shape. A search procedure recursively locates the most probable
surface by maximizing a surface-scoring function that quantifies these factors. In [19],
using a triangulated map of soundings and noise and then a coarse-to-fine algorithm,
outliers were detected. Thus, the continuous approximating surface was iteratively refined.
In [20], an interesting filter was proposed based on geostatistical relationships, instead of
only statistical relationships. Three algorithms were proposed: two analyzing the local
distribution of depths and one looking globally at Kriging cross-validation. The thin-plate
spline proposal was given in [21] and will be further elaborated in this research. A complex
method for data cleaning was also proposed in [11] that combines filtering of the optimal
reference curved surface and the trend surface.

The authors of [5] emphasized that even for methods that have been largely accepted
by the hydrographic community, it appears that none of the techniques are better than the
others, though they may be better adapted to their own native conditions of use. All of
these algorithms were validated in their papers. Usually, however, one paper provides an
analysis of one method for a particular dataset, focusing on its own approach. Sometimes,
a comparison with other selected methods is mad. The noticeable gap in these references,
mentioned also in [5], is that comparative analyses are limited, partly as a result of a lack of
synthetic and real data benchmarks.

The evaluation of data filtering quality is also an interesting scientific problem. As
reviewed in [5], the basic validation techniques are visual inspection of DBMs, comparison
of soundings after filtration with manual expert processing (usually based on statistics), and
comparison with a reference survey, usually made with more accurate devices providing
a kind of ground truth. For example, in [11], statistics for points comparing raw and
manually filtered data were given. In [12], depth values for points were assessed by experts
as being good, bad, or unknown. In [13], a comparison of surfaces filtered manually
and automatically was made. In [20], the rate of detection and the rate of extraction
were calculated. In [16], visual inspection followed by point-wise differences in depth
was proposed. A similar approach was proposed in [17] but was supported with RMSE
calculations. Statistical comparisons with a reference surface were also used in [22]. It
can be noted, therefore, that evaluation basically relies on comparison with manually
filtered data, and usually one kind of evaluation is given in a paper. It is not clear what the
advantages and disadvantages of these particular approaches may be in given use-cases.

With these gaps in mind, the aim of the study was to analyze bathymetric data fil-
tration quality for various filter parameters in order to automatically remove spikes in
difficult areas as accurately as possible. We had two goals in conducting this research. First,
we provide a comparative analysis of various filtering methods as parts of different pro-
cessing groups—two surface-oriented and one data-oriented—on one benchmark surface.
We chose to perform the research on data for a difficult and diverse harbor area which
would be a challenge for filtering methods. Then, we evaluated them in an advanced man-
ner, utilizing four different approaches to data evaluation. Alongside the traditionally used
methods, one method based on cross-sections was proposed. Thus, a complex approach to
evaluating data filtering has been proposed. We first assessed the filtering quality of the
analyzed methods, aiming to find correlations and relationships between the evaluation
and filtering methods to achieve an evaluation method assessment. QPS Qimera 2.4.4
software was used as a research tool for the implementation of the analysis.

The rest of the paper is organized as follows: in Section 2, the scope of filtration is
briefly given, then the methods selected for the research are described and the methodology
of the quality assessment is presented, followed by the research methodology. In Section 3,
the results of the research are given, including tables, figures, and the assessment itself,
with the proposed evaluation methods. Section 4 covers a discussion of the results, and the
conclusions are drawn in Section 5.
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2. Materials and Methods

In this section, we focus on three selected filtration methods and four selected assess-
ment methods. The overall research methodology is given in Section 2.4.

2.1. The Scope of Multibeam Bathymetric Data Filtration

Bathymetric data are among the most commonly collected hydrographic data. Accord-
ing to the formal definition of the International Association of Oil & Gas Producers (OGP),
bathymetric data represent the distance measured perpendicular to a reference surface [23].

The operation of a multibeam echosounder is based on the generation of multiple
hydroacoustic beams, creating a “swath” on the surface of the bottom. The size of the
“swath” can be equal to 2 to 12 times the water depth. The advantages of using a multibeam
echosounder include the abovementioned possibility of 100% data coverage of the bottom
as well as the relatively short amount of time required for surveying, which significantly
improves the ability to survey large areas of the seabed in a relatively short period of time.
When using a multibeam echosounder in hydrographic surveys, it is also necessary to keep
in mind the factors affecting the total depth measurement error, which include the speed of
sound in the water, which depends on the temperature, depth, and salinity of the water
area; the time of measurement; the slope of the bottom; the movement of the vessel; tides;
and the depth of the draft of the echosounder transducer.

Taking all these factors into account, it is crucial that each collected bathymetric
datapoint is submitted to a postprocessing stage, meaning that additional correction and
filtration of data is performed after the acquisition of the raw data. Postprocessing of
bathymetric data is usually implemented in the following steps:

• STEP 1: The correction of survey data by basic elements affecting their accuracy. These
elements include water levels in the surveyed area (especially for rivers and tidal
areas) and the draft of the sonar transducer on the date of measurement. During the
implementation of the first step of bathymetric data postprocessing, it is also necessary
to take into account the alignment of the data to the measured profile of the speed
of sound in the water, the offsets of the other measuring devices entered, and the
correction of the positioning of the vessel.

• STEP 2: The hydrographer performs the filtration using filters designed for data
postprocessing. These include filtration methods that work by removing incorrect
depth indications; for example, Surface Spline filtration, Reject Outliers 1D, and Reject
Outliers 3D. While selecting the filters each time, it should be kept in mind that they
must be selected individually for the surveyed area with reference to the measurement
conditions and the expected results.

• STEP 3: An experienced hydrographic surveyor reviews the data and validates the
results [24].

It should be highlighted that the essence of bathymetric data filtration is the elimi-
nation of false data, which have been classified as measurement errors obtained for the
bottom surface. Bathymetric data from multibeam echosounders especially require the
application of filtration due to the number of incorrect data created by interference in the
hydroacoustic channel.

Current software for collecting and processing bathymetric data offers a wide range
of semi-automatic filters which are based on built-in algorithms, with the possibility of
manual choice of parameters. The procedure for filtering bathymetric data from survey
data with incorrectly recorded depths, which are not sufficient to ensure the safety of
navigation, makes it possible to obtain data that reliably reflect the seabed of the surveyed
area. Although numerous filters are implemented in software, it should be noted that the
experience of the hydrographer is still crucial for proper data handling, especially as, until
now, few deep-learning AI approaches to MBES data cleaning have been published [5].
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2.2. Selected Filtration Methods

Filtration of bathymetric data can be conducted using several software applications
which implement filtering algorithms. The most commonly used filtering methods allow
the following:

• Acceptance or rejection of additional depth points in a selected area, which include
those points that the echosounder has recorded below and above the number provided
by the bottom-detection algorithms;

• Acceptance or rejection of the user’s depth points in the selected area, which include
those points generated by the user in the water-column view;

• Rejection of depth points using a triangulated irregular network (TIN), leaving only
the points that are necessary to determine the shape of the bottom surface;

• Rejection of depth points that are below and above the set depth;
• Rejection of depth points that are located further away than a specified vertical distance

from the average depth of the regular rectangular DBM (usually called GRID);
• Rejection of depth points for which the hydroacoustic beam is outside the angular

range set by the user;
• Rejection of all depth points with an intensity outside the specified range.

2.2.1. Reject Outliers

One of the simplest, yet most popular and in many cases effective, approaches is
just to remove the points which are too far from the generally understood surface. In the
software used in this study (QPS Qimera), the implementation of this method is called
Reject Outliers (1D), and it basically works by rejecting, based on a user-specified threshold,
those depth points that are further from the average depth in the GRID mesh. This was the
first filtration method used in this research. The following parameters were available for
this method of filtration:

• Vertical Threshold: All soundings greater than the parameter are rejected;
• Grid Resolution: Based on the parameters, the grid is created on-the-fly;
• Minimum Points Per Grid Cell;
• Dynamically Update Grid-Cell Depths: After rejecting the most extreme soundings,

the cell’s mean depth is updated.

With this in mind and based on the systematic approach given in [5], this is an example
of a data-oriented approach. This particular implementation integrates a statistically based
approach with density-based evaluation in its algorithm. Nevertheless, this method is
representative of the data-oriented concept of data filtration used in our research.

2.2.2. Decimate to TIN Vertices

The second method used in our research is called Decimate to TIN Vertices, and it is
an example of a surface-oriented approach in which an algorithm removes points which
do not follow the expected pattern. This filter removes depth points using an irregular
triangle network, leaving as many points as necessary to build the surface. In the first step,
a TIN model is created and is then subdivided by inserting outlier depth points from the
surface. This process is repeated until there are no depth points that are farther than the set
tolerance value of the TIN network. In the second stage, all depth points that do not form
a TIN model are rejected. Thus, the method is similar to the popular approach proposed
in [17]. The following parameters are available for this method of filtration:

• Absolute Tolerance;
• Tolerance as % of Depth: To disable the relative tolerance, the user should set this

parameter to zero;
• Maximum Link Distance: The impact on the density of the TIN.

In our research, this method represents a surface-oriented method based on local
analysis of the neighborhood.
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2.2.3. Thin-Plate Spline

The last method examined in this research is based on the thin-plate spline algorithm.
The basic idea of it is to try to fit the created surface to the data provided by the multibeam
echosounder and then remove those depth points that are located too far from it. Thin-plate
spline is a basis function for representing coordinate transformations. It is also the 2D
generalization of the cubic version of spline. The drawbacks of this algorithm include that
its implementation requires the inversion of a large, dense matrix of size p × p, where p is
the number of points in the dataset. There are a few methods that have been developed
to solve this problem with connections to related approaches in the area of Gaussian RBF
networks. An elaboration on this issue can be found in [21]. The basic principle of the
thin-plate spline method is based on the equations listed below, in which the height value
is calculated:

z(x,y) = −U(r) = −r2log r2 (1)

where r is the distance
√

x2 + y2 from the Cartesian origin. The maximum value of the
surface is achieved along a circle of radius 1.

∆2U =

(
∂2

∂x2 +
∂2

∂y2

)2

U ∝ δ(0,0) (2)

This basis function is the natural generalization to two dimensions of the function |x|3

that underlies the familiar one-dimensional cubic spline [25]. This method is an example of
global surface-oriented filtering.

In the practical approach of spline methods, data filtration is implemented in two steps:

• STEP 1: At this step of data filtering, it is important to identify large errors (spikes)
because the generated surface will be deformed if large deviations exist. The above-
mentioned elements have to be removed to obtain a spline that will represent the
actual bottom surface. A surface spline is considered matched if the mean square value
of all differences between the surface and the real points is less than a fixed threshold,
which is the first parameter of the filter and is expressed as a certain percentage of the
depth. This value is often called the deviation in practical implementations (e.g., in
QPS software). The threshold is the first parameter of the filter and is expressed as a
percentage of the depth.

If the deviation is higher than the set threshold, then the following elements of the
dataset are removed during surface calculation:

# The point with the maximum depth;
# The point with the minimum depth;
# The point with the largest positive difference from the surface;
# The point with the largest negative difference from the surface.

Then, the surface area is recalculated. If the deviation is below the threshold, the
surface is defined as matched. Otherwise, the process of removing the abovementioned
points is repeated. This process is repeated until the deviation target is reached or more
than half of the raw data points have been discarded. If a matched surface is available, all
points that have a greater difference than the set point are filtered out. This parameter is
the SD coefficient of the first step.

• STEP 2: In this step, all remaining points are used to create a new spline surface. The
second step is used to clear all multibeam echosounder indications that are located
further than the calculated distance from the new spline surface. The parameter used
in this case was the SD coefficient of the second step.
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In this research, we investigated one of the practical implementations of the thin-plate
spline algorithm, which is called QPS Surface Spline in the QPS software used. The type of
spline was chosen from a list of presets, which are related to the IHO S-44 standard. The
3D spline surface is a representation of the local topography built using approximately
50–100 soundings at a time. The surface is calculated using a weighted least squares
method with the available soundings. The criteria for spike detection depend on the
expected sounding vertical accuracy, which scales with filter strength. The following
parameters are available for this filtration method:

• Spline Type: This represents the strength of the algorithm: strong filters filter more
data than weak filters;

• ROV Depth: This is the positive downward, which is added to the sounding depth to
reference the sounding relative to the sensor;

• Reference Depth: This can be used to adjust the reduced soundings to obtain values
relative to the water level;

• Rejection Preference: This is used to specify which soundings are rejected in relation
to the computed spline depth.

2.2.4. Method Variants in the Research

The goal of the method selection for the processing was to examine various approaches
to data filtration. The preference was to choose methods implemented within one software
program to avoid any additional problems, inaccuracies, or inconsistencies related to inter-
nal preprocessing, calibration, and standardization within various software environments.
These methods were selected as representative examples.

To meet the needs of the research, variants of three selected methods were proposed.
In QPS Surface Spline, the variants were based on the recommendations of the software
developer, as presented in Table 1. These variants used different types of spline, which are
normally used for different areas.

Table 1. Use of QPS Surface Spline filtration in relation to IHO S-44.

QPS Surface Spline
Filtration Type Very Weak Spline Weak Spline Medium Spline Strong Spline Very Strong Spline

Water area category
according to IHO

S-44

Exclusive order
(depth between

0 and 10 m)

Exclusive order
(depth between

0 and 20 m)

Special order
(depth between

0 and 20 m)

Order 1
(depth between

20 and 50 m)

Order 2
(depth between

20 and 50 m)

In the Decimate to TIN Vertices method, the variants were based on various parameters,
such as absolute tolerance, tolerance given as percentage of depth, and maximum link
distance. The values taken in the variants are given in Table 2.

Table 2. Parameters of the Decimate to TIN Vertices method.

Parameter Name Variant 1 Variant 2 Variant 3

Absolute Tolerance 0.50 m 0.25 m 0.40 m

Tolerance as % of Depth 50% 0% 30%
Maximum Link Distance 0.10 m 0.50 m 0.30 m

In the Reject Outliers (1D) method, the basic parameters were vertical threshold, grid
resolution, and minimum points per grid. The variants were defined as in Table 3. In all
cases, dynamic updating of the grid cells was chosen.

This selection of variants allowed us to analyze the influence of the various methods
as well as the influence of their various parameters.
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Table 3. Parameters of Reject Outliers (1D) method.

Parameter Name Course 1 Course 2 Course 3

Variant 1

Vertical Threshold 6.00 m 2.00 m 0.50 m

Grid Resolution 8.00 m 3.00 m 1.00 m

Minimum Points Per Grid 1 1 1

Dynamically Update Grid-Cell Depths Yes Yes Yes

Variant 2

Vertical Threshold 12.00 m 5.00 m 1.50 m

Grid Resolution 10.00 m 4.00 m 2.00 m

Minimum Points Per Grid 5 5 5

Dynamically Update Grid-Cell Depths Yes Yes Yes

Variant 3

Vertical Threshold 4.00 m 3.00 m 1.00 m

Grid Resolution 6.00 m 2.00 m 0.50 m

Minimum Points Per Grid 2 2 2

Dynamically Update Grid-Cell Depths Yes Yes Yes

2.3. Methodology of Quality Assesment

The quality of bathymetric data filtering is crucial for further processing towards
digital bottom model calculation and for final products, such as electronic nautical charts
(ENCs) or bathymetric plots [26]. Perfectly filtered data should not include false detections;
however, bottom diversity should be represented with the best possible accuracy. Filtration
is a process in which a compromise in the setting of the parameters is needed. Strict
values result in the deletion of all false echoes; however, proper data representing small
bottom variations can also be deleted with such settings. Therefore, the selection of optimal
filtration parameters is usually made empirically, based on the hydrographer’s knowledge.
This kind of knowledge is not yet present in automatic filtration methods, which basically
just follow numerical algorithms. It is therefore necessary to decide how to evaluate filtered
data and how to assess the quality of bathymetric data filtering.

The most common way to achieve this is to compare data to some kind of reference
surface or data, usually based on a digital bottom model, but often also on a direct analysis
of the point cloud which has not been interpolated. In many cases, the reference is set
following manual filtration by an experienced hydrographer. In other approaches, visual
assessment by a hydrographer is a benchmark for quality assessment.

In this research, we carried out comprehensive quality assessment using four different
assessment methods. This allowed us both to assess the data and compare the evaluation
methods with each other. The methods used were as follows:

• Differential surface statistical analysis;
• Visual assessment of surface roughness and artefacts;
• Comparison with reference control points;
• Selected cross-section analysis.

A differential surface was calculated by comparing the achieved DBM with the refer-
ence surface, which was elaborated based on an expert’s manual filtration. Typical statistics
were calculated for different surfaces, including the means and standard deviations. Addi-
tionally, the number of points that were different from 0.00 m and the extent of the three
sigma boundaries were analyzed. The final step in the data analysis was to visually analyze
the selected differential surfaces and assess the amount and placement of interpolation
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errors. This allowed the analysis of global differentiation of calculated DBMs from the
reference. Thus, an assessment of filtration related to the entire surface could be made.

Visual analysis again took into account the entire surface; however, the goal was
also to identify local artefacts based on an expert’s knowledge and experience. Visual
assessment of the obtained numerical terrain model allowed preliminary conclusions to be
drawn about the bottom course in the surveyed area. According to the criteria adopted
for the analysis, it gave more or less accurate results. The basic task here was to analyze
general roughness or smoothness of the surface. Additionally, data were analyzed by
taking into account the visual aspect of the created DBM and the number and placement
of the removed data for the surface. The results of the analysis of the filtering methods in
each test field were then compiled. Those filtering methods that obtained the best results
were assigned a value of 1, and the others were assigned a value of 0. This made it possible
to determine which DBM most accurately represented reality.

The method of analysis using reference point maps consisted in the creation of maps
where Z values were generated for points with specific XY coordinates. By using the
above procedure, it was possible to compare data using the third coordinate reading. The
method shows the local similarity of models after filtration to reference data. A crucial
issue regarding the usefulness of this method is the proper selection of test control points.
These should be placed in characteristic places on the surface, such as slopes, holes, or small
objects. Using a qualitative indicator of control points as the first step, it was decided to
determine ten locations with known coordinates. Then, the depth at each of the determined
locations was read for the surfaces created using the chosen filtration methods. This
procedure was also repeated on the surface chosen as the reference. The final step was to
calculate the difference between the reference depth and the resulting depth after filtration.

Cross-sections of the area were used to accurately analyze the studied problem based
on routing the cross-section profiles through each of the created surfaces and the reference
surface and then analyzing the received data in two steps. When using this method of
data analysis, it should be noted that it allows accurate data analysis locally but tends to
show trends in desired user-decided directions. Therefore, it can be beneficial for both local
point methods and global surface methods, as it can highlight additional trends. Step one
involves visual analysis for each dataset and then the identification of the one filtering
method from each set that most closely represents the bottom. Step two consists of choosing
the criteria for comparison, such as the number of places differing from the reference surface
by a certain value. Then, it is necessary to assign a score to each criterion, using which it is
possible to select a filtration method to reflect the bottom course as precisely as possible.

All four approaches of assessment were adopted in this paper to provide a complex
comprehensive analysis and to determine the benefits of each of them.

2.4. Research Methodology

The general aim of the study was achieved by analyzing bathymetric data filtration
quality for various filter parameters. Simultaneously, various quality-assessment methods
were used. The diagram in Figure 1 shows the data flow scheme that was adopted for the
research. Finally, after finalizing the data flow, quality assessment was performed with the
use of the formerly presented indicators.

For filtration quality assessment, it was decided to formulate three research questions:

• How does the filtering parameter selection of bathymetric data affect the DTM built
on their basis?

• Do default filtration parameters recommended by software developers for a given
class of survey areas meet the requirements for the quality DTM set by the IHO-S44
standard?

• How should filtration parameters be selected for areas that it is difficult to apply
automatic data postprocessing to, e.g., along wharves or isolated elements protruding
above the bottom?
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Figure 1. Data-flow diagram.

To obtain answers to the research questions listed above, it was decided to choose
a survey area characterized by a high degree of difficulty during the postprocessing of
bathymetric data. Difficulties in postprocessing occur, for instance, in water areas that:

• Do not have a flat bottom;
• Are located next to a wharf or other hydrotechnical construction;
• Have been dredged shortly before the bathymetric surveys, resulting in more scattered

survey data;
• Have shallow depths;
• Have an irregular shoreline covered with vegetation.

The chosen data that were analyzed met most of the abovementioned criteria, i.e., they
were obtained from bathymetric measurements made near the hydrotechnical construction
of the Drab N wharf located on the West Oder River in Szczecin. The area was characterized
by an irregularly shaped bottom, and it was shallow, but not flat, with a depth mainly
between two and seven meters. The area is presented in Figure 2.

The data used for the tests were acquired using the R2Sonic 2022 MBES. Positioning
during bathymetric surveys was performed using GNSS technology with RTK (real-time
kinematic) corrections provided by Trimble VRS (Virtual Reference Station). The accu-
racy of the position was determined to be 0.03 m (horizontal) and 0.05 m (vertical). The
measurements referred to the average water level established at the Szczecin Long Bridge
water gauge, which was the closest one to the survey area. The mean reference water level
was established with long-term GNSS RTK observations. Reading of the water level was
performed online by an automatic sensor and was provided with an official online service
by the Polish Institute of Meteorology and Water Management. Based on this information,
the errors for the water level were expected to be less than 0.01 m.

Survey error is a very important aspect that affects the proper analysis of bathymetric
surveys but also putting the results of the research in proper perspective. IHO in [8] has
defined several survey orders considering accuracy. In the case of areas where under-
keel clearance is critical, a special order is recommended. It assumes that total vertical
uncertainty (TVU) at a 95% confidence level is not higher than 0.25 m + factor related
to depth, which is small in shallow areas. For example, for a depth of 4 m the allowed
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TVU is 0.252 m, and for a depth of 10 m the allowed TVU is 0.261. With this in mind,
we estimated the TVU for our hardware and the environmental configuration using the
AMUST 3.0.0 software tool produced by TU Delft. This is a software tool dedicated to the
a priori modelling of MBES survey uncertainty. The results are presented graphically in
Figure 3. The model includes the types of sensors used and other corrections (including
water-level error).

Figure 2. The survey area in Szczecin (UTM coordinates given).

Figure 3. Total vertical uncertainty for the survey in the research.
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It can be noticed that the basic measurement error has a value of 0.456 m and that
the uncertainty increases with the range from the sensor. However, bearing in mind the
dense survey profiles and thus the relatively small effective swath range in our case, this
value can be used as an accuracy indicator in further analysis. Finally, it was decided to
use two quality-assessment thresholds: 0.45 m, representing a priori TVU, and 0.252 m,
representing IHO requirements for a special-order survey.

For the postprocessing, QPS Qimera software was used, applying the variants of
filtration methods described in Section 2.2.2.

The methods were assessed using the following quality indicators:

• The difference between the area generated from the filtered data and the area generated
from the manually cleaned data, taken as reference basic statistics also related to
TVU thresholds;

• Expert visual assessment of the test fields: It was decided to create three test fields,
located in different parts of the surveyed area, so that it would be possible to test the
filtering effects of individual filtration methods in as many cases as possible. The test
fields are presented in Figure 4. The characteristics of the bottoms in the areas covered
by the test fields are as follows:

# Test field no. 1: Visible measurement errors caused by the set range of the
MBES and caused by the slope, which is an important element of the bottom;

# Test field no. 2: This area includes two important elements of the surveyed area,
i.e., a large trim (a drop-off point for vessels) and a highly visible wharf wall;

# Test field no. 3: This area is flat with spikes protruding above the bottom.

• Depth differences at control points;
• Transverse profiles (cross-sections): Tracing a line along a specific area, these allowed

comparison of the different bottom profiles and depths, although for a small area.

Figure 4. Test fields.
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The reference for the quality-indicator assessments was a digital bottom model created
based on manual filtration by an expert (an experienced A-category-certified hydrographer).

To create the digital bottom model, it was decided to use QIMERA 2.4.4 software. The
software allows users to create a surface with a GRID model, using the following methods:

• Weighted Moving Average: This is the default weighted-average algorithm;
• Shallow Biased: The smallest value in a GRID cell is used;
• Median Filtered: The average value in a GRID cell is used;
• Deep: The deepest value in the GRID cell is used.

Then, a preliminary analysis of the GRID mesh-creation methods was conducted,
which was based on a visual analysis of the surfaces created using all methods. This visual
assessment included verification of the number and distribution of spikes on the DBM and
also verification of whether the bathymetric data on the wharf had been removed. After
this preliminary analysis, it was decided to choose the “Shallow Biased” method, and a
value of 0.25 m was set as the mesh size of the GRID mesh so that as many bottom features
as possible that could be a potential threat to navigational safety could be indicated on the
generated model.

Although the main goal of the study was related to filtration quality, it was also
decided to analyze the first processing time for the different filtration methods, which is
one of the key implementation issues.

3. Results

The processing time for the analyzed filtration methods depended primarily on two
factors: the number of data and the characteristics of the computer used. In this case,
the point cloud consisted of 284,008 depth points, and the computer used was an HP Z4
workstation. Time measurements are presented in Table 4.

Table 4. Processing times for the different filtration methods.

Filtration Method Time Required for Data Processing (s)

Very Weak Spline 301
Weak Spline 320

Medium Spline 315
Strong Spline 332

Very Strong Spline 341
Decimate to TIN Vertices—variant 1 426
Decimate to TIN Vertices—variant 2 434
Decimate to TIN Vertices—variant 3 411

Reject Outliers (1D)—variant 1 454
Reject Outliers (1D)—variant 2 421
Reject Outliers (1D)—variant 3 411

Processing times varied from 5 to nearly 8 min, which are both relatively short periods
for off-line processing. However, it should be noted that spline methods are noticeably
faster than the others.

3.1. Differential Surface Analysis

Four quality indicators were used to analyze the data, as presented in the research
methodology. For the first, eleven differential surfaces were calculated—one for each
variant—and the basic statistics were computed. These are presented in Table 5. The total
number of depth points in the reference surface was 282,151, and the depths are represented
with negative values in the table. It can be noticed that the lowest values in some cases are
about 14 m, which is unlikely for the study area. These values are examples of so called
“spikes”, which were not automatically filtered by the data-cleaning method.
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Table 5. Basic statistics of the differential surfaces.

Name Highest
Value (m)

Lowest
Value (m)

Average
Value (m)

Number of Points
above 0.00 m

Number of Points
below 0.00 m

Standard Deviation
(3 Sigma Interval) (m)

Very Weak Spline 4.08 −13.82 0.000 1661 4874
0.150

(range from
−0.150 to 0.150)

Weak Spline 4.08 −13.82 −0.001 1529 8724
0.150

(range from
−0.151 to 0.149)

Medium Spline 4.08 −14.24 0.000 1794 6663
0.180

(range from
−0.180 to 0.180)

Strong Spline 3.93 −14.24 −0.001 1662 12,608
0.180

(range from
−0.181 to 0.179)

Very Strong Spline 3.96 −14.24 −0001 1807 12,176
0.210

(range from
−0.211 to 0.209)

Decimate to TIN
Vertices—variant 1 4.46 −14.24 0.003 245 4172

0.270
(range from

−0.267 to 0.273)

Decimate to TIN
Vertices—variant 2 4.46 −14.24 −0.008 1549 61,632

0.360
(range from

−0.368 to 0.352)

Decimate to TIN
Vertices—variant 3 4.46 −14.24 −0.008 1552 83,019

0.300
(range from

−0.308 to 0.292)

Reject Outliers
(1D)—variant 1 2.96 −0.91 0.001 2089 493

0.120
(range from

−0.119 to 0.121)

Reject Outliers
(1D)—variant 2 3.78 −0.10 0.002 2235 497

0.150
(range from

−0.148 to 0.152)

Reject Outliers
(1D)—variant 3 2.96 −0.10 0.002 2237 501

0.150
(range from

−0.148 to 0.152)

Table 5 includes even the smallest deviations from the reference surface; however,
it should be noted that in practice mean errors of 20 cm or more are not uncommon for
bathymetric surveys. Therefore, for deeper understanding of the filtration quality and
to put the results in appropriate perspective, additional indicators were proposed, as
described in the research methodology. In Table 6, the values calculated for a threshold
related to the estimated TVU (called the TVU threshold) and for a threshold related to
the IHO Special Order (called the IHO SO threshold) are presented. The thresholds were
applied to the different surfaces.

The results presented in Tables 5 and 6 show that the selected methods performed
generally well and that the number of points exceeding the thresholds was not significant
in most cases. However, differences in quality between the methods and their variants can
be observed. Based on these results, the Decimate to TIN Vertices method was excluded
from further analyses. The criterion was the 3-sigma rule, and the chosen thresholds were
0.120 m to 0.150 m. Next, among the other filtering methods, three were singled out that
had the smallest number of points that differed from 0.00 m and the smallest number
of points exceeding the TVU threshold. These included Weak Spline and Reject Outliers
(1D)—variants 1 and 2. The latter method performed significantly better than the others,
taking into account the lowest and highest values for differential surfaces.



Sensors 2023, 23, 5076 15 of 23

Table 6. Statistics for TVU and IHO SO thresholds.

Filtration Method
Number of

Depth Points
after Filtration

Number of Depth
Points above

TVU Threshold

Number of Depth
Points above IHO

SO Threshold

Difference
in Number
of Points

% of Depth
Points above

TVU Threshold

% of Depth Points
above IHO

SO Threshold

Very Weak Spline 282,510 3217 115 359 1.14 0.04
Weak Spline 282,470 4768 101 319 1.69 0.04

Medium Spline 282,476 4033 180 325 1.43 0.06
Strong Spline 282,300 6484 151 149 2.30 0.05

Very Strong Spline 281,589 6555 180 562 2.33 0.06
Decimate to TIN

Vertices—variant 1 282,554 1395 391 403 0.49 0.14

Decimate to TIN
Vertices—variant 2 159,447 14,801 377 122,704 9.28 0.24

Decimate to TIN
Vertices—variant 3 221,017 17,922 200 61,134 8.11 0.09

Reject Outliers
(1D)—variant 1 282,509 1249 309 358 0.44 0.11

Reject Outliers
(1D)—variant 2 282,504 1327 388 353 0.47 0.14

Reject Outliers
(1D)—variant 3 282,546 1323 383 395 0.47 0.14

The final step in this method of verification of the filtering methods was additional
visual analysis of the selected surfaces, during which it was noted that all surfaces had
small remaining interpolation errors projecting above the bottom, while the surface created
with the Weak Spline filter also left small interpolation errors projecting below the bottom.
Visualizations of the interpolation errors for the abovementioned differential surfaces are
given in Figures 5–7.

Figure 5. The surface created by the comparison of the reference surface and the surface created by
the Weak Spline filter.
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Figure 6. The surface created by the comparison of the reference surface and the surface created by
the Reject Outliers—variant 1 filter.

Figure 7. The surface created by the comparison of the reference surface and the surface created by
the Reject Outliers—variant 2 filter.

3.2. Expert Visual Assesment of Test Fields

The second method for quality assessment was expert visual evaluation of the data for
the selected test fields. After seeing the filtering results, the following data analysis criteria
were adopted:

• Visual evaluation of the created DBM;
• Visual evaluation of the number of data deleted from the DBM;
• Visual evaluation of the distribution of data deleted from the DBM.

Below, we present selected examples of DBMs in each test field and examples of
visualization of the data removed in the sample filtering methods (Figure 8).

After analyzing the data with the analysis criteria in mind, it was decided to summarize
the results in two steps.

In the first step, the filtering results were divided individually for the test fields, and
the following findings are presented:
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• In test field no. 1, the best results were obtained using the Very Weak Spline and Weak
Spline filtering methods.

• In test field no. 2, the best results were obtained using the Reject Outliers (1D)—variant
1 filtering method.

• In test field no. 3, the best results were obtained using the Very Weak Spline and Reject
Outliers (1D)—variant 1 filtering methods.

The abovementioned results were obtained by analyzing each of the filtration methods,
from which the following was concluded:

• The Very Weak Spline and Weak Spline filtration methods were characterized by a
small number of removed data in test field no. 1, which were distributed evenly, and
the DBM correctly represented the shape of the bottom.

• Filtration by the Reject Outliers 1D method—variant 1 was characterized by a small
number of removed data in test field no. 2, which were located mainly at the wharf as
expected, and the DBM correctly represented the shape of the bottom.

• Only Very Weak Spline and Reject Outliers filtrations in test field no. 3 were character-
ized by a small number of data removed from the DBM, and the removed data were
above and below the DBM.

Figure 8. DBMs in test fields as given in QPS Qimera software. Red color is showing deleted data.
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In the second step, a joint analysis of the best methods for the test fields was performed.
Taking all the test fields into account, it was found that Very Weak Spline and Reject
Outliers (1D)—variant 1 were the best filtration methods according to the test-field visual
assessment method.

3.3. Assessment Based on Control Points

The next method used to determine quality was based on the control points of a
specified longitude and latitude. The depth values of these points were compared. The
control points were selected to represent various parts of the survey area: close to the berth,
in the shallow water with a large gradient, and in the deeper and flatter part. The spatial
distribution of the control points is presented in Figure 9.

Figure 9. Placement of control points.

Table 7 shows the depth differences between the reference surface and the surface
after filtration at all control points.

According to Table 7, the differences in control points were generally small, suggesting
that all the methods performed well in this assessment. However, this depends very
much on the selection of control points, which should be located in the areas of major
interest for the user. Point 14 is an interesting example here, showing that it was possible
to find points for which all methods performed poorly. Taking into account the TVU
calculations, it can be assumed that such points can be located in the areas which were
not double-covered, at the end of swaths. Points 11 and 12 show, on the other hand, that
there might be significant differences between the methods themselves. All of these local
characteristics have to be considered in the discussion. In the situation analyzed here,
the results obtained clearly indicated that the Decimate to TIN Vertices—variant 2 and
Decimate to TIN Vertices—variant 3 filtering methods were not able to interpolate values
at the points of interest. Reject Outliers showed the best results for most points. Further
findings are given in Section 4.
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Table 7. Differences between the reference depth and depth after filtration.

Filtration Method

Surface Spline Decimate to TIN Vertices Reject Outliers (1D)

Very Weak Weak Medium Strong Very Strong Var. 1 Var. 2 Var. 3 Var. 1 Var. 2 Var. 3

No. Difference between Reference Depth and Depth after Filtration (m)

1 0 0 0 0 0 0 No data No data 0 0 0
2 0 0 0 0 0 0 0.01 0 0 0 0
3 0 0 0.01 0.02 0 0 No data 0.02 0 0 0
4 0 0 0.01 0 0 0 No data 0.03 0 0 0
5 0 0 0 0 0 0 0.01 0 0 0 0
6 0 0 0 0 0 0 0.01 0 0 0 0
7 0 0 0 0 0 0 0.03 −0.01 0 0 −0.01
8 0 0 0 0 0 0 No data No data 0 0 0
9 0 0 0 0 0 0 0 0.02 0 0 0
10 0 0 0 0 0 0 No data No data 0 0 0
11 −0.10 −0.10 −0.11 −0.10 −0.08 0 −0.07 −0.11 0 0 0
12 −0.13 −0.11 0 0 0 0 No data No data 0 0 0
13 0 0 0 0 0 0 No data No data 0 0 0
14 0.38 0.38 0.52 0.52 0.52 0.52 0.61 0.51 0.48 0.52 0.52

3.4. Assessment Based on Cross-Sections

The last method used for quality assessment was data analysis using cross-sections.
Example cross-sections are presented in Figure 10. Only part of transverse profile no. 4. is
presented to allow the observation of differences; for the entire profile, the scale was too
small to visualize them.

We decided to analyze the data in two steps:
STEP 1: Preliminary visual analysis of the cross-sections in each dataset, followed by

selection of one filtering method from each set that most accurately represented the bottom.
STEP 2: A precise numerical analysis of the data, which involved comparing the data

selected in step one with the reference data.
Thus, the criteria adopted for comparison were as follows:

• Criterion 1: Visual analysis;
• Criterion 2: The number of places differing from the reference surface by more than

20 cm in each cross-section;
• Criterion 3: The number of places differing from the reference surface by more than

5 cm in each cross-section.

Figure 10. The example cross-sections—part of transverse profile no. 4.
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The results obtained for the cross-sections identified the Reject Outliers (1D) filtering
method—variant 1 as the method that produced the DBM most accurately representing
reality. The cross-section method requires proper selection of the profiles to be analyzed
and in many cases is sensitive to local disturbances. However, a profile can show the
performance of a method for various depths and bottom shapes.

4. Discussion

The first part of the research showed that the selection of the filtration method and its
parameters can have a significant impact on the process’s quality. However, in most cases,
good results were obtained. In fact, only the Decimate to TIN Vertices filter performed
poorly in some variants. Consideration of the general performance of the methods can
allow the selection of the best one in the described quality-assessment stages. A summary
is shown in Table 8.

Table 8. Best methods according to various assessment methodologies.

Method of Quality Assastment

Differential surface
statistical analysis

Visual assessment for surface
roughness and artefacts

Comparison with
reference control points

Selected
cross-section analysis
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lt
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e
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st
re

su
lt

s Reject Outliers
(1D)—variant 1 Reject

Outliers (1D)—variant 2

Very Weak SplineReject
Outliers (1D)—variant 1

Decimate to TIN—variant 1
Reject Outliers (1D)—variant 1
Reject Outliers (1D)—variant 2

Reject Outliers
(1D)—variant 1

As can be seen in Table 8, the Reject Outliers (1D)—variant 1 method was one of the best
methods in all of the quality assessments. Thus, the conclusion can be formulated that this
should be the first choice for filtration. However, in many cases the differences were small,
and the specificity of the method and the area should also be considered in the selection. On
the other hand, the Reject Outliers methods are also the most time-consuming methods.

Through the analysis carried out in this research, we also reached the following more
detailed conclusions:

• The Decimate to TIN Vertices method is more sensitive to parameter changes than
the others—the differences between variants were the biggest compared with the
other methods.

• In the case of the spline method, the stronger the spline, the bigger were the errors observed.
• Regarding selecting the spline filtering method, built into the QPS software are recom-

mendations of the software manufacturer for a given class of water bodies according
to the IHO-S44 standard. These are correct and should be followed, as confirmed in
this research. The use of a filter that is too strong gives the opposite of the expected
effect, i.e., it does not remove more data but highlights the measurement errors created
during the bathymetric survey.

• The Rejects Outliers method in its variants shows similar results, which can be compa-
rable with Weak and Very Weak Spline.

• The Reject Outliers method showed the best performance when analyzing quantitative
indicators, while in visual assessments the spline methods performed better in some
cases (e.g., test field no. 1).

During this research, an assessment of the evaluation methods themselves was also
performed. The differential surface statistical analysis method presented a global estimation
of data-cleaning efficiency, providing values for the entire surface. This may lead to
generalization of the results, but it gives a relatively simple one-value assessment. We
decided to support this method with a visual assessment of differential surfaces, focused
on the distribution and trends of the interpolation errors, which added new knowledge to
the assessment.
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Visual analysis of the predicted surfaces was solely used as a second assessment
method. Expert assessment of the roughness and usefulness of a surface was directly
possible here. This method “naturally” supports global surface-oriented approaches, which
tend to smooth surfaces globally.

The control points method, on the other hand, provided information about local errors
in selected spots. This selection is crucial for the results, which can be a disadvantage
if wrong points are selected. However, it can also be an advantage, as the method is
very flexible and can easily be adjusted to user needs. The user can indicate the places
or areas at which the prediction is the most important and evaluate the method locally,
instead of resorting to or supplementarily employing global assessment methods. Given
the above summary, it should be noted that the conclusions about this method should
not be generalized, and it is recommended that other methods be used as well in global
assessments. This can be recognized from cases in which the number of points did not
deviate from the pattern and places for which where there were no data. This may indicate
that, compared to the number of points of which the created DBM consisted, the selection
of fourteen control points was too low, such that it was not possible to reliably assess the
impact of the adopted filtering parameters on the DBM in a global sense with this number of
data. However, the differences between the reference surface and the surface after filtration
were zero or a few millimeters in most cases, meaning that each of the adopted filtration
methods met the set requirements locally, i.e., they are suitable to replace manual filtration.

The final method we proposed for the evaluation was cross-section analysis, including a
combination of visual assessment with statistical values. The method is local; however, it
tends to present the trends in data and filtration accuracy in selected directions. In many
applications, such as river soundings and large gradients, such an analysis can be very
useful. This can also provide information about the degradation of information along the
beams in swaths.

It was also noted during the analysis of the assessment methods that both of the
methods relying on selected areas, namely, expert visual assessment for test fields and cross-
sections, allowed unambiguous analysis of the area, while the control points method focused
on the local aspect. Each of these methods can support general statistical evaluation with
additional knowledge; however, for global-aspect assessment, it is recommended to use
test fields or cross-sections, while, for local verification, properly selected control points
would be better.

Finally, based on our research, there were small trends that global assessment methods
favored slightly with surface-oriented filtering, while locally focused methods tended to
ally with data-oriented methods. This is an indication of trends, and future research with
more methods should be performed to confirm this hypothesis.

5. Conclusions

Filtration of bathymetric data is an integral component of hydrographic data postpro-
cessing. Unquestionably, its automation can significantly reduce the time required to obtain
cleaned data that can be used to ensure the safety of navigation. Nowadays, hydrographic
software developers offer a wide range of types of automatic filtration. However, each
water area requires an individual approach when choosing the type of automatic filtration.
This should be chosen in relation to the category of water area according to the IHO S-44
standard. Software developers often provide recommendations for methods implemented
in their software. However, to achieve the best results in automatic data filtration, it is neces-
sary to adjust the type and parameters of filtration in reference to the studied water area. In
special cases, it is also recommended to use a sequence of filters. Therefore, it is important
to understand the concepts behind these methods and the quality-assessment possibilities.

This paper aimed to carry out a quality assessment of selected MBES data filtration
methods and an evaluation of the quality-assessment process itself as applied to a specific,
difficult-to-survey harbor area. Three different filtration methods were chosen and four
quality-evaluation indicators were proposed, and performances were analyzed based on
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real bathymetric data. The research showed that the filtration results depended on the
applied methodology. Some of the methods support more local reduction in outliers, while
others are more globally oriented. In the case of our research, the best results were achieved
with the Reject Outliers (1D)—variant 1 (medium threshold and medium resolution) and
Very Weak Spline methods, one being data-oriented, while the other is surface-oriented.

The findings regarding the evaluation also showed that quality assessment can indicate
other aspects of filtration and that various evaluation methods should be used for different
purposes. There were no major differences regarding the conclusions of the assessments
performed with the various methods; however, some preferences have been noted. The
results showed a slight correlation between filtration and evaluation methods. Surface-
oriented methods tend to be better in global assessment procedures. This finding, however,
is preliminary, as one testing surface is insufficient for the generalization of the findings,
and they should be confirmed in further research. However, the present research showed
this trend for the specific area studied.
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