
Citation: Zhuang, Y.; Huang, Y.; Liu,

W. Integrating Sensor Ontologies

with Niching Multi-Objective Particle

Swarm Optimization Algorithm.

Sensors 2023, 23, 5069. https://

doi.org/10.3390/s23115069

Academic Editors: Shaoen Wu,

Periklis Chatzimisios, Jinbo Xiong

and Mahmoud Daneshmand

Received: 19 April 2023

Revised: 22 May 2023

Accepted: 22 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Integrating Sensor Ontologies with Niching Multi-Objective
Particle Swarm Optimization Algorithm
Yucheng Zhuang 1 , Yikun Huang 2,* and Wenyu Liu 3

1 Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology,
No. 69 Xuefu South Road, Minhou, Fuzhou 350118, China; zhuangyucheng2021@163.com

2 Concord University College, Fujian Normal University, No. 68 Xuefu South Road, Minhou,
Fuzhou 350117, China

3 School of Computer Science and Mathematics, Fujian University of Technology, No. 69 Xuefu South Road,
Minhou, Fuzhou 350118, China; wenyuliu1983@hotmail.com

* Correspondence: fjnuhyk@163.com; Tel.: +86-18060616655

Abstract: Sensor ontology provides a standardized semantic representation for information sharing
between sensor devices. However, due to the varied descriptions of sensor devices at the semantic
level by designers in different fields, data exchange between sensor devices is hindered. Sensor
ontology matching achieves data integration and sharing between sensors by establishing semantic
relationships between sensor devices. Therefore, a niching multi-objective particle swarm optimiza-
tion algorithm (NMOPSO) is proposed to effectively solve the sensor ontology matching problem.
As the sensor ontology meta-matching problem is essentially a multi-modal optimization problem
(MMOP), a niching strategy is introduced into MOPSO to enable the algorithm to find more global
optimal solutions that meet the needs of different decision makers. In addition, a diversity-enhancing
strategy and an opposition-based learning (OBL) strategy are introduced into the evolution process
of NMOPSO to improve the quality of sensor ontology matching and ensure the solutions converge
to the real Pareto fronts (PFs). The experimental results demonstrate the effectiveness of NMOPSO
in comparison to MOPSO-based matching techniques and participants of the Ontology Alignment
Evaluation Initiative (OAEI).

Keywords: sensor ontology matching; multi-modal optimization; niching multi-objective particle
swarm optimization algorithm; Ontology Alignment Evaluation Initiative

1. Introduction

Sensors have been widely applied in various fields such as environmental protection
and remote sensing technology to meet the needs of information sharing and transmis-
sion [1,2]. Sensor web (SW) is a distributed network composed of many sensor nodes
that collect massive amounts of data from various applications [3]. However, inconsistent
semantic information among sensor data in different applications may hinder commu-
nication among sensors. To achieve semantic information sharing, it is necessary to use
Semantic Sensor Web (SSW). Sensor ontology is the core of SW and enables sensor semantic
information sharing and data interoperability [4]. However, heterogeneous problems can
arise from different ways of describing sensor data in different applications [5]. Sensor
matching technology establishes semantic relationships between heterogeneous ontologies
to achieve information sharing in SW.

Similarity measures are the core of sensor ontology matching technology used to
evaluate the degree of similarity between entities of sensor ontologies. Ontology meta-
matching technology is a hot research direction for ontology matching, with a focus on
choosing appropriate similarity measures, assigning appropriate weights and threshold
values to the generated similarity matrix, and achieving the final matching result [6]. In
addition, the selection process of weight needs to trade off the two measures of matching
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results, namely, recall and precision. In the process of ontology matching, how to filter
the unreal result through the appropriate threshold is the main key. Since the selection of
weight and threshold affects the ontology matching results, it is usually modeled as an
optimization problem.

PSO is a classical meta-heuristic swarm intelligence algorithm proposed by Eberhart
and Kennedy [7]. PSO is suitable for solving various optimization problems due to its
fast convergence speed and strong robustness. According to the characteristics of the
ontology meta-matching problem, PSO can successfully solve it. First, PSO is able to
adjust the optimization objective to satisfy the needs of decision makers. Second, PSO
can handle large-scale problems, such as large-scale ontology matching. In addition, PSO
has fast convergence speed that reduces the time cost and improves the efficiency of
ontology matching. Although PSO can effectively solve the ontology matching problem,
it only optimizes one of the matching evaluation metrics, namely, recall or precision.
The matching quality metrics—recall and precision—are two conflicting objectives to
evaluate the matching results. To achieve better matching quality, both metrics should be
optimized simultaneously. Therefore, this paper utilizes multi-objective particle swarm
optimization (MOPSO) to improve the quality of ontology alignment, inspired by its success
in solving the ontology meta-matching problem. In recent years, because of its effectiveness
in practical applications, the multi-objective particle swarm optimization algorithm has
attracted the attention of scholars. Liu et al. [8] proposed a multi-objective particle swarm
optimization algorithm based on network embedding for complex network community
detection, combining a network embedding method with a multi-objective particle swarm
optimization algorithm to find a better optimal solution. In addition, multi-objective
particle swarm optimization with fuzzy cost has demonstrated its effectiveness in feature
selection [9]. By incorporating a fuzzy cost function and multi-objective particle swarm
optimization, this algorithm can effectively address the challenges of noise and uncertainty
in feature selection while improving population diversity. However, traditional MOPSO
has three basic shortcomings when it comes to solving ontology meta-matching problems,
leading to an inability to effectively solve them. Firstly, the same value exists in the
objective space, corresponding to multiple solutions in the decision space in the ontology
meta-matching problem. This kind of problem is essentially a multi-modal optimization
problem (MOP). The traditional MOPSO carries out information sharing among particles to
find the global optimal solutions, limiting the search direction of the algorithm, and often
can only obtain one global optimal value, which is not suitable for solving MOP. MOPSO
can find a certain solution, but in reality, the remaining optimal solution may be more
valuable to the decision makers. Secondly, classical MOPSO has two basic problems when
solving the ontology matching problem: how to make the solutions converge to the Pareto
front (PF) quickly and how to make the solutions uniformly distributed on the PF. The
local best particles and the global best particles used to guide the update of the solution
greatly compress the search space of the solutions. MOPSO has fast convergence speed and
uneven distribution, which will reduce the quality of the solution. To obtain better quality
ontology matching, it is necessary to overcome the shortcomings of MOPSO. Specifically,
how to select the leader solution and improve the population diversity are very important
for the performance of MOPSO. Finally, when facing multi-modal ontology meta-matching
problems with multiple global optimal solutions, MOPSO tends to fall into local optima
due to the limitation of particle learning when updating the position, which reduces the
alignment’s quality.

To overcome the three defects mentioned above, this paper proposes a niching multi-
objective particle swarm optimization algorithm (NMOPSO) for effectively solving the
sensor ontology meta-matching problem. The contributions of this paper are as follows:

• First, the niching strategy is introduced into MOPSO in this work to ensure the
particles can maintain their own niche while simultaneously eliminating individuals
with lower fitness values to enhance the diversity of the decision space since the
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sensor ontology meta-matching problem is a multi-modal multi-objective problem
with multiple global optimal solutions.

• Second, the diversity-enhancing strategy is employed to balance the convergence and
distribution of the algorithm when selecting the elite solutions, and random particles
are selected from the elite set as candidate solutions to solve the problem for which
MOPSO cannot guarantee the population diversity. In addition, by comparing the
two metrics of sensor ontology meta-matching results, i.e., recall and precision, this
strategy can make the solution with poor results learn from the solution with better
ones and enhance the diversity of the population to improve the matching quality.

• Finally, the opposition-based learning strategy is applied to MOPSO’s update compo-
nent to find the solutions with better fitness values, which helps to further make the
solution approach the frontier and enhance the alignment’s quality.

The paper is structured as follows: Section 2 studies the development of existing
ontology matching techniques and the definition of the sensor ontology matching problem.
Section 3 presents the implementation of NMOPSO. The experimental results and discus-
sions are presented in Section 4, and Section 5 concludes the work and identifies directions
for subsequent work.

2. Materials and Methods
2.1. Literature Review of Ontology Matching Technique

Generally, the techniques to solve the ontology matching problem fall into two main
categories, i.e., machine learning (ML)- and swarm intelligence (SI)-based ontology match-
ing techniques. The ML-based matching technique models the ontology matching problem
as a classification or regression problem. Common methods include support vector ma-
chine (SVM) [10], decision tree (DT) [11], logistic regression (LR) [12], etc. The SVM-based
matching method [10] solves the dependence of the learning-based matching method on
the instances in the ontology by non-instance learning. The DT-based matching method [11]
uses the advantages of classifiers to match instances of source and target ontologies without
the aid of external dictionaries. The LR-based matching method [12] selects five different
similarity measures and predicts the similarity of the matching by the trained regression
model. These ML-based matching techniques require training models, which often take
a long time to solve the ontology matching problem. Solving ontology matching is a
time-consuming and complex task. To overcome the time-consuming problem of training
models, SI-based ontology matching techniques have been paid attention by many scholars.

In recent years, the swarm intelligence algorithm has become a suitable method to
solve the ontology matching problem. Genetics for Ontology Alignments (GOAL) [6] is
the first matching system to solve the ontology matching problem using the evolutionary
algorithm (EA). Alexandru-lucian and Iftene [13] further used EA to optimize the parame-
ters and thresholds and filtered unconvincing results to improve alignment’s quality. Later,
Acampora et al. [14] continued to improve EA through the local search strategy to improve
the quality of matching. Xue and Wang [15] used a new metric as a fitness function and
simultaneously determined the weights required by several entities’ pairs in the matching
process to approximately measure the alignment’s result. The computational cost of these
methods is higher for storing the similarity matrices, and makes them unable to obtain
high-quality alignment. To solve this problem, Alves et al. [16] proposed a hybrid genetic
algorithm that combines EA with local search strategies to match entities and determine
optimal concept mapping. More recently, Chu et al. [17] proposed a compact evolution-
ary algorithm (CEA) and established a new model for the ontology matching problem in
vector space.

The particle swarm optimization algorithm (PSO), as a classical swarm intelligence
algorithm, is widely used in the field of ontology matching because of its advantages of fast
convergence and simple implementation. Bock and Hettenhausen [18] proposed a discrete
PSO to solve the ontology matching problem, which is a population-based method and does
not need to calculate the large similarity matrices. Yang et al. [19] used PSO to optimize
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parameter configurations in the matching process. Marjit et al. [20] introduced a local
search process into PSO to improve the efficiency of solving the ontology meta-matching
problem. Huang et al. [21] introduced a compact particle swarm optimization (cPSO)
to enhance the quality of matching results when solving the sensor ontology matching
problem. Zhu et al. [22] proposed a simulated annealing PSO for ontology matching, which
enhanced the local search capability of the algorithm.

However, these methods are based on single-objective PSO to solve the ontology
matching problem, tending to fall into local optima easily and be unable to obtain better
alignment. In order to address the impact of optimizing only a single objective on the
matching results, Semenova and Kureychik [23] applied MOPSO to solve the ontology
matching problem. Recently, Wang et al. [24] proposed a compact MOPSO to solve the
hydrological ontology matching problem based on the swarm intelligence approach of
compact technology. Meanwhile, Xue et al. [25] determined the knee solution by using
the max–min strategy and proposed a compact MOPSO to solve the biomedical ontology
matching problem. Geng and Lv [26] used the sparsity and density indices in MOPSO
to address the sensor ontology meta-matching problem, succeeding in enhancing the
alignment’s quality.

Existing experiments show that ontology meta-matching is a multi-modal problem
with multiple global optimal solutions. There is currently no ontology meta-matching
system based on the PSO model for the meta-matching problem, which is a multi-modal
problem and can reduce the efficiency of the algorithm. The overall goal of this paper is to
enhance the efficiency of the algorithm by developing an improved MOPSO to optimize
the ontology alignment’s quality and construct a multi-objective model to solve the multi-
modal multi-objective problem.

2.2. Sensor Ontology Furthermore, Ontology Alignment

The sensor ontology is defined as a 3-tuple O = (C, P, I), where C, P, and I denote ob-
jects, relations, and instances, respectively. Figure 1 illustrates a sensor ontology. Rounded
rectangles represent classes, and bidirectional arrows represent relationships that two ob-
jects have with each other, for example, “Sensor” and “ObservableProperty”, where Sensor
observes ObservableProperty, and in turn, ObservableProperty is Observed by Sensor.
A one-way arrow represents a property between two objects, for instance, the relation
between “Procedure” and “Input” means Procedure has Input.

Figure 1. An example of sensor ontology.

Since different designers may have different descriptions of sensor ontology, ontology
heterogeneity will be generated. To address the heterogeneity problem, it is necessary
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to carry out the ontology matching process and find out the relations between ontology
concepts. Figure 2 presents the process of sensor ontology alignment. Rectangles repre-
sent entities, and the symbol “≡” connecting entities with bidirectional arrows indicates
that the entities are equivalent relations. Equivalent matching entity pairs in the figure
include Actuation ≡ Actuation, Sample ≡ Sample, FeatureOfInterest ≡ FeatureOfInterest,
Observation ≡ Observation, Platform ≡ Platform, ObservableProperty ≡ ObservableProp-
erty,ActuatableProperty ≡ ObservableProperty,Procedure ≡ Procedure, Actuator ≡ Ac-
tuator, and Sensor ≡ Sensor. The set of these equivalence relations is the matching result.
Sensor ontology includes source ontology and target ontology. The matching process
requires parameters and external resources, and the corresponding similarity matrices are
generated by the appropriate similarity measures to obtain the final ontology alignment.

Figure 2. The process of sensor ontology alignment.

The matching result’s metrics precision and recall are conflicting objectives in the on-
tology meta-matching problem. When one objective increases, the other objective decreases.
The definitions are as follows:

recall =
|R⋂ A|
|R| (1)

precision =
|R⋂ A|
|A| (2)

where R and A denote the reference alignment and the ultimate alignment, respectively,
which are formulated by domain experts. If only a single objective is optimized in the
matching process, that is, only recall or precision is optimized, the perfect matching results
cannot be obtained because the two objectives conflict with each other. Therefore, it is
necessary to optimize recall and precision at the same time to improve the matching quality.
On the basis of this, the mathematical definition of the multi-objective optimization model
for sensor ontology meta-matching problem is as follows:

max f (Weight, Threshold) = (recall(Weight, Threshold), precision(Weight, Threshold))
s.t. Weight = (w1, w2, . . .)T , Threshold ∈ [0, 1]
∑N

i=1 wi = 1, wi ∈ [0, 1]
(3)

where Weight and Threshold represent the aggregating weights set and the threshold,
respectively. wi is the weight value of the ith similarity measure and N represents the
number of similarity measures.
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3. Proposed Method

To solve the problem of multi-modal multi-objective sensor ontology meta-matching
with multiple global optimal solutions, it is necessary to keep the diversity of the population
in the objective space and decision space. For this purpose, this paper proposes an improved
MOPSO based on niche and an opposition-based learning strategy, called NMOPSO. In
the proposed method, two particles were randomly selected from the elite set for pairing
competition through the diversity-enhancing strategy to ensure the diversity in the objective
space. The particle with the better fitness value is selected as the winner particle to guide the
particle with the worse fitness value to update and obtain better ontology meta-matching
results. Since the sensor ontology meta-matching problem is a multi-modal problem,
the niche elimination strategy is used in the updating process. By comparing the fitness
between particles and setting the penalty coefficient for particles with poor fitness value, the
particles with better fitness can be preserved in the evolutionary process to better maintain
the diversity of the population in the decision space. Moreover, to further approximate
the optimal solutions, the opposition-based learning strategy is introduced to update the
particles in the evolution process to improve the quality of sensor ontology meta-matching.
The flowchart for NMOPSO is shown in Figure 3, and the components will be explained
in detail in the following subsections. The main parts of the algorithm are marked and
distinguished, and will be described in the next section.

Figure 3. The flowchart of NMOPSO.

3.1. Encoding Mechanism

In this paper, the decimal coding mechanism is used to encode particles. Because
decimal coding is easy to understand and can correspond to the threshold and weight
information of particles, it is more suitable for the sensor ontology meta-matching problem.
Algorithm 1 gives the pseudo-code of the encoding mechanism. Each particle consists of
aggregating weights and a threshold. First, n real numbers randomly in [0, 1] are generated,
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denoted as r1, r2, . . . , rn−1, rn; then, the first n− 1 cut points r′ ={r′1, r′2, . . . , r′n−1} are sorted
in ascending order. Finally, the aggregating weights are calculated as follows:

wi =


r′1, t = 1
r′i − ri−1

′, 1 < i < n
1− r′n−1, i = n

(4)

Algorithm 1 Encoding Mechanism
Input: The particle p = {r1, r2, . . . , rn−1,threshold};
Output: The encoded particle p′ = {w′1, w′2, . . . , w′n,threshold};
1: ** Encoding **
2: Generate n real numbers randomly in [0,1], denoted as r1, r2, . . . , rn−1, rn;
3: Sort the first n− 1 cut points r′ ={r′1, r′2, . . . , r′n−1} in ascending order
4: for i = 1; i < n; i ++ do
5: if i=1 then
6: wi = r′1;
7: else if i = n then
8: wi = 1−r′n−1;
9: else

10: wi = r′i − r′i−1;
11: end if
12: end for
13: return The encoded particle p′;

3.2. Diversity Enhancing Strategy

MOPSO uses an external archive to store individual and global optimal solutions
during evolution. Each particle updates its own velocity and position according to the
individual and the global optimal solutions. In addition, classic MOPSO has mediocre
performance when dealing with optimization problems with a large number of local
optimal solutions, such as the sensor ontology meta-matching problem [27]. In order
to solve the influence of individual and global optimal solutions on MOPSO, this work
uses diversity-enhancing strategy to guide particle updating to trade off the MOPSO’s
convergence and diversity, and utilizes it to solve sensor ontology meta-matching problem.

The diversity-enhancing strategy randomly selects particles from the elite set for
pairwise competition during the evolution process. The particles with better recall and
precision values are selected as the winner particles, and the particles with worse ones are
guided to update. The update formula for particles with lower fitness values is as follows:

Vl,k(t + 1) = c1Vl,k(t) + c2(Xw,k(t)− Xl,k(t)) (5)

Xl,k(t + 1) = Xl,k(t) + Vl,k(t + 1) (6)

where c1 and c2 are the weights; k stands for the Kth round of competition; i refers to the
ith particle; t denotes the generation; and Xw,k(t) and Xl,k(t) are the position variables of
particles with higher and lower fitness values, respectively. It is evident from the update
formula of the particles with lower fitness in the K-round competition that the particle
position update formula using the diversity-enhancing strategy is the same as that of classic
MOPSO. The first part of the speed update formula is consistent with the MOPSO. The
second part gets rid of the influence of individual and global particles and uses particles
with higher fitness to guide the evolution of the population.

3.3. Niching Strategy

The sensor ontology meta-matching problem is a multi-modal and multi-objective
problem with multiple objectives and multiple optimal solutions. The key to solving this
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kind of problem is to balance different optimal solutions and provide decision makers
with a set of optimal solutions that trade off multiple objectives. At present, in the field
of swarm intelligence, the niching strategy is an effective method to solve multi-modal
optimization problems.

Niching strategy was proposed by Cavicchio in 1970, and its application to the swarm
intelligence algorithm can effectively solve multi-modal optimization problems [28]. The
main idea of the niching strategy is to divide the population into several sub-populations,
and each sub-population maintains its own niche, which can be applied to the PSO algo-
rithm to maintain the diversity of the population.

In this work, the niching strategy is applied into MOPSO to solve the sensor ontology
meta-matching problem. In details, the Euclidean distance between the particles in the
population is calculated and the evaluation metrics of the ontology matching result, i.e., the
recall and precision of the two particles, are compared, and the penalty function is assigned
to individuals with poor fitness values. The mathematical definition of the distance between
particles is as follows:

dd
ij =

∥∥∥pd
i − pd

j

∥∥∥ =

√√√√ N

∑
k=1

(
pd

i − pd
j

)2
(7)

where dd
ij is the distance between particle i and particle j; d denotes the dimension of the

problem; pi and pj are ith particle and jth particle, respectively; N is the number of particles
in the niche. The mathematical definition of the penalty function is as follows:

pi( f it) = pi( f it)× punishQuo (8)

where pi( f it) is the ith particle with a lower fitness value; punishQuo is a random number
between 0 and 1. In the process of evolution, the possibility of the particles that impose
the penalty function being eliminated increases, which maintains the diversity of the
population. For the multi-modal sensor ontology meta-matching problem, each peak has a
certain number of particles to ensure the global exploration performance of the algorithm.

3.4. Opposition-Based Learning Strategy

Opposition-based learning (OBL) was first proposed by Tizhoosh in 2005 [29]. The
main idea is to generate the solutions with opposite position for the current solution
position, which is conducive to improving the self-learning ability of the individual in
the swarm intelligence algorithm and finding a solution with better fitness. It has been
shown that the opposite solution is better for approximating the optimal solution than the
randomly initialized solution [30]. OBL is often applied to the multi-objective optimization
problem to further improve the performance of proposed algorithms. Therefore, in this
paper, the opposition-based learning strategy is introduced into the particle update process
to further improve the quality of the solutions.

According to the characteristics of the sensor ontology meta-matching problem, the
OBL strategy is introduced into the update process of the MOPSO in this work. The upper
and lower bounds are defined by the dimension of the sensor ontology meta-matching
problem, and the opposite solutions generated in the updating process provide more
solutions in the objective space, which provides more solutions for solving the multi-modal
ontology meta-matching problem scheme. The opposite solution is specifically defined
as follows:

Xi(opp)d = uppd + lowd − Xd
i (9)

where d is the dimension of the problem; i is the ith particle in the population; and uppd

and lowd are the upper and lower bounds of the solution, respectively. Xd
i is the current

position of the ith particle; Xi(opp)d is the position of the ith-generated opposite solution.
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3.5. The Pseudo-Code of Niching Multi-Objective Particle Swarm Optimization Algorithm and
Complexity Analysis

The pseudo-code of NMOPSO is presented in Algorithm 2. NMOPSO first initializes
the particles and calculates the fitness value of each particle. The elite particle set L
can be obtained by calculating the crowding distance and non-dominance sorting of the
solutions. In the evolutionary process, two particles are randomly selected from the elite
set for pairwise competition, and the two objective function values of particles a and b are
compared. If the two values of particle a are greater than that of particle b, a is the winner
particle and guides the update of b. According to the formula, the Euclidean distance
between two particles is calculated, the particle with lower fitness value is penalized, and
the particle is updated. Then, the oppositive solution is generated for the particle based on
the opposition-based learning strategy, and the particle is updated.

Algorithm 2 The pseudo-code of niching multi-objective particle swarm optimization
algorithm
Input: source and target ontologies, O1 and O2; number of iterations, N; population size,

n; dimension of problem, dim; upper and lower bound, upp and low;
particle’s current position, X; particle’s current velocity, V; elite particle set, L;
Output: winner particle Pwin;
1: ** Initialization **
2: initialize generation t = 0;
3: calculate particle’s fitness value Precall and Pprecision
4: for i = 0; i < dim; i ++ do
5: V[i] = random(0, 1);
6: X[i] = random(0, 1);
7: end for
8: NonDominatedSort();
9: calculateCrowdingDistance();

10: sortFronts();
11: get elite particle set L;
12: ** Evolution **;
13: while t < N do
14: select two particles a and b randomly from the elite set L;
15: Precall and Pprecision of particle a and b are calculated, respectively;
16: [Pwin, Ploser] = compete(a, b);
17: if Precall (a) > Precall (b) and Pprecision (a) > Pprecision (b) then
18: Pwin = a;
19: else
20: Pwin = b
21: end if
22: ** Update **;
23: VPloser

′ ← update Ploser’s velocity according to the formula (5);
24: XPloser

′ ← update Ploser’s position according to the formula (6);
25: ** Niche elimination operation **;
26: calculate the Euclidean distance between two particles according to the formula (7);
27: update particle’s fitness value by penalizing particles with lower fitness values based

on the niche elimination strategy according to the formula (8);
28: ** Opposition-based learning strategy **;
29: update particles based on opposition-based learning strategy according to the for-

mula (9);
30: update particle’s fitness value Precall and Pprecision;
31: t = t +1;
32: end while
33: return Pwin;
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The proposed method uses a diversity-enhancing strategy to guide the evolution of
the population, in which the elite particles of each generation are selected by the pairs
of the particles of the current generation to guide the update of the population, so no
additional external archive is required to keep the non-dominance solutions. Provided
that the population size is n and the number of objective functions is m, NMOPSO’s time
complexity consists of two components: The first part is the population initialization,
and the time complexity is O(n). The second part is the updating strategy of particles.
This consists of non-dominance sorting, a diversity-enhancing strategy, a niche elimination
strategy, and an opposition-based learning strategy. The time complexity of non-dominance
sorting is O(m× n2). In this work, two particles are randomly selected from the elite set
for fitness comparison. The time complexity is O(2n× log(2n)), and the time complexity
of learning from the particle with a low fitness value is O(n). For the calculation of the
penalty function, the time complexity is O(n2), which is dependent on the population size.
Each particle is then updated based on an opposition-based learning strategy with a time
complexity of O(n). In summary, the time complexity of NMOPSO is O(m× n2). It can
be seen that the time complexity is mainly affected by non-dominance sorting. For most
MOPSO that need to maintain an external archive, the time complexity is O(n + n2), and
NMOPSO reduces the time complexity of its archive maintenance by learning from particles
with higher fitness values. Therefore, the time complexity of NMOPSO is acceptable.

4. Experiment
4.1. Experimental Configurations

In this work, NMOPSO’s performance is evaluated by using four pairs of real sensor
ontologies, i.e., SN, SSN, OSSN, and SOSA, along with a benchmark test dataset supplied
by OAEI. Tables 1 and 2 offer a concise overview of the sensor ontology and the benchmark
test dataset, respectively. The datasets contain reference matching results, source ontology,
and target ontology to appraise the performance of the ontology matching system.

This experiment firstly verifies the effectiveness of the proposed method. As shown in
Table 3, the numbers in brackets are recall, precision, and f-measure. This paper compares
the niche-based NMOPSO matching system with the MOPSO-based matching system, the
MOPSO-DE matching system based on the diversity-enhancing strategy, and the NMOPSO
matching system without OBL. In order to more intuitively verify the effectiveness of
the proposed method, Figure 4 shows the comparison between the proposed method
and the results of different MOPSO-based matching systems in recall, precision, and f-
measure on benchmarks. Tables 4 and 5 compare the mean and standard deviation of
NMOPSO with the MOPSO-based matching technique from recall and precision, respec-
tively. Tables 6 and 7 show the results of the t-test analysis based on Tables 4 and 5. Table 8
shows the comparison in terms of f-measure among NMOPSO with OAEI participants,
i.e., enda [31], AgrMaker [32], AROMA [33], CODI [34], Eff2Match [35], GeRMeSMB [36],
MapPSO [37], SOBOM [38], and TaxoMap [39]. The experimental results in this paper are
the mean value of the results after 30 independent runs. The metrics of the ontology match-
ing experiment results consists of recall, precision, and f-measure. Recall and precision
measure the integrity and accuracy of alignment, respectively. Furthermore, f-measure
trades off recall and precision to evaluate the final ontology alignment. Figure 5 shows the
distribution of particles in each matching system on the 301 test set. Tables 9 and 10 show
the comparison of the recall and precision of the NMOPSO and classical matching systems
on the sensor ontology dataset, respectively.

The configurations of MOPSO and NMOPSO are as follows:

• Population size: n = 100;
• Elite particle set scale: L = 10;
• Maximum number of iterations: N = 200;
• Learning factor: c1 = 2, c2 = 2;
• Upper bound of problem: upp = 1.0;
• Lower bound of problem: low = 0.0;
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• Punish quotient: punishQuo = 0.7;
• String-based Similarity Measure: N-Gram;
• Linguistic-based Similarity Measure: Wu and Palmer method;
• Structure-based Similarity Measure: Out–In degree.

The population size of all algorithms in the experiment is set to 100. In addition, the
scale of the elite particle set L in MOPSO-DE and NMOPSO will affect the convergence
and diversity of the population. Usually, a smaller L will cause the algorithm to fall
into local optima, while a larger one will reduce the algorithm’s convergence. Therefore,
this work provides a compromise setting of 10 for L. The termination condition for all
comparison algorithms is a maximum number of 200 iterations, and each testing case is
run separately 30 times. The parameter configurations in this work are derived from the
corresponding literature.

4.2. Experimental Results

As can be seen from Table 3 and Figure 4, for the testing cases 101–104, all the ontology
matching techniques find complete matching pairs and obtain high-quality matching results
due to fact that the ontologies of 101–104 have the same lexical, linguistic, and structural
features, and the conceptual information of the ontologies is completely retained. For the
testing cases 201–247, it is very difficult to find all matching pairs due to the heterogeneity
of the ontology, and the NMOPSO-based matching technique can obtain better matching
results than other MOPSO-based matching techniques. The ontologies in testing cases
301–304 have more complex heterogeneity than 201–247, but the NMOPSO-based matching
technique can achieve better matching results when solving such matching problems in
the real world. In particular, to better trade off the two matching objectives, i.e., recall
and precision, the NMOPSO-based matching system can find better solutions with better
convergence and distribution than the traditional MOPSO-based matching system due
to the diversity-enhancing strategy. In addition, since there are multiple global optimal
solutions to the ontology meta-matching problem, the traditional MOPSO-based matching
system only considers how to balance multiple objectives, while the NMOPSO-based
matching system treats the ontology meta-matching problem as a multi-modal problem
and seeks multiple global optimal solutions by introducing niching strategies to provide
more decision schemes for decision makers and obtain better ontology matching quality.
Moreover, to improve the self-learning ability of particles in particle swarm and find
solutions with better fitness, NMOPSO introduces the opposition-based learning strategy
to further improve the quality of alignments.

Tables 4 and 5 demonstrate that NMOPSO exhibits high recall and precision on the
benchmark dataset and has a low standard deviation. This suggests that NMOPSO has good
matching quality and stability. In this work, the t-test is used to compare the performance
differences between different matching systems. The steps are as follows: first, the mean
and standard deviation of 30 independent runs of different matching systems on each
testing case are calculated. Second, the t-value is then obtained by dividing the difference
between the means of the two samples by the ratio of the standard deviations. The smaller
the standard deviation is, the larger the t-value is, indicating the more significant the
difference between the two samples is. Finally, the t-value is compared with the rejection
domain to determine whether the two samples are significantly different. This paper uses
the bilateral test, and the total sample size is 30, with a significance level of 0.05; thus, the
rejection region for the t-test is |t| ≥ 2.045. When the t-value is in the rejection region,
the difference between the two systems is significant, and the null hypothesis is rejected.
Otherwise, the null hypothesis is not rejected. It can be seen from Tables 6 and 7 that the
absolute values of all the t-values are greater than 2.045, which indicates that NMOPSO has
a significant difference in recall and precision performance compared to other matching
systems and can obtain high-quality matching results. Figure 5 shows the distribution of
particles between the NMOPSO-based matching system and the MOPSO-based matching
system on the 301 test dataset. It can be seen that the population of MOPSO is randomly
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distributed in the search space, while the population generated by NMOPSO based on
the opposition-based learning strategy is able to approach the optimal solution set more
closely than MOPSO. Table 8 compares NMOPSO and OAEI participants in terms of f-
measure. NMOPSO achieves the highest f-measure in the 1XX and 3XX test cases and
has an average f-measure higher than most matching systems, equal to SOMOB. Since
SOMOB uses more than three similarity measures, the computational complexity of the
system increases and conflict between different measures may occur, which leads to a more
challenging matching process. Different from SOMOB, NMOPSO selects and combines
three similarity measures, which can achieve satisfactory matching results when solving
different heterogeneous situations.

Tables 9 and 10 demonstrate the comparison between the proposed method based
on the sensor ontology dataset and other classic systems in terms of recall and preci-
sion, respectively. These systems include Levenshtein-distance-based [40], Jaro–Winkler-
distance-based [41], WordNet-similarity-based [42], and Similarity Flooding (SF)-based [43]
matching systems. The results demonstrate that the proposed method outperforms or
performs as equally well as other sensor ontology matching systems in terms of precision.
However, on the SSN-OSSN dataset, the recall is lower than other matching systems, mainly
because the matching results of sensor ontologies may involve one-to-many situations,
while our method can only identify one-to-one relationships. Additionally, the WordNet
dictionary lacks some specialized words related to the sensor domain, which reduces the
precision of the matching results. In summary, the proposed NMOPSO-based matching
technique in this work can effectively address the sensor ontology meta-matching problem.

Figure 4. Comparison of recall, precision, and f-measure of different MOPSO-based matching systems
on benchmarks.
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Table 1. A brief description of OAEI’s benchmark.

ID Brief Description

1XX Two ontologies having the same lexical, linguistic, and structural features.
2XX Two ontologies sharing different structural, lexical, or linguistic features.
3XX The real ontologies.

Table 2. A brief description of sensor ontologies.

Sensor Ontology Information Scale

SN (SensorOntology2009 ontology) 152 entities
SSN (Semantic Sensor Network ontology) 55 entities

OSSN (Original Semantic Sensor Network ontology) 107 entities
SOSA (Sensor, Observation, Sample, and Actuator ontology) 42 entities

Table 3. Comparison of recall, precision, and f-measure among MOPSO, MOPSO-DE, NMOPSO
without OBL, and NMOPSO.

No. MOPSO MOPSO-DE NMOPSO without OBL NMOPSO

101 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
103 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
104 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
201 (0.92, 1.00, 0.96) (0.92, 1.00, 0.96) (0.92, 1.00, 0.96) (0.92, 1.00, 0.96)
203 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
204 (0.98, 1.00, 0.99) (0.98, 1.00, 0.99) (0.98, 1.00, 0.99) (0.98, 1.00, 0.99)
205 (0.92, 0.95, 0.94) (0.92, 0.95, 0.94) (0.92, 0.95, 0.94) (0.92, 0.95, 0.94)
206 (0.71, 0.98, 0.82) (0.86, 0.98, 0.92) (0.89, 0.95, 0.92) (0.91, 1.00, 0.95)
207 (0.58, 0.98, 0.73) (0.87, 0.98, 0.92) (0.86, 0.98, 0.92) (0.92, 1.00, 0.96)
208 (0.80, 0.99, 0.88) (0.83, 0.98, 0.90) (0.83, 0.98, 0.90) (0.83, 0.98, 0.90)
221 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
222 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
223 (0.96, 0.98, 0.96) (0.94, 0.99, 0.96) (0.95, 0.99, 0.97) (0.97, 0.99, 0.98)
224 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
225 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
228 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
230 (0.91, 0.98, 0.95) (0.97, 0.94, 0.95) (0.91, 0.98, 0.95) (0.97, 0.94, 0.96)
231 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
232 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
233 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
236 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
237 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
238 (0.95, 0.98, 0.96) (0.92, 0.98, 0.96) (0.96, 0.98, 0.97) (0.95, 0.98, 0.97)
240 (0.74, 0.96, 0.82) (0.81, 0.96, 0.88) (0.84, 0.96, 0.90) (0.87, 0.96, 0.92)
241 (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (1.00, 1.00, 1.00)
246 (1.00, 0.96, 0.98) (1.00, 0.96, 0.98) (1.00, 0.96, 0.98) (1.00, 0.96, 0.98)
247 (0.81, 0.96, 0.88) (0.81, 0.96, 0.88) (0.84, 0.96, 0.90) (0.96, 0.94, 0.95)
301 (0.70, 0.91, 0.79) (0.70, 0.93, 0.80) (0.74, 0.91, 0.82) (0.81, 0.92, 0.86)
302 (0.64, 0.94, 0.76) (0.65, 0.91, 0.76) (0.64, 0.96, 0.77) (0.68, 0.89, 0.77)
303 (0.75, 0.94, 0.83) (0.79, 0.95, 0.86) (0.79, 0.95, 0.86) (0.79, 0.95, 0.86)
304 (0.88, 0.98, 0.93) (0.96, 0.97, 0.96) (0.94, 0.97, 0.96) (0.96, 0.97, 0.96)
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Table 4. Comparison of mean and standard deviation of recall among MOPSO, MOPSO-DE,
NMOPSO without OBL, and NMOPSO.

No. MOPSO MOPSO-DE NMOPSO
without OBL NMOPSO

101 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
103 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
104 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

201 0.92
(1.22× 10−15)

0.92
(1.08× 10−15)

0.92
(1.08× 10−15)

0.92
(1.08× 10−15)

203 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

204 0.98
(2.22× 10−15)

0.98
(2.22× 10−15)

0.98
(2.22× 10−15)

0.98
(2.22× 10−15)

205 0.92
(2.81× 10−1)

0.92
(4.09× 10−1)

0.92
(4.04× 10−1)

0.92
(3.81× 10−1)

206 0.71
(1.14× 10−2)

0.86
(1.10× 10−1)

0.89
(2.41× 10−15)

0.91
(1.90× 10−16)

207 0.58
(2.26× 10−15)

0.87
(1.16× 10−1)

0.86
(1.18× 10−1)

0.92
(1.08× 10−15)

208 0.80
(1.34× 10−2)

0.83
(7.49× 10−2)

0.83
(1.39× 10−2)

0.83
(2.19× 10−2)

221 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
222 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

223 0.96
(9.27× 10−3)

0.94
(1.51× 10−2) 0.95 (0.01) 0.97

(1.01× 10−2)
224 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
225 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
228 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

230 0.91
(1.34× 10−15)

0.97
(4.03× 10−2)

0.91
(1.03× 10−1)

0.97
(3.23× 10−2)

231 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
232 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
233 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
236 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
237 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

238 0.95
(5.83× 10−3)

0.92
(5.08× 10−15)

0.96
(1.33× 10−3)

0.95
(1.01× 10−2)

240 0.74
(1.27× 10−1)

0.81
(1.33× 10−1)

0.84
(3.59× 10−2)

0.87
(1.30× 10−2)

241 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

246 1.00
(4.33× 10−1)

1.00
(2.79× 10−1)

1.00
(3.81× 10−1)

1.00
(4.54× 10−1)

247 0.81
(3.02× 10−1)

0.81
(1.16× 10−1)

0.84
(1.66× 10−1)

0.96
(1.92× 10−1)

301 0.70
(9.84× 10−2)

0.70
(1.13× 10−1)

0.74
(9.36× 10−2)

0.81
(1.91× 10−2)

302 0.64
(8.71× 10−16)

0.65
(1.59× 10−2)

0.64
(9.04× 10−3)

0.68
(1.95× 10−2)

303 0.75
(1.03× 10−15)

0.79
(3.45× 10−2)

0.79
(3.60× 10−2)

0.79
(2.47× 10−2)

304 0.88
(8.29× 10−4)

0.96
(1.37× 10−1)

0.94
(3.62× 10−2)

0.96
(3.59× 10−2)
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Table 5. Comparison of mean and standard deviation of precision among MOPSO, MOPSO-DE,
NMOPSO without OBL, and NMOPSO.

No. MOPSO MOPSO-DE NMOPSO
without OBL NMOPSO

101 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
103 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
104 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
201 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
203 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
204 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

205 0.95
(1.45× 10−2)

0.95
(2.11× 10−2)

0.95
(2.08× 10−2)

0.95
(1.96× 10−2)

206 0.98
(1.91× 10−4)

0.98
(5.86× 10−3)

0.95
(1.75× 10−2) 1.00 (0.00)

207 0.98
(1.63× 10−15)

0.98
(5.21× 10−3)

0.98
(4.91× 10−3) 1.00 (0.00)

208 0.99
(2.81× 10−3)

0.98
(5.76× 10−3)

0.98
(2.13× 10−4)

0.98
(1.96× 10−3)

221 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
222 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

223 0.98
(9.46× 10−3)

0.99
(1.02× 10−2)

0.99
(5.19× 10−3)

0.99
(5.20× 10−3)

224 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
225 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
228 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

230 0.98
(1.45× 10−15)

0.94
(2.38× 10−2)

0.98
(5.61× 10−3)

0.94
(1.70× 10−2)

231 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
232 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
233 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
236 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
237 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

238 0.98
(5.63× 10−3)

0.98
(1.64× 10−15)

0.98
(8.74× 10−3)

0.98
(5.23× 10−3)

240 0.96
(1.66× 10−2)

0.96
(4.29× 10−2)

0.96
(1.70× 10−2)

0.96
(1.57× 10−2)

241 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

246 0.96
(1.55× 10−2)

0.96
(1.00× 10−2)

0.96
(1.36× 10−2)

0.96
(1.62× 10−2)

247 0.96
(1.61× 10−2)

0.96
(1.69× 10−2)

0.96
(1.67× 10−2)

0.94
(2.83× 10−2)

301 0.91
(1.05× 10−2)

0.93
(2.52× 10−2)

0.91
(1.77× 10−2)

0.92
(4.23× 10−3)

302 0.94
(1.22× 10−15)

0.91
(3.02× 10−2)

0.96
(4.51× 10−2)

0.89
(2.71× 10−2)

303 0.94
(1.12× 10−15)

0.95
(2.36× 10−2)

0.95
(2.34× 10−2)

0.95
(1.60× 10−2)

304 0.98
(1.34× 10−5)

0.97
(7.33× 10−3)

0.97
(1.08× 10−2)

0.97
(7.85× 10−3)
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Table 6. T-test statistical analysis for recall.

No. NMOPSO
versus MOPSO

NMOPSO
versus MOPSO-DE

NMOPSO versus
NMOPSO without OBL

101 0.00 0.00 0.00
103 0.00 0.00 0.00
104 0.00 0.00 0.00
201 0.00 0.00 0.00
203 0.00 0.00 0.00
204 0.00 0.00 0.00
205 0.00 0.00 0.00
206 96.09 2.48 4.53
207 7.43 2.36 2.78
208 6.40 0.00 0.00
221 0.00 0.00 0.00
222 0.00 0.00 0.00
223 3.99 9.04 7.70
224 0.00 0.00 0.00
225 0.00 0.00 0.00
228 0.00 0.00 0.00
230 10.17 0.00 3.04
231 0.00 0.00 0.00
232 0.00 0.00 0.00
233 0.00 0.00 0.00
236 0.00 0.00 0.00
237 0.00 0.00 0.00
238 0.00 16.26 −5.37
240 5.57 2.45 4.30
241 0.00 0.00 0.00
246 0.00 18.45 0.00
247 2.29 3.66 2.58
301 6.01 5.25 4.01
302 11.23 6.53 10.19
303 8.87 0.00 0.00
304 12.20 0.00 2.14

Table 7. T-test statistical analysis for precision.

No. NMOPSO
versus MOPSO

NMOPSO versus
MOPSO-DE

NMOPSO versus
NMOPSO without OBL

101 0.00 0.00 0.00
103 0.00 0.00 0.00
104 0.00 0.00 0.00
201 0.00 0.00 0.00
203 0.00 0.00 0.00
204 0.00 0.00 0.00
205 0.00 0.00 0.00
206 573.53 18.69 15.64
207 6.72 21.02 22.31
208 −15.98 0.00 0.00
221 0.00 0.00 0.00
222 0.00 0.00 0.00
223 5.07 0.00 0.00
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Table 7. Cont.

No. NMOPSO versus
MOPSO

NMOPSO versus
MOPSO-DE

NMOPSO versus
NMOPSO without OBL

224 0.00 0.00 0.00
225 0.00 0.00 0.00
228 0.00 0.00 0.00
230 −12.88 0.00 −12.23
231 0.00 0.00 0.00
232 0.00 0.00 0.00
233 0.00 0.00 0.00
236 0.00 0.00 0.00
237 0.00 0.00 0.00
238 0.00 0.00 0.00
240 0.00 0.00 0.00
241 0.00 0.00 0.00
246 0.00 0.00 0.00
247 −1.36 −1.32 −1.33
301 4.83 −1.14 3.00
302 −10.10 −1.62 −1.50
303 3.42 0.00 0.00
304 −1.97 0.00 0.00

Table 8. Comparison of NMOPSO with OAEI’s participants in terms of f-measure.

No. Edna AgrMaker AROMA CODI Ef2Match GeRMeSMB MapPSO SOBOM TaxoMap NMOPSO

101 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 0.51 1.00
103 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.51 1.00
104 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.51 1.00
201 0.04 0.92 0.95 0.13 0.77 0.94 0.42 0.95 0.51 0.96
203 1.00 0.98 0.80 0.86 1.00 0.98 1.00 1.00 0.49 1.00
204 0.93 0.97 0.97 0.74 0.99 0.98 0.98 0.99 0.51 0.99
205 0.34 0.92 0.95 0.28 0.84 0.99 0.73 0.96 0.51 0.94
206 0.54 0.93 0.95 0.39 0.87 0.92 0.85 0.96 0.51 0.95
207 0.54 0.93 0.95 0.42 0.87 0.96 0.81 0.96 0.51 0.96
208 0.93 0.96 0.58 0.61 0.95 0.95 0.79 1.00 0.44 0.90
221 1.00 0.97 0.99 0.98 1.00 1.00 1.00 1.00 0.51 1.00
222 0.98 0.98 0.99 1.00 1.00 0.99 1.00 1.00 0.46 1.00
223 1.00 0.95 0.93 1.00 1.00 0.96 0.98 0.99 0.45 0.98
224 1.00 0.99 0.97 1.00 1.00 1.00 1.00 1.00 0.51 1.00
225 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.51 1.00
228 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51 1.00
230 0.85 0.90 0.93 0.98 0.97 0.94 0.98 0.97 0.49 0.96
231 1.00 0.99 0.98 1.00 1.00 1.00 1.00 0.97 0.51 1.00
232 1.00 0.97 0.97 0.97 1.00 1.00 1.00 1.00 0.51 1.00
233 1.00 1.00 1.00 0.94 1.00 0.98 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
237 0.98 0.98 0.97 0.99 1.00 1.00 0.99 1.00 0.46 1.00
238 1.00 0.94 0.92 0.99 1.00 0.96 0.97 0.98 0.45 0.97
240 0.55 0.91 0.83 0.95 0.98 0.85 0.92 0.98 0.88 0.92
241 1.00 1.00 0.98 0.94 1.00 0.98 1.00 1.00 1.00 1.00
246 0.50 0.98 0.97 0.98 0.98 0.98 0.98 0.95 0.94 0.98
247 0.55 0.88 0.80 0.98 0.98 0.91 0.89 0.98 0.88 0.95
301 0.59 0.59 0.73 0.38 0.71 0.71 0.64 0.84 0.43 0.86
302 0.43 0.32 0.35 0.59 0.71 0.41 0.04 0.74 0.40 0.77
303 0.00 0.78 0.59 0.65 0.83 0.00 0.00 0.50 0.36 0.86
304 0.83 0.86 0.84 0.74 0.95 0.77 0.72 0.91 0.52 0.96
Ave 0.79 0.92 0.90 0.82 0.95 0.91 0.86 0.96 0.57 0.96
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Figure 5. Particle distribution of each matching system on the 301 test dataset.

Table 9. Comparison of recall of NMOPSO with classical matching systems on the sensor ontol-
ogy dataset.

Sensor Ontology
Alignment Task

Levenshtein-Distance
-Based Matcher

Jaro–Winkler-Distance
-Based Matcher

WordNet-Similarity
-Based Matcher

SF-Based Matcher NMOPSO

SSN-SN 1.00 1.00 1.00 0.56 1.00
SOSA-SN 1.00 1.00 1.00 1.00 1.00

SOSA-OSSN 1.00 1.00 1.00 0.50 1.00
SSN-OSSN 1.00 1.00 0.97 0.35 0.93

Table 10. Comparison of precision of NMOPSO with classical matching systems on the sensor
ontology dataset.

Sensor Ontology
Alignment Task

Levenshtein-Distance
-Based Matcher

Jaro–Winkler-Distance
-Based Matcher

WordNet-Similarity
-Based Matcher

SF-Based Matcher NMOPSO

SSN-SN 1.00 1.00 1.00 0.56 1.00
SOSA-SN 1.00 1.00 1.00 1.00 1.00

SOSA-OSSN 1.00 1.00 1.00 0.50 1.00
SSN-OSSN 1.00 1.00 0.97 0.35 1.00

5. Conclusions

To enable semantic information sharing between sensors, this paper proposed an
NMOPSO-based matching technique to effectively address the sensor ontology meta-
matching problem. The proposed NMOPSO considers this problem as a multi-modal
problem and incorporates a niching strategy to find more optimal solutions in the solution
space to meet the diverse needs of decision makers. To improve the diversity of the
population, a diversity-enhancing strategy is utilized, and an opposition-based learning
strategy is adopted to refine the solutions and improve matching quality. The experimental
results demonstrate that the proposed NMOPSO outperforms traditional MOPSO-based
matching techniques, as well as participants of OAEI, in terms of effectiveness in solving
the sensor meta-ontology matching problem.



Sensors 2023, 23, 5069 19 of 21

Although the proposed matching method can effectively solve the problem of hetero-
geneity between sensor ontologies when dealing with small-scale sensor ontology matching
tasks, the niching strategy can effectively maintain diversity, but it may not be enough to
fully explore the search space, particularly if it is large and complex. To overcome this limi-
tation, alternative strategies, such as random initialization or adaptive mutation rates, will
be used in the future to encourage broader exploration. Furthermore, analyzing ontology
entities and calculating similarity values is typically a time-consuming task. Therefore,
a preprocessing strategy for ontology can be implemented to reduce the computational
complexity. In the face of large-scale matching tasks, how to effectively and efficiently solve
the sensor ontology matching problem is a scientific problem to be solved. In the future,
we will focus on the complex semantic relations between ontology entities to make the
proposed method suitable for large-scale matching tasks.
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