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Abstract: Aggression in children is highly prevalent and can have devastating consequences, yet there
is currently no objective method to track its frequency in daily life. This study aims to investigate the
use of wearable-sensor-derived physical activity data and machine learning to objectively identify
physical-aggressive incidents in children. Participants (n = 39) aged 7 to 16 years, with and without
ADHD, wore a waist-worn activity monitor (ActiGraph, GT3X+) for up to one week, three times over
12 months, while demographic, anthropometric, and clinical data were collected. Machine learning
techniques, specifically random forest, were used to analyze patterns that identify physical-aggressive
incident with 1-min time resolution. A total of 119 aggression episodes, lasting 7.3 ± 13.1 min
for a total of 872 1-min epochs including 132 physical aggression epochs, were collected. The
model achieved high precision (80.2%), accuracy (82.0%), recall (85.0%), F1 score (82.4%), and area
under the curve (89.3%) to distinguish physical aggression epochs. The sensor-derived feature of
vector magnitude (faster triaxial acceleration) was the second contributing feature in the model, and
significantly distinguished aggression and non-aggression epochs. If validated in larger samples,
this model could provide a practical and efficient solution for remotely detecting and managing
aggressive incidents in children.

Keywords: pediatrics; aggression; wearables; remote patient monitoring; machine learning

1. Introduction

Aggressive incidents, which range from verbal expressions of anger to physical vi-
olence [1], are the most common reason for referral to child and adolescent psychiatric
services and the primary indication for inpatient psychiatric admission [2–7]. Childhood
aggression is often comorbid with other psychiatric disorders, including attention deficit
hyperactivity disorder (ADHD), disruptive behavior disorders, mood disorders, anxiety
disorders, psychotic disorders, trauma-based disorders, tic disorders, intellectual disability,
and autism spectrum disorder [2–6,8]. Aggressive incidents in children have been associ-
ated with loss of life, as well as billions of dollars in decreased productivity, quality of life,
and healthcare costs [9–11].

Despite the high prevalence and devastating consequences of aggressive incidents
in children with ADHD, to our knowledge, no objective method exists to track their
frequency and severity in daily life. Available tools examine dimensions of aggression
(e.g., impulsive vs. premeditated motivations, primary targets, severity, and duration),
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but they are subjective, typically relying on the parent or caregiver [12–15]. Consequently,
intervention studies targeting aggressive incidents have been largely restricted to rating
scales to capture treatment response [16–19]. While the face validity of the available
rating scales is high, accuracy may be suboptimal because informants may have limited
reliability. For instance, a parent/caregiver may not be fully informed about the child’s
behavior, given the substantial time the child spends at school. A valid and objective
method to capture aggressive incidents in daily life could help inform care for children with
aggression to ultimately optimize treatment, improve quality of life, and reduce associated
costs. Notably, wearable sensors or smart technologies (e.g., smart watches) could offer
practical, cost-effective solutions to objectively measure aggressive incidents in children.

Several studies have demonstrated the efficacy of using wearable sensors to measure
physical activity in children with psychopathology. For instance, accelerometers and
inertial measurement units have been used to characterize physical activity, sleep patterns,
and motor coordination in children with ADHD and other neurological disorders [20–24].
However, these studies focused on task-oriented activities, rather than activities of daily
living. Two recent studies used a smartwatch to analyze the movements of children with
ADHD at school [25] and while performing daily activities (e.g., sitting, exercises, and
household activities) [26]. Notably, Lindhiem et al. used a machine learning approach
to establish the context in which hyperactivity is present [26]. As for using wearables
specifically to quantify aggressive incidents, Goodwin et al. found that physiological and
motion data collected with a biosensor worn by 6 to 17 year old children with autism
spectrum disorder admitted to an inpatient psychiatric unit allowed the identification of
aggression during observation sessions [27]. However, to our knowledge, this work has
not been extended to a naturalistic outpatient setting.

This study aims to address the existing gap by devising an innovative method for
identifying aggressive incidents in children through the use of wearable technology and
machine learning. Our objectives are to: (1) assess the efficacy of machine learning in
detecting aggressive incidents, (2) uncover distinct physical activity patterns during ag-
gressive incidents, and (3) pinpoint the optimal sensor-driven features, also known as
“digital biomarkers,” for identifying aggressive incidents. By utilizing physical activity
data gathered from wearable sensors, we hypothesize that our approach will provide a
valid and dependable means of detecting aggressive incidents in children.

2. Materials and Methods
2.1. Participants

Data for this analysis were collected in the context of a year-long, observational
study examining the skeletal effects of psychostimulants. Participants were recruited from
pediatric outpatient clinics. Eligible participants were medically healthy males and females
who were 7 to 16 years old, of all racial and ethnic backgrounds, within one month of
starting a psychostimulant or unmedicated, with no plans to move out of state for one
year. Potential participants were excluded if they: (1) had treatment with psychotropics or
other medications affecting bone metabolism within the prior year, (2) had serious medical
conditions involving a vital organ or affecting bone metabolism, or pregnancy/lactation,
(3) were underweight or overweight (i.e., body mass index less than the 5th percentile or
greater than the 95th percentile), (4) had a substance use disorder or an eating disorder, or
(5) had an intellectual disability or an inability to understand the English language, which
would impair their ability to complete study procedures. The local Institutional Review
Board approved the study, and written informed consent and verbal assent were obtained.

After completing the baseline visit, participants returned for an in-person visit at 6
and 12 months and completed a monthly phone visit in between. At every contact, the
medical and treatment history was updated, including psychostimulant use. In addition,
medication adherence was assessed. At in-person visits, demographic and anthropometric
variables were collected, including age, sex, height, and weight. The parent also completed
the child behavior checklist (CBCL), a widely used rating scale with excellent validity
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and reliability [28,29]. The CBCL generates a dimensional profile composed of several
problem scales, including rule-breaking and aggressive behavior scales. Extensive norms
are available, allowing for generation of T-scores. The study psychiatrist also completed
the clinical global impression scale (CGI-Severity), a single-item scale with scores ranging
between 0 (not assessed) and 7 (among the most extremely ill patients), with a score
≥3 typically considered clinically significant [30]. Clinical diagnoses were based on the
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) [31] and incorporated
information from the medical record, the rating scales, and an unstructured interview of
the parent/guardian and the child completed by a child and adolescent psychiatrist.

Height and weight were used to calculate body mass index (BMI, kg/m2), and sex-
age-specific BMI Z-scores were derived [32]. Where applicable, the daily psychostimulant
dose was converted to a methylphenidate (MPH) equivalent [33] and the daily average
weight- and adherence-adjusted dose in MPH equivalent was computed. The T-score of
the CBCL factors was dichotomized based on a threshold of ≥60 to identify participants at
risk for clinically significant behavioral problems [29].

Because parents may not be aware of their child’s aggressive incidents on days when
school is in session, days when physical activity was collected were classified as “school”
vs. “non-school” days. The latter included weekends and holidays.

2.2. Assessment of Physical Activity and Aggression Episodes

At the in-person visits, participants were provided with a waist-worn accelerometer
sensor (GT3X+, ActiGraph Corp., Pensacola, FL, USA), which they were instructed to
wear for seven consecutive days starting from the day following their visit (Figure 1).
The ActiGraph GT3X+ is compact (4.6 cm (W) × 3.3 cm (H) × 1.5 cm (D)), lightweight
(19 g), user-friendly, and has a battery life of up to 25 days. In addition, the parents were
given a log, based on the Retrospective Modified Overt Aggression Scale (R-MOAS) [34],
and asked to record (during the same seven-day period) the date, time, and duration of
both verbal-aggressive incidents and physical-aggressive incidents. Given that physical
aggression incidents are more problematic and can be reported more validly, this study
concentrated on the physical-aggressive incidents, which included incidents towards other
people, incidents involving property, and incidents directed at self.
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Figure 1. A wearable sensor (GT3X+, ActiGraph Corp., Pensacola, FL, USA) and its placement for
physical activity assessments.

Information from the R-MOAS allowed definition of the aggression periods, each
comprising one or more continuous aggressive incidents.

2.3. Sensor-Drived Features

To quantify physical activity, seven variables (vector magnitude, cadence, % standing,
% sitting, % lying, kilocalories, and MET rate; Table 1) were calculated, using ActiLife
software based on 1-min-long epochs (ActiGraph, Pensacola, FL, USA) [35,36]. Vector
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magnitude indicates the time rate of change of movement speed [37]. Kilocalories indicates
the amount of energy relative to body mass and vector magnitude [38]. Metabolic rate (i.e.,
MET rate) indicates the rate of energy expended per unit of time.

Table 1. Sensor-derived physical activity variables, measured in 1-min epochs. The physical activity
variables are obtained from a waist-worn accelerometer and reflect the intensity and level of physical
activity in 1-min intervals. These variables are utilized to identify and describe aggression epochs,
and they are also one of the inputs to the machine learning model.

Name Unit Description

Vector magnitude (vm) cpm
Total vector magnitude of three accelerometer axes, calculated by the ActiGraph

using the following equation [37]:
vm =

√
axis12 + axis22 + axis32

Cadence steps/min Step counts per minute
% Standing % of epoch Percentage of an epoch when participant was standing

% Sitting % of epoch Percentage of an epoch when participant was sitting
% Lying % of epoch Percentage of an epoch when participant was lying

Kilocalories cpm
Kilocalories expended per minute, calculated by the Actigraph using the following

equation [38]:
kcal
min = (0.001064× vm) + (0.087512× body mass in kg)− 5.500229

MET Rate cpm Metabolic equivalents to measure energy expenditure

cpm: counts per minute. MET: metabolic rate.

2.4. Random Forest Classifier Approach for Feature Selection

Random forest uses ensemble learning, combining multiple classifiers to provide
solutions to complex problems [39,40], and is also commonly used for feature importance
determination [39]. As such, our approach used a random forest algorithm both for feature
selection and the construction of a classification model, seeking to rank demographic,
clinical, sensor-derived physical activity, and observed day type variables with regard to
their potential to capture aggressive incidents. To do so, each 1-min epoch was categorized
as aggression or non-aggression, based on whether it occurred during a reported time
period of aggression (based on the R-MOAS) or not, respectively. All aggression epochs
were included in the model. As expected, the number of non-aggression epochs was much
larger, causing unbalance in the dataset. To address this issue [41], an equal number of
non-aggression epochs was included, selected randomly from all available non-aggression
epochs with the following restrictions: (1) non-aggression epochs derived from sleep time
(i.e., 10 p.m.–6 a.m.) and (2) those occurring within 30 min before and after an aggression
epoch, to minimize any potential contamination effect (Figure 2).

The random forest classifier algorithm included several features, including age, sex,
sex-age-specific BMI and height Z-scores, the weight-adherence-adjusted dosage of psy-
chostimulant (in MPH equivalent, mg/kg), whether the epoch occurred on a school day,
illness severity based on the CGI, and T-scores for six CBCL factors: total, internalizing,
externalizing, attention problems, rule breaking, and aggressive behavior. Additionally,
the algorithm considered seven sensor-derived variables (see Table 1). By including both
demographic and clinical factors, as well as sensor-derived variables, the algorithm can
provide a more nuanced understanding of the relationship between these factors and
aggressive incidents. The sensor-derived variables, in particular, are important as they offer
an objective measure of physical activity and movement patterns, potentially related to the
occurrence of aggressive incidents.
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Figure 2. (Top): An example of the vector magnitude (vm) signal, which is one of the sensor-derived
physical activity variables, for both aggression and non-aggression epochs. Each rectangle represents
an epoch, consisting of 1-min worth of physical activity data. The red-filled boxes indicate that the
epoch occurred during a reported aggression episode, while the green ones indicate the absence
of aggression. The large orange rectangles represent 30-min worth of data occurring before and
after an aggressive incident. These were excluded from the analyses to minimize contamination risk.
(Bottom): This diagram illustrates the different types of variables that are associated with each epoch
for inclusion in the model. These variables include demographic, clinical, sensor-derived physical
activity, and observed day type variables.

Figure 3 depicts a flowchart divided into two steps. The initial step involved data
cleaning, analysis, and preparation for the machine learning model, while the second step
detailed the model’s design. In the primary step, sensor data were labeled based on parent-
reported physically aggressive incidents, and clinical and demographic information were
integrated into each epoch. Subsequently, epochs collected during sleep and within 30 min
before and after aggressive incidents were excluded. The second step comprised a two-step
feature selection process. The first step was to evaluate the importance of all sensor-derived
features using a random forest classifier. We used training and testing sample sizes of
70% and 30%, respectively. The random forest model was trained with 500 trees with a
balanced subsample for class weights to improve performance [42,43]. We also used a grid
search cross-validation technique to optimize three attributes of the random forest model,
an effective approach for optimizing the performance of classifiers [44,45].

In the second step, we ran a random forest method with the same training and testing
sizes of 70% and 30%, respectively. This procedure was repeated for 100 bootstraps to ensure
that all observations were selected in the validation sub-sample, allowing computation
of the means and their standard deviations to quantify their uncertainties [46]. Each step
involved adding one feature to the dataset and training the model to gain insight into
how adding each feature affects the model’s performance. The final reports comprised
the mean and standard deviation (SD) of all 100 estimated model performance metrics,
including the accuracy, recall, precision, F1 score, and area under the curve (AUC). Feature
selection processes were conducted using Python version 3.10 (Python Software Company,
Fredericksburg, VA, USA).
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model, as well as the evaluation of the resulting model. The random forest classifier model was
employed, with 100 bootstraps utilized to assess model performance. The evaluation metrics included
mean ± SD values for model accuracy, recall, precision, F1 score, and area under the curve (AUC).

2.5. Statistical Analysis

Continuous data are expressed as mean ± standard deviation (SD), while categorical
data are reported as count (%). The Shapiro–Wilk test was used to determine whether
continuous variables followed a normal distribution. The one-way ANOVA for normally
distributed variables and the Mann–Whitney U test for non-normally distributed variables
were used to compare mean differences between epochs with vs. those without aggression.
The chi-square test was used to examine between-group differences in categorical variables.
All statistical analyses were conducted using IBM SPSS Statistics version 27 (IBM Corp.,
Armonk, NY, USA).

3. Results
3.1. Demographic and Clinical Characteristics

Table 2 presents the demographic and clinical characteristics of participants who had
at least one time period of aggression. There were a total of 31 time periods of physical
aggression, each lasting an average of 4.3 ± 7.8 min, resulting in 132 physical aggression
epochs. Figure 4A depicts the analysis of the duration of reported aggression (verbal and
physical) as a function of time of day, including night time (10 p.m.–6 a.m.), morning
time (6 a.m.–12 p.m.), and afternoon/evening (12 p.m.–10 p.m.) (time frames selected
for purposes of visualization). Time periods of physical aggression mostly occurred after
school and were most pronounced around 6 p.m. Time periods of verbal aggression
had two pronounced peaks at 6 a.m. and 3 p.m. Furthermore, the majority of physical
aggression occurred during weekend days, particularly on Sundays (Figure 4B).
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Table 2. Demographic and clinical characteristics.

Variables N = 39

Demographics
Age, years 9.4 ± 1.7
Sex (Male), n (%) 31 (79.5%)
Hispanic, n (%) 13 (33.3%)
Race, (%)

White 29 (74.4%)
Black 5 (12.8%)
Native American 1 (2.6%)
Others 4 (10.3%)

Height (cm) 136.2 ± 12.6
Height Z-score 0.008 ± 0.893
Weight (kg) 32.1 ± 9.2
Body Mass Index, kg/m2 17.0 ± 1.9
Body Mass Index Z-score 0.1 ± 0.8

Clinical Characteristics
Medication, N (%) 34 (87.2%)
Daily Average Weight and Adherence Adjusted
Dose in MPH Equivalency (MPH Eq mg/kg) 0.51 ± 0.37

CBCL, Total Score 44.2 ± 10.4
Aggressive Behavior 60.7 ± 9.1
Rule-Breaking Behavior 57.4 ± 7.6
Attention Problems 64.1 ± 9.1
Internalizing Problems 54.1 ± 12.1
Externalizing Problems 58.1 ± 10.9

CGI-Severity Score 4.7 ± 1.0
Values are presented as mean ± standard deviation or n (%). All CBCL components are reported in T-Scores.
MPH: methylphenidate; CBCL: child behavior checklist; CGI-Severity: clinical global impression-severity.

3.2. Difference in Features between Aggression and Non-Aggression Epochs

Table 3 presents descriptive statistics for the physical activity and observed day type
features of both aggression and non-aggression epochs collected from 39 participants
with ADHD (n = 35) and without (n = 4). Movement acceleration (accelerometer vector
magnitude) was significantly higher during the former.
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Table 3. Comparison of sensor-derived body motion and posture characteristics and observed
day type between physical aggression and non-aggression epochs. The term “non-aggression
epochs” represents periods where no physical aggressive incident was observed, while “aggression
epochs” refers to the time periods during which a physical-aggressive incident was recorded. The
table displays the mean values and standard deviations of each variable for both aggression and
non-aggression epochs, as well as the p-value from the statistical test of the difference between the
two groups.

Variables Aggression Epochs
N = 132

Non-Aggression Epochs
N = 132 p-Value

Physical activity
Vector magnitude (vm) 1580.7 ± 1831.1 873.3 ± 1137.2 0.027 *

Cadence (cpm) 15.3 ± 22.5 8.1 ± 13.6 0.102
% Standing 51.4 ± 47.7 44.6 ± 46.2 0.320

% Sitting 16.9 ± 34.2 26.4 ± 41.9 0.176
% Lying 15.7 ± 36.0 14.9 ± 35.7 0.478

Kilocalories (cpm) 0.27 ± 0.46 0.17 ± 0.23 0.427
MET rate (cpm) 1.15 ± 0.43 1.04 ± 0.12 0.132

Observed day type
Non-school day 47.0% 47.7% 0.902

Values are presented as mean ± standard deviation or n (%). Asterisk denotes a significant difference between the
groups. cpm: counts per minute. MET: metabolic rate.

3.3. Optimal Feature Selection and Evaluation

Figure 5A displays the ranking of the 20 features examined, using the random forest
classifier algorithm. A higher percentage value indicates that the feature had a greater
contribution to the model. The top 10 features that contributed most to the model, in order
of importance, were age (14.41%), vector magnitude (9.27%), CBCL Total T-score (7.96%),
height Z-score (7.16%), adjusted MPH dose (6.57%), BMI Z-score (5.56%), CBCL attention
T-score (5.37%), CBCL aggressive T-score (5.12%), CBCL internalizing T-score (4.97%), and
CBCL externalizing T-score (4.70%).

Figure 5B shows the model validation results as AUC, F1, accuracy, recall, and
precision as a function of the number of ranked features. The model with all 20 features
achieved an AUC of 89.3 ± 4.2%, F1 of 82.4 ± 4.7%, accuracy of 82.0 ± 4.8%, recall of
85.0 ± 6.6%, and precision of 80.2 ± 5.3%. For the excellent range of AUC and F1 (0.8
to 0.9) and acceptable range of accuracy, recall, and precision (0.7 to 0.8), age, vector
magnitude, CBCL Total T-score, and height Z-score were identified as the most important
features. A model using these four features achieved an AUC of 87.2 ± 4.1%, F1 score of
80.8 ± 4.3%, accuracy of 80.1 ± 4.6%, recall of 83.8 ± 6.7%, and precision of 78.2 ± 5.9%.
When the CBCL Total T-score feature was excluded from the model, the performance
decreased by about 10%, resulting in an AUC of 77.9 ± 5.2, an F1 score of 71.8 ± 5.0,
an accuracy of 71.6 ± 4.8, a recall of 71.7 ± 8.3, and a precision of 71.9 ± 5.4. However,
these values still fall within an acceptable range. It should be noted that the collection of
CBCL values is often resource-intensive, and their exclusion may make the model more
practical for implementation in certain settings.



Sensors 2023, 23, 4949 9 of 14
Sensors 2023, 23, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 5. Figure (A) shows the ranking of 20 features based on their significance in distinguishing 
physical aggression from non-aggression epochs, as determined by the random forest classifier al-
gorithm. Meanwhile, Figure (B) demonstrates the model’s effectiveness in distinguishing between 
the two groups, as measured by AUC, F1 score, accuracy, recall, and precision. The figure utilizes 
several abbreviations, such as CBCL (child behavior checklist), MPH (methylphenidate), CGI-S 
(clinical global impression-severity), AUC (area under curve). 

4. Discussion 
This study aimed to investigate whether sensor-derived physical activity data would 

optimize the identification of aggressive incidents in children, using machine learning. 
First, this approach achieved a high performance. Second, four features disproportion-
ately accounted for the excellent model performance. Third, three of these top features 
were objective measures, including age, height, and sensor-based vector magnitude (tri-
axial acceleration). Finally, excluding the one measure based on parent report (i.e., the 
CBCL Total Score) reduced model performance, though not drastically.  

Identifying aggression epochs is a crucial step in preventing and managing aggres-
sive incidents. However, unlike the vast majority of the work undertaken so far, which 
has relied on subjective report, our study suggests that objective assessment is feasible, 
with potentially high reliability. Importantly, a wearable technology-based measure, spe-
cifically vector magnitude, appears to comprise one of the top four features contributing 
to the model’s excellent performance. This feature has face validity, given that physical 
aggression often involves rapid triaxial acceleration in order to commit the physically vi-
olent act. It, then, follows that tracking vector magnitude could be useful in identifying 
the onset of aggressive incidents. Such information can aid in developing remote patient 
monitoring systems that not only may inform parents (or other interested parties, includ-
ing clinicians) about incidents of aggression in real-time but also potentially predict these 
incidents. This would allow a more timely intervention to prevent escalation and adjust 
treatment.  

Although physical activity was the primary focus of our study, demographic and 
clinical features also played a prominent role in identifying aggression epochs. Our find-
ings showed that age and CBCL Total Score were the first and third most significant fea-
ture in our model, respectively. Although the training set of physical aggression epochs 
and non-aggression epochs were randomly selected from the data pool of all aggression 
and non-aggression epochs, the average age and CBCL Total Score for selected physical 
aggression epochs were 8.5 ± 1.3 years and 43.6 ± 29.5, respectively. In contrast, these num-
bers were 9.5 ± 1.7 years and 28.2 ± 49.0 for the randomly selected non-aggression epochs, 
indicating a significant difference between physical aggression and non-aggression 

Figure 5. Figure (A) shows the ranking of 20 features based on their significance in distinguishing
physical aggression from non-aggression epochs, as determined by the random forest classifier
algorithm. Meanwhile, Figure (B) demonstrates the model’s effectiveness in distinguishing between
the two groups, as measured by AUC, F1 score, accuracy, recall, and precision. The figure utilizes
several abbreviations, such as CBCL (child behavior checklist), MPH (methylphenidate), CGI-S
(clinical global impression-severity), AUC (area under curve).

4. Discussion

This study aimed to investigate whether sensor-derived physical activity data would
optimize the identification of aggressive incidents in children, using machine learning.
First, this approach achieved a high performance. Second, four features disproportionately
accounted for the excellent model performance. Third, three of these top features were
objective measures, including age, height, and sensor-based vector magnitude (triaxial
acceleration). Finally, excluding the one measure based on parent report (i.e., the CBCL
Total Score) reduced model performance, though not drastically.

Identifying aggression epochs is a crucial step in preventing and managing aggressive
incidents. However, unlike the vast majority of the work undertaken so far, which has
relied on subjective report, our study suggests that objective assessment is feasible, with
potentially high reliability. Importantly, a wearable technology-based measure, specifically
vector magnitude, appears to comprise one of the top four features contributing to the
model’s excellent performance. This feature has face validity, given that physical aggression
often involves rapid triaxial acceleration in order to commit the physically violent act. It,
then, follows that tracking vector magnitude could be useful in identifying the onset of
aggressive incidents. Such information can aid in developing remote patient monitoring
systems that not only may inform parents (or other interested parties, including clinicians)
about incidents of aggression in real-time but also potentially predict these incidents. This
would allow a more timely intervention to prevent escalation and adjust treatment.

Although physical activity was the primary focus of our study, demographic and
clinical features also played a prominent role in identifying aggression epochs. Our findings
showed that age and CBCL Total Score were the first and third most significant feature
in our model, respectively. Although the training set of physical aggression epochs and
non-aggression epochs were randomly selected from the data pool of all aggression and non-
aggression epochs, the average age and CBCL Total Score for selected physical aggression
epochs were 8.5 ± 1.3 years and 43.6 ± 29.5, respectively. In contrast, these numbers were
9.5 ± 1.7 years and 28.2 ± 49.0 for the randomly selected non-aggression epochs, indicating
a significant difference between physical aggression and non-aggression epochs (p < 0.0001).
Younger age was the strongest feature in the model associated with aggression epochs. This
was consistent with well-established findings of reduced aggression with development and
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maturation of inhibitory and self-regulation processes [47–50]. These two objective features
are relatively easy to document reliably and appear to substantially contribute to a model.

Of the top four features contributing to the model’s performance, only the CBCL
score is based on subjective report. As would be expected, a higher score (denoting more
severe psychiatric difficulties) is associated with a greater likelihood of physical aggressive
incidents [51]. The CBCL is based on parental report and has excellent psychometric
properties. It is a “broad-band” measure that captures various aspects of psychopathology,
over the prior 6-month period. As such, it is quite distinct from many subjective measures
of aggression, that are more directly temporally linked to such incidents. In other words,
while the CBCL has the shortcoming of being subjective, it provides the necessary context
within which to “interpret” an epoch as aggression or non-aggression.

In our study, of the 20 features considered in our model, sex had the least impact on
its performance. This might appear surprising at first glance, given the well-established
preponderance of aggression among boys. However, it is likely that the effect of sex was
mediated by other variable including height, acceleration, overall activity level, etc.

We observed that the majority of physical aggression episodes occurred during the
afternoon and evening, and on weekend days. This finding was consistent with previous
research indicating that physical aggression among preschool-aged children is more likely
to occur in the late afternoon and early evening hours and on weekends compared with
weekdays [49]. One potential explanation is that these are the times when the children are
with their parents or caregivers who are serving as the informants. This underscores the
importance of optimizing the process to capture problematic behavior by making it less
informant-dependent. Other potential factors explaining the higher likelihood of physical
aggression during the afternoon, evening, and weekends include poorly controlled ADHD
symptoms, increased free time, reduced supervision, social and peer pressure, and fatigue
or stress [52,53].

It is important to note that the findings of this study do not suggest that children
who exhibit the identified features are more likely to have aggressive incidents. Rather,
these features may serve as potential indicators for identifying such episodes. To establish
a causal association between these features and the prevalence of aggressive incidents,
interventional studies are needed. Potential applications of these findings in clinical
practice may include exporting physical activity data from smartphones or wearable
sensors during clinical visits, with a particular focus on technology that exports vector
magnitude. Additionally, a clinical tool could be developed to remotely track aggressive
incidents, especially during the school day when parents/caregivers may not be aware of
their occurrence.

While to our knowledge this is the first study to examine aggressive incidents in
children in a real-life setting, several limitations should be acknowledged. Results may be
skewed by a few participants with significantly longer time periods of physical aggression
compared with other participants. To address this limitation, we performed a secondary
analysis and down-sampled the number of epochs from participants who had considerably
longer durations of physical aggression epochs compared with other participants. We
identified one participant with a very long duration of a physically aggressive event
(45 min). When the number of epochs for this subject was down-sampled and the model was
fitted again, the model’s performance was minimally impacted (precision = 76.4 ± 5.5%
[decreased by 3.8%], accuracy = 78.6 ± 4.9% [decreased by 3.4%], recall = 83.9 ± 8.4%
[decreased by 1.1%], F1 score = 79.7 ± 4.9% [decreased by 2.7%], and area under the
curve = 85.7 ± 5.4% [decreased by 3.6%]). Nonetheless, our findings should be confirmed
in a larger sample.

ADHD is a well-known risk factor for aggression but neither the presence of ADHD nor
of aggression was required for study participation. As such, future studies should include
children exhibiting higher aggression severity to confirm the generalizability of our findings.
In the current study, similar to others [39,40], our approach used a random forest classifier
to construct a classification model. Additionally, we conducted a secondary analysis to
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demonstrate the relative importance of each feature. Although we assessed the optimized
feature selection through cross-validation and bootstrapping, further validation using
an independent dataset is necessary to confirm our findings and ensure their robustness
and generalizability. Moreover, future work with larger sample sizes must explore other
machine learning techniques and approaches, including innovative models seeking to better
capture complex human behavior [54]. Another limitation is that aggressive incidents were
recorded by parents/caregivers using a paper log, with instructions to record the events
promptly. Nonetheless, their report may have been subject to recall bias or inaccuracy. To
address this limitation, future studies could include teacher informants and/or an online
platform to immediately report aggressive incidents in a more timely and accurate manner.
Moreover, ensuring consistent sensor use among children displaying aggressive behavior
may be challenging. Practical limitations, including restricted battery life and discomfort
from extended wear, also pose difficulties. To bolster the effectiveness and broad adoption
of our approach, future research should investigate complementary solutions such as video
tracking, e-tattoo sensors, textile sensors integrated into clothing (e.g., smart t-shirts), and
alternative sensor designs such as pendant sensors, which might be more acceptable to the
target population. Future improvement should also include providing real-life alerts to
caregivers when an aggressive episode occurs. Our study could not differentiate verbal
aggressive behavior. Although most verbal aggression may be accompanied by physical
agitation, relying solely on accelerometer sensors may not be adequate for identifying such
behavior. Future research should explore the use of complementary sensors capable of
capturing voice and volume to better detect verbal aggressive behavior. Finally, future
studies could develop a mathematical model to detect aggressive behavior with a higher
accuracy and determine the relationship between time of medication use and aggressive
incidents reported in the evening.

5. Conclusions

This study presents a promising approach to identify incidents of physical aggression
in children, using physical activity monitoring and machine learning. Faster movement
speed, measured by vector magnitude, in combination with age, height, and CBCL Total
Score could help identify physically aggressive incidents. Further research is needed
to confirm the validity of these findings and explore clinical applications, including for
prevention or treatment adjustment. For example, identifying predictors of aggression
may help in the timely deployment of de-escalation procedures. Finally, given known
racial/ethnic inequities in responding to problematic behavior [55], a tool to capture
aggression objectively may reduce structural racism in healthcare and educational settings.
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