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Abstract: Image-to-patient registration is a coordinate system matching process between real patients
and medical images to actively utilize medical images such as computed tomography (CT) during
surgery. This paper mainly deals with a markerless method utilizing scan data of patients and 3D data
from CT images. The 3D surface data of the patient are registered to CT data using computer-based
optimization methods such as iterative closest point (ICP) algorithms. However, if a proper initial
location is not set up, the conventional ICP algorithm has the disadvantages that it takes a long
converging time and also suffers from the local minimum problem during the process. We propose an
automatic and robust 3D data registration method that can accurately find a proper initial location for
the ICP algorithm using curvature matching. The proposed method finds and extracts the matching
area for 3D registration by converting 3D CT data and 3D scan data to 2D curvature images and by
performing curvature matching between them. Curvature features have characteristics that are robust
to translation, rotation, and even some deformation. The proposed image-to-patient registration is
implemented with the precise 3D registration of the extracted partial 3D CT data and the patient’s
scan data using the ICP algorithm.

Keywords: H-K curvature; image-to-patient registration; spherical unwrapping; iterative closest
point (ICP); template matching

1. Introduction

Image-guided surgery is a technology that helps doctors perform accurate surgical
procedures by using augmented reality techniques to match the medical image of the
surgical site to the actual surgical site [1–4]. Unlike conventional surgical methods that rely
only on the experience and knowledge of the surgeons, it is possible to assist the operation
by utilizing the image information of the patient’s surgical area in real time. In this system,
the surgeon can operate on the patient while looking at the medical image matched with the
surgical site on the monitor as well as the actual surgical site. A surgical navigation system
is one method of image-guided surgery [5–8]. A surgical navigation system provides
optimum trajectory to the surgical target, just as a vehicle navigation system facilitates
the driver with information on the map and route to the destination. This system informs
the location of the surgical site, the current location of the surgical tool, and whether the
surgical tool is safely approaching the target lesion on a medical image. To implement this
system, the relative positional relationship between the surgical site and the surgical tool
must be tracked in real time. The coordinates of the surgical tool can be displayed in real
time on the matched medical image using the obtained position and attitude information
of the surgical tool. Therefore, image-to-patient registration [9–11], which is a coordinate
system matching process between medical images, such as computerized tomography
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(CT) or magnetic resonance imaging (MRI), and real patient coordinates before surgery, is
essential for an accurate surgical navigation system.

In the image-to-patient registration process, two different coordinates of the medical
image and the actual patient are transformed into one coordinate system. Paired-point
registration is one of the typical image-to-patient registration methods [12]. It utilizes
corresponding points in the patient and medical image to match the patient’s CT/MRI
coordinate system with the patient’s world coordinate system. If at least three points that
correspond to each other between two 3D data are known, the rotation and translation
information between the two data can be obtained for matching by calculating the relation
between these corresponding points [13]. Skin-attached fiducial markers are usually used
to obtain these corresponding points [14,15]. In a pre-operative process, fiducial markers
are attached to the patient; then, a medical image is captured. Next, image-to-patient
registration is performed in the operating room between the patient with the attached
fiducial markers and the medical image. However, marker-based methods are inconvenient
to use. In addition, if the pose of the marker attached to the patient when obtaining the CT
or MRI image and the pose during the operation differs, matching error can also increase.
To solve these problems, 3D data-based methods have been proposed [16]. They utilize
the 3D surface measurement data of a patient to perform image-to-patient registration
without fiducial markers [17]. In this method, a 3D surface measurement sensor is used
to obtain the 3D surface data of the patient [18,19]. Then, image-to-patient registration is
implemented by matching the 3D surface data with the corresponding part of the 3D data
converted from the medical image. It is possible to project the CT/MRI data onto the world
coordinate system during surgery by matching the 3D surface data of the patient with the
CT/MRI data. After image-to-patient registration is completed, when the patient moves,
the optical tracker keeps track of the marker for tracking attached to the patient rather than
performing patient registration again. Therefore, the registration state can be continuously
maintained by using the posture information of the tracked marker.

A 3D data precision matching algorithm is essential to transforming a patient’s 3D
surface data and 3D CT/MRI data into a final coordinate system. Among several 3D
matching algorithms, the iterative closest point (ICP) algorithm is the most representative
and widely used one [20,21]. The ICP algorithm repeats the process of defining the clos-
est points between two 3D data as corresponding points and minimizing the sum of the
distances between the corresponding points for precision data registration. Conventional
ICP algorithms without a proper initial location involve a lot of computation and can also
suffer from incorrect matching results due to the local minimum problem [22]. The 3D
data registration process can become faster and more accurate if a proper initial location
is provided before performing the ICP algorithm. In this paper, a 3D registration method
based on curvature matching to automatically find the proper initial location for the ICP
algorithm is proposed in the head region for neurosurgery. This paper is an expanded
version of the conference paper [23], and the basic concept can also be found in the confer-
ence paper. The proposed method utilizes the natural features of the skin surface, such as
the nose and ears, eliminating the need for fiducial markers. The natural feature data are
common between the patient and the CT/MRI image, and due to the relatively large rate
of change in the data, these are easy to distinguish from other parts. Therefore, registration
and matching errors can be reduced using these feature data. The proposed method finds
the proper initial location for the ICP by converting 3D data to 2D curvature images and
automatically performing curvature image matching. The proposed matching process is
based on the characteristic that curvature features are robust to rotation, translation, and
even some deformation [24,25]. To implement image-to-patient registration, the ICP algo-
rithm between 3D CT data and 3D scan data is employed by utilizing curvature matching
region information rather than the complicated 3D template matching methods [26,27].
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2. Proposed Patient-to-CT Registration Method

In this paper, an automatic and robust image-to-patient registration method is pro-
posed for neurosurgery using curvature map conversion and matching. Three-dimensional
surface data to match CT/MRI data are obtained using a surface measurement sensor by
measuring natural feature surfaces such as the nose, eyes, and ears on a patient’s head.
The proposed registration method can avoid the local minimum problem, because suitable
initial positions in the CT surface data to match the 3D surface data are automatically found.
Figure 1 displays the schematic diagram of the proposed algorithm, which consists of three
steps. First, the CT surface data of the patient’s head are transformed into a 2D image using
spherical unwrapping, since the head’s surface data are similar to a sphere [28]. Similarly,
the surface measurement data obtained with the sensor are also converted to a 2D image
using spherical unwrapping and the mean radius computed from the CT surface data. In
the second step, both 2D images are converted to H-K curvature images by calculating the
partial differentiation of the peripheral pixel intensity.

Figure 1. Schematic diagram of the proposed registration process.
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After converting the H-K curvature image, the image matching process between two
curvature images is performed. In the final step, a 3D region of interest (ROI) from the
CT surface data is extracted by utilizing the curvature matching points obtained in the
previous step. Since the curvature image is a projection of 3D data onto a plane, the 2D
points can be converted into 3D coordinates with an inverse operation. The proper initial
coordinates for running the ICP algorithm can be estimated on the CT surface data by
inversely mapping the corresponding 2D coordinates to 3D coordinates. Automatic image-
to-patient registration is implemented by matching the CT ROI from CT surface data and
3D surface data using the ICP algorithm.

2.1. Mapping 3D CT Data to 2D Image

A CT image is a set of 2D cross-section images obtained by repeatedly scanning a
patient along the Z-axis. By aligning the corresponding Z-axis of the cross-section images
and collecting all the points, 3D point cloud data can be reconstructed from the CT image,
as shown in Figure 1, which shows the 3D CT data of a head phantom. The points for
mapping to the 2D Image in the 3D CT data should be skin surface data, which are the
outermost points. Therefore, a method is required to extract these points from the entire
3D CT data. To perform this, the 3D CT data are divided into the X-axis and Y-axis, and
the outermost points are extracted based on each axis. By dividing the 3D CT data in half
along the Y-axis at the center of 3D CT data, the outermost points of 3D CT data on the
Y-axis are extracted with the maximum value operation on the left side of the separated 3D
CT data and the minimum value operation on the right side of the separated 3D CT data.
To increase the precision of the data, similarly, after dividing the 3D CT data in half along
the X-axis at the center of 3D CT data, the outermost points of 3D CT data on the X-axis
are also extracted with the maximum value operation on the front side of the separated 3D
CT data and the minimum value operation on the back side of the separated 3D CT data.
The outermost points of the total 3D CT data, which are skin surface data, are obtained by
merging these two sets of extracted data.

The 3D shape of the CT data extracted from the patient’s head surface is roughly
spherical. Therefore, it is more effective to convert the entire 3D CT data of the skin
surface into a 2D image using spherical coordinate system conversion, called spherical
unwrapping, rather than a simple plane transformation. According to a principle similar to
equirectangular projection, which transforms the map of a globe into a 2D plane map, this
method converts every point of spherical 3D surface data into a 2D depth image. Spherical
unwrapping can be performed along any axis of the 3D data, and when the patient faces
in the direction of the Y-axis in 3D CT data, spherical unwrapping based on the Y-axis is
given by the following equations:

ri =
√

x2
i + y2

i + z2
i (1)

ϕi = arctan
(

yi
xi

)
(2)

θi = arcsin
(

zi
ri

)
(3)

The center coordinates of the 3D CT data are obtained by calculating the average
coordinates of all the 3D CT data points. Assuming that this center coordinates represent
the center of a sphere, the 3D CT data are translated in parallel so that the origin of the
coordinate system is located at the center of the 3D CT data to perform spherical coordinate
system transformations. The process of mapping 3D CT data to a 2D image is performed
using Equations (1)–(3). As shown in Equation (1), distance ri between the center point
(origin) and each point pi of 3D CT data is used as the image intensity value. ϕi, obtained
from the X- and Y-coordinate values of each point pi, is the width coordinate of the image,
and θi, obtained from the Z-coordinate value and ri value of each point pi, is the height
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coordinate of the image, as shown in Equations (2) and (3). All ri values are mapped to the
calculated width and height coordinates of the transformed image. This image projection
process shows how points in the 3D CT data are transformed into a 2D image in Figure 2
using the spherical unwrapping conversion equation. To obtain an unwrapped CT image
at the desired resolution, ϕ and θ are multiplied by the target resolution value, respectively.
Figure 2 also shows the result of spherical unwrapping on 3D CT data, and the unwrapped
CT image is a one-channel depth image.

Figure 2. Result of mapping 3D CT data to 2D image using spherical unwrapping.

2.2. Mapping 3D Scan Data to 2D Image

After converting the 3D CT data to a 2D image, the next step is to convert the 3D
scan data obtained with a surface measurement sensor to a 2D image for image matching.
The 3D scan data are gathered by projecting a structured light pattern on the surface of
the target and analyzing the output of the patterns. In order to achieve accurate results of
image matching, the two images to be matched should be on a similar scale. Therefore,
the image acquired by mapping the 3D scan data should have a scale similar to that of the
unwrapped CT image. Since the 3D scan data are only a partial measurement of the facial
surface, they are flat data, unlike 3D CT data, which are spherical. Therefore, it is possible
to map the 3D scan data to a 2D image using a simple planar projection, but it is not easy to
set a scale similar to that of the unwrapped CT image previously obtained.

To address this issue, the 3D scan data are also mapped to the 2D image using spherical
unwrapping and other techniques. Although the 3D scan data are planar, they can be
aligned with the axis of the 3D CT data, and the rmean of the 3D CT data, as the average
radius of the sphere, can be used to roughly place them on the spherical surface of the 3D
CT data, as shown in Figure 3. In the same way, 3D scan data can also be mapped to the 2D
image using spherical coordinate system conversion. Once the 3D scan data are placed on
the spherical surface of the 3D CT data, spherical unwrapping is performed to generate
an image on a scale similar to that of the unwrapped CT image. The 3D scan data are the
partial area data of the head, and they are only mapped to a portion of the whole image.
To ensure accurate image matching, only the area where the 3D scan data are mapped is
extracted as a template. Figure 3 shows the results of template extraction in the unwrapped
3D scan image corresponding to the nose and right ear.
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Figure 3. Results of mapping 3D scan data to 2D image using spherical unwrapping.

2.3. H-K Curvature Image Conversion

Curvature refers to the rate of change indicating the extent to which a curve or a
curved surface deviates from a flat plane. Principal curvature refers to the maximum
and minimum curvatures among the curvatures on a curved surface. Mean (H) curvature
represents the average value of principal curvature, while Gaussian (K) curvature represents
the product value of principal curvature. Both curvatures are commonly used for surface
shape classification [29]. Since these curvatures are only determined by the surface form,
such curvature features are robust to rotation, translation, and even some deformation. As
the depth values of 3D scan data can be primarily affected by noise and variations in head
poses during scanning, a robust image using a characteristic of curvature is necessary. The
intensity of the unwrapped image for 3D CT data and 3D scan data represents the distance
between the origin of the coordinate system and the corresponding point. Thus, this value
can represent the surface shape of 3D data, and the H curvature and K curvature of the
corresponding image coordinates can be obtained by calculating the partial differentiation
using the N ×M mask operation on the image intensity [30]. This method allows robust
curvature features to be extracted from the unwrapped image.

gij(x, y) = aij + bij(x− xi) + cij(y− yj) + dij(x− xi)(y− yj) + eij(x− xi)
2 + fij(y− yj)

2, (i = 1–N, j = 1–M) (4)

fx(xi, yj) = bij, fy(xi, yj) = cij, fxy(xi, yj) = dij, fxx(xi, yj) = 2eij, fyy(xi, yj) = 2 fij (5)

H(x, y) =
(1 + f 2

y ) fxx − 2 fx fy fxy + (1 + f 2
x ) fyy

2(1 + f 2
x + f 2

y )
3/2 (6)

K(x, y) =
fxx fyy − f 2

xy

2(1 + f 2
x + f 2

y )
2 (7)

Equations (4)–(7) describe the process of calculating H-K curvatures in the depth
image. Equation (4) is a biquadratic polynomial equation that uses the intensities of the
surrounding image. N and M represent the mask size, while x and y denote the coordinates
of the image for which the curvature is to be obtained. To calculate the curvature, the
biquadratic polynomial equation, Equation (4), is obtained by performing an N × M
mask operation around the image coordinate, and the coefficients of Equation (4) are
calculated using least squares fitting. By substituting the coefficients of Equation (4) into
Equation (5), the H and K curvatures of the corresponding coordinates can be obtained
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using Equations (6) and (7), respectively. These curvature values change dramatically in
natural features such as eyes, nose, and ears while remaining constant in other areas with
less variation, which can further emphasize the features. To utilize the characteristics of
natural features for image matching, both images from unwrapped 3D CT data and 3D
data are converted to H-K curvature images with H-K curvature values as image intensity.

The H-K curvature images of the 3D CT data and 3D scan data are visualized as 3D
meshes in Figures 4 and 5, respectively. The reason for showing the curvature image as a
mesh is that the curvature value is too small, and mesh representation shows the relative
variance of the surrounding value better than the regular image. As shown in both figures,
natural features such as nose and ears are emphasized in H-K curvature images, as these
areas have distinct curvature values compared with the surrounding areas.

Figure 4. Results of curvature image conversion of the unwrapped CT image.

Figure 5. Results of curvature image conversion of the unwrapped image of 3D scan data.

2.4. Curvature Image Matching

To perform image matching between two curvature images acquired from CT data
and scan data, normalized cross-correlation (NCC) is used [31]. In signal processing,
cross-correlation is a method for measuring the similarity of two waveforms by shifting
one waveform relatively to the other. To apply cross-correlation in image processing for
measuring the similarity between two images, first, the images should be normalized by
subtracting the mean and dividing by the standard deviation. This method ensures that
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the correlation measure is independent of differences in the absolute values of the image
intensities. Equation (8) shows the formula for calculating NCC for image matching.

γ(u, v) =
Σx,y[ f (x, y)− f̄u,v][t(x− u, y− v)− t̄]

{Σx,y[ f (x, y)− f̄u,v]2Σx,y[t(x− u, y− v)− t̄]2}0.5 (8)

The process of image matching involves measuring linear variations and geometric
similarity between two images by shifting the smallest image as a template, creating a
relationship map between the two images, and selecting the largest values as the matching
points. NCC is a method used to estimate the correlation between two images using
normalization. It is independent of linear differences between the intensities of both images
and is less influenced by the absolute values of image intensity. Thus, NCC is appropriate
for matching relative shapes and is utilized for curvature image matching in this research.
Since NCC is a kind of template matching, one image must be chosen as the template. In
this case, the curvature image of the 3D scan data, which is smaller than the curvature
image of the 3D CT data, is selected as the template image for curvature image matching.
As shown in Figure 6, NCC is utilized to match the curvature images of the 3D scan data
and CT data. Matching values for each datum are separately obtained using the H and K
curvature images, and the coordinates with the largest average of the matching values of
each datum are regarded as matching coordinates. The results of curvature image matching
are displayed in Figure 6, where the matching area is shown by a bounding box in the
unwrapped CT image for convenience.

Figure 6. Curvature image matching using NCC.

2.5. CT ROI Extraction

After successfully matching the curvature images, the coordinates of the four matching
points in the unwrapped CT image are calculated. These 2D coordinates and image intensity
values can be converted to 3D coordinates using Equations (9) and (10), which are inverse
operations of spherical unwrapping.

tan (ϕi) =
yi
xi

(9)

sin (θi) =
zi
ri

(10)
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To calculate ϕi, the corresponding width coordinate of the image is divided by the
image width value, and to calculate θi, the corresponding height coordinate of the image
is divided by the image height value. ri represents the intensity of the corresponding
image coordinate as shown in Equation (1) and is the distance between the origin and
corresponding 3D points of CT data. These simultaneous equations are used to obtain the
coordinates of the converted 3D points. Then, the 3D ROI is extracted from the 3D CT
data using the four converted 3D matching coordinates. A boundary area is established
based on the four converted coordinates, and the 3D point data included within this
specific boundary are extracted from the 3D CT data. These extracted data represent
the proper initial position for applying the ICP and are the CT ROI that will be matched
to the 3D scan data. Figure 7 shows the 3D ROI extracted using the four converted 3D
matching coordinates.

Figure 7. CT ROI extraction using matching points.

2.6. Accurate Surface Registration Using ICP Algorithm

The ICP algorithm is one of the representative ways to match different data, and in
particular, it is mainly used for matching between 3D point cloud data. The ICP algorithm
is based on finding the closest corresponding points between the two point clouds and
minimizing the sum of the distances between them to find the correlation. Then, the data
for matching are moved and rotated according to this correlation to add and match the
existing data. The ICP algorithm is suitable for point cloud data registration, since it can
achieve high accuracy with a simple calculation. However, when there is a significant
difference between the two data sets or the matching area is small, coarse registration of
the data should be performed before applying the ICP algorithm.

Coarse registration is a rough matching process that involves an approximate align-
ment of two data based on a proper initial location for the ICP algorithm. Using the ICP
algorithm without this process can lead to convergence to a local minimum and failure
of the matching process. In this study, the CT ROI, which is extracted in advance, is used
instead of the entire 3D CT data to precisely match the 3D scan data using the ICP algorithm.
This improves the computational speed of the ICP algorithm and makes matching more
accurate because the local minimum problem is avoided at the time of matching. Figure 8
shows the results of matching two data using the ICP algorithm. The green point represents
the 3D scan data, and the remainder is the CT ROI. Since the extracted CT ROI is used to
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provide the proper initial location for the ICP, coarse registration is not essential. However,
for the stability of data matching, coarse registration is performed between two data be-
fore ICP matching. Then, as shown in Figure 8, the two 3D data are matched using the
ICP algorithm.

Figure 8. Registration results using ICP algorithm.

3. Experimental Results and Discussion
3.1. Experimental Environment and Settings

The equipment utilized to obtain 3D scan data for the experiment was a 3D surface
measurement sensor based on structured light, which is currently under development. This
equipment comprised a projector and a camera. The principle of this 3D sensor is based
on projection moire profilometry, in which a sine wave pattern is projected on the object
under investigation by a projector and the object with the projected pattern is imaged by
the camera. The 3D shape of the object is reconstructed by analyzing the deformation of the
projected pattern in the acquired image. Detailed specifications of the surface measurement
sensor are presented in Table 1. Unlike laser line scanners that use line-based scanning,
this equipment scans the entire area in the field of view, allowing a wide range of 3D data
to be obtained with just a few captures. Thus, it is suited to be used for image-to-patient
registration in operating rooms. Furthermore, it offers advantages over other scanners in
terms of accuracy and ease of use.

Table 1. Specifications of the surface measurement sensor.

Value Unit

Resolution 2048 × 1088 pixels
Accuracy 134 µm

Measurement distance 25–35 cm
Measurement area 13 × 8 cm

Figure 9 shows the experimental environment. As shown in Figure 9, a head phantom
was used instead of a human head in the experiment. The 3D sensor was used to measure
the surface of the natural features of the head phantom, such as eyes, nose, and ears, and
the 3D CT data had the entire surface information of the head phantom. The 3D scan data
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consisted of approximately 20,000 points, and the 3D CT data consisted of approximately
350,000 points. The proposed algorithm was implemented using MATLAB.

Figure 9. Three-dimensional measurement sensor under development and experimental environment.

3.2. Curvature Image Matching and CT ROI Extraction

In the proposed method, the depth image obtained using spherical unwrapping is
converted into a curvature image. Then, matching points are obtained to extract the CT
ROI using curvature image matching. Although the conversion process is cumbersome,
it is an essential step for robust image matching using the characteristics of the curvature
image. To prove this, as shown in Figure 10, image matching between depth images before
conversion and image matching between curvature images were performed using NCC,
respectively. The results of depth image matching are shown in Figure 10a, where matching
failed due to the large difference in intensities between 3D scan data and 3D CT data. In
contrast, matching performed on curvature images was successful and accurate, as shown
in Figure 10b. These experimental results show the fact that curvature image matching is
more robust than depth image matching.

Figure 10. Image matching result using NCC; (a) depth image matching and (b) curvature image matching.



Sensors 2023, 23, 4903 12 of 18

Matching between depth images was not performed properly due to their sensitivity
to changes in intensity caused by holes, rotations, and translations that occur during the
unwrapping process. In contrast, curvature image matching uses calculated curvature as a
relative relation of surrounding image intensity values. This means that some degree of
rotation and translation, and even some deformation, can be ignored. Furthermore, by only
emphasizing the targeted natural feature, robust image matching can be achieved. Figure 11
shows additional experimental results of curvature image matching. It can be seen that
curvature image matching works well even if there is some deformation or rotation that
can occur during the scanning process in 3D scan data.

Figure 11. Results of curvature image matching; (a) using data with pitch rotation, (b) using data
scanned on the side, and (c) using data with some deformation.



Sensors 2023, 23, 4903 13 of 18

Four matching points are obtained with curvature image matching, and these points
are then converted into 3D points to extract the CT ROI based on the coordinates of
the converted points. In this experiment, 30 sets of 3D scan data obtained with the 3D
measurement sensor were used for CT ROI extraction. The accurate matching result of
the proposed method ensures the precise extraction of the CT ROI. Part of the CT ROI
extraction experimental results are shown in Figure 12.

Figure 12. Results of CT ROI extraction.

3.3. Surface Registration Results Using ICP Algorithm

Image-to-patient registration is achieved by matching the 3D scan data with the
extracted CT ROI. The results of an experiment performed to verify the proposed algorithm
using several 3D scan data are shown in Figures 13 and 14. ICP registration between the
whole 3D CT data and the 3D scan data without preprocessing, such as coarse registration,
failed due to the local minimum problem and scale difference, as shown in Figure 13.
However, the proposed ICP registration between the CT ROI and the 3D scan data avoided
the local minima during the matching process and was performed correctly, as shown
in Figure 14.
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Figure 13. Results of ICP registration without preprocessing; (a) nose and eye data, and (b) right ear data.

Figure 14. Results of proposed ICP registration; (a) nose and eye data, (b) right ear data, (c) data of
tip of nose, and (d) left ear data.
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Table 2 shows the ICP registration errors of the results in Figure 14. The mean ICP
registration error, calculated as the average distance of all corresponding points between
the two data, was about 473–840 µm, and the standard ICP registration error was about
263–804 µm. This registration error depended on the used 3D scan data.

Table 2. ICP registration errors of each result.

Figure 14a Figure 14b Figure 14c Figure 14d

Mean error 473.3 µm 834.9 µm 839.7 µm 759.1 µm
Std error 262.8 µm 803.6 µm 654.6 µm 406.8 µm

In addition, when ICP matching was performed after manually providing appropriate
initial location information for coarse registration, it took about 40 to 70 s due to the
difference in scale between the two data. In contrast, the proposed method applied the
ICP algorithm after extracting the CT ROI, so the ICP matching process was completed
in about 6 s, and CT ROI extraction took about 11 s. Since the proposed registration was
performed by converting to a similar scale, it was performed more accurately and with
fewer operations.

As previously mentioned, H-K curvature can also be used for 3D surface shape
classification. The 3D shape of the specific area can be distinguished using the inequality
relation of the H-K curvature value. Therefore, various studies have been conducted to
detect and extract natural features such as nose and eyes from 3D head data, leveraging
the distinctive properties of H-K curvature [29,30]. This method can also exploit the
characteristics of H-K curvature to identify natural features. Previous experiments used 3D
scan data that had been taken without roll rotation when measuring the surface of the head
phantom. However, by obtaining the direction vector of the natural feature region from 3D
scan data using H-K classification, 3D scan data with some roll rotation can also be matched.
Although some image matching algorithms that consider the template with roll rotation
can be used, they take a long time to execute due to a large amount of computation [32–34].
In contrast, this method utilizes the already obtained H-K curvature image without the
need for additional complicated operations.

Figure 15 shows the nose vector obtained by extracting the nose region, which is an
elliptical convex, using the surface shape classification of H-K curvature in the curvature
image of 3D scan data. The extracted nose region is represented as a binary image to simply
verify the extraction. The nose vector was obtained using the maximum–minimum value
and the rate of change in the intensity values of the unwrapped image corresponding to
the nose region. In the unwrapped CT image, the nose vector is always vertically upward.
Therefore, aligning the nose vector of the template image with this vector before NCC
allows data with roll rotation to be used in the proposed algorithm. This improvement can
increase the degree of freedom and convenience for the user.

Figure 15. Nose region extraction and alignment using a nose vector.
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Figure 16 shows the result of the ICP registration of 3D scan data that have roll rotation
using the proposed vector alignment algorithm. Because the nose vector of the template
image was aligned before NCC, the CT ROI was correctly extracted, and ICP registration
was successfully completed. However, this has confirmed the possibility, even though it
is not yet a complete algorithm, to improve the algorithm for other natural feature areas,
such as the ear, and further experiments are needed in the future.

Figure 16. Result of proposed ICP registration using vector alignment.

4. Conclusions

The study concentrated on coordinate matching between patient coordinates and
image coordinates for image-to-patient registration, which is used in surgical navigation
systems. Instead of using specific markers attached to the patient, the proposed method
utilizes a surface measurement sensor and H-K curvature for coordinate matching to
improve accuracy and convenience. The main contribution is making the image-to-patient
registration process automatic. Using the proposed H-K curvature image-based registration
method, the image-to-patient registration process using surface measurement data can be
fully automated. Additionally, the local minimum problem of the ICP process is solved by
providing a proper initial location, since the 3D ROI is extracted and used for matching,
the area of data to be finally matched in ICP matching is reduced, and faster and more
accurate matching results can be obtained. The proposed algorithm utilizes natural features
of the patient’s face, such as eyes, nose, and ears, for matching coordinates between patient
and CT data. To improve the computation speed, the 3D data are mapped to 2D depth
images. Then, in order to achieve robust image matching, they are converted into H-K
curvature images that emphasize the features of depth images, and image matching is
performed. The three-dimensional ROI of CT data to be used for ICP matching can be
obtained with the inverse operation of matched image points. Finally, the extracted CT
ROI and surface measurement data are matched with the ICP algorithm. As a result of
various matching experiments, in the proposed method, it is confirmed that neither of
the data converge to the local minimum and that they match correctly. Further work will
focus on experiments to compare the performance of the proposed method with that of
traditional 3D data matching methods and to test the method on human data instead of head
phantom data.
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