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Abstract: The safeguarding of online services and prevention of unauthorized access by hackers rely
heavily on user authentication, which is considered a crucial aspect of security. Currently, multi-
factor authentication is used by enterprises to enhance security by integrating multiple verification
methods rather than relying on a single method of authentication, which is considered less secure.
Keystroke dynamics is a behavioral characteristic used to evaluate an individual’s typing patterns to
verify their legitimacy. This technique is preferred because the acquisition of such data is a simple
process that does not require any additional user effort or equipment during the authentication
process. This study proposes an optimized convolutional neural network that is designed to extract
improved features by utilizing data synthesization and quantile transformation to maximize results.
Additionally, an ensemble learning technique is used as the main algorithm for the training and
testing phases. A publicly available benchmark dataset from Carnegie Mellon University (CMU) was
utilized to evaluate the proposed method, achieving an average accuracy of 99.95%, an average equal
error rate (EER) of 0.65%, and an average area under the curve (AUC) of 99.99%, surpassing recent
advancements made on the CMU dataset.

Keywords: keystroke dynamics; user authentication; convolutional neural network; CNN; CMU;
quantile transformation; deep learning; boosting techniques

1. Introduction

The process of confirming users’ identities is a crucial aspect of digital systems. Com-
panies and corporations are actively seeking effective security solutions to address threats,
including identity theft and data leaks. The COVID-19 pandemic has underscored the
significance of ensuring secure authentication when accessing business and personal in-
formation over the Internet. The ability to work from home and perform regular tasks
online, such as completing insurance paperwork and making purchase orders, has become
increasingly important. Unfortunately, recent events have also led to a rise in security
breaches [1].

Biometrics refers to an individual’s characteristics or actions and can be classified
into physiological and behavioral categories [2]. The behavioral biometric technique of
keystroke dynamics utilizes a person’s typing patterns on a keyboard. Keystroke dynamics
have significant advantages due to their ability to identify individuals based on their unique
typing rhythm. The significant advantages of keystroke dynamics are:
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• Uniqueness: According to [3], keystroke inputs can be accurately measured using
software, which makes it extremely difficult to reproduce someone’s typing patterns
at the same level of precision without a significant amount of effort.

• Low Cost: Unlike other biometric systems that rely on physical hardware, such
as face or fingerprint recognition, keystroke dynamics can be implemented solely
through software. This approach reduces installation costs and makes it suitable for
remote authentication [4,5]. This has led many service providers to develop their own
methods or utilize third-party solutions to validate their users’ credentials [6].

• Enhances Password Longevity and Robustness: Passwords remain the most widely
used form of authentication, despite their vulnerability. Keystroke dynamics is be-
ing explored as a method to enhance the security of passwords and increase their
durability [4].

• Ongoing Verification and Monitoring: Keystroke dynamics offer a way to continually
authenticate a person’s legal identity as long as they continue to communicate with
the system using input keyboards [7], as it is possible to continuously analyze and
reassess keystroke typing behavior.

There are two primary kinds of keystroke dynamics, free text and fixed text. Free text
concentrates on authenticating a user’s identity using impromptu text, which typically
requires extensive training and large text instances. On the other hand, fixed text aims
to confirm a user’s identity based on repeated, short text and requires a much shorter
training period. Fixed text methods are commonly used by service providers to verify a
user’s identity as they enter their login credentials, offering clear benefits. These meth-
ods also help prevent identity theft, fraud, and cyberattacks, thereby increasing security
without requiring any extra work or action on the part of the user. Keystroke dynamics is
becoming increasingly popular as a means of enhancing the security of Internet of Things
(IoT) devices. One key advantage of keystroke dynamics is that it does not require any
additional hardware or software to be installed on a device. It can be implemented using
existing keyboard hardware and software, making it a cost-effective solution for IoT devices
compared to cryptography and hash functions that require a lot of computation [8–10].

In this paper, we will focus on meeting two essential criteria:

• Performance: We aim to enhance the recognition accuracy of keystroke dynamics,
surpassing that of previous research.

• Robustness: The most crucial factor is to ensure that the suggested method can
effectively handle issues such as overfitting, underfitting, noise, and outliers.

Developing a technique that fulfills these criteria is a difficult task. To address this
issue, this study proposes an effective method that relies on advanced preprocessing for
reducing outliers, a tailored convolutional neural network for extracting the best features,
and a boosting technique for accurately detecting an attacker or normal user.

Table 1 provides a summary of various recent research studies aimed at improving and
developing keystroke dynamics authentication. In this paper, we propose a straightforward
technique that fulfills the above-mentioned criteria by utilizing an effective preprocessing tech-
nique, a deep learning architecture, and a boosting classifier to enhance user authentication.

The most significant contributions of our study are:

• Compared to other biometrics, keystroke dynamics offers certain benefits, but its
main drawback is its lower accuracy. This research aims to address this limitation by
investigating the performance and limitations of existing systems and proposing a
model that can enhance the accuracy and performance of biometric systems.

• A novel data synthesization technique that effectively augments and increases the
data using the standard deviation.

• Reduction of anomalies and extreme values in the data through the use of quantile
transformation, which converts any distribution into a uniform distribution.

• An efficient, tailored convolutional neural network that is robust to overfitting and
underfitting problems.
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• Enhanced performance and robustness using a combination of data synthesization
and quantile transformation techniques.

Table 1. Latest developments in the CMU dataset.

Reference Classifier Date Accuracy (%) EER (%)

[11] Histogram Gradient Boosting 2023 97.96 1.4

[12] XGBoost-augment 2022 96.39 -

[13] One-class SVM 2021 - 1.83

[14] MDE 2019 - 3.48

[15] X-means with QT 2021 AUC is 0.942 11.2

[16] Dependence Clustering + KNN 2017 - 7.7

[17] Kernel PCA with KNN 2020 87.5 -

[18] GFM 2018 - 7.86

[19] POHMM/SVM 2022 91.3 -

[20] Ensemble (KNN, SVM, DT) 2022 95.65 -

[21] ANN 2021 91.8 -

[22] FFMNN 2020 94.7 -

[23] Transfer Learning 2022 98.57 -

[24] Autoencoder 2019 - 6.51

[25] Nadam optimizer 2018 92.60 -

[26] Deep Secure 2017 93.59 3

[27] MLP 2020 - 4.45

The proposed methodology in this study further optimizes the use of keystroke
dynamics for authentication by utilizing an optimized convolutional neural network that
extracts improved features, together with an ensemble learning technique for the training
and testing phases. The overall advantage of this methodology is that it enhances the
security of online services by providing a highly accurate and efficient authentication
process that utilizes a unique and convenient method of user identification.

The remaining sections of our paper are organized as follows. Section 2 describes
the previous research that is relevant to our study. In Section 3, we provide a detailed
discussion of the proposed method, including the preprocessing and learning algorithms
used. The experimental results, including the dataset, evaluation metrics, and outcomes,
are described in detail in Section 4. Finally, in Section 5, we summarize our findings and
suggest potential areas for further investigation.

2. Related Works

In this section, we examine the recent works that have applied machine learning
methods and then explore deep learning approaches.

2.1. Machine Learning Techniques

Recently, machine learning methods have been extensively employed in research on
keystroke dynamics.

In [11], the main classifier used in the training and testing phase was Histogram
Gradient Boosting (HGB), which relies on histograms to group continuous data into a fixed
number of bins. By reducing the number of unique values for each feature to a smaller,
more manageable set, this technique allows for faster and more efficient implementation of
decision trees. This approach achieved an average accuracy of 97.96%, which is comparable
to that of traditional gradient boosting.
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Another study [12] employed multiple machine learning techniques, including XG-
Boost, a popular method in Kaggle competitions known for its ability to handle outliers
and misclassifications better than AdaBoost. Data augmentation was also used, which
involves generating synthetic data to supplement an existing dataset. Through experiments,
the authors found that XGBoost with data augmentation achieved the highest accuracy
of 96.39%.

In [13], a novel barcoding system was proposed, which transforms biometric data
into compact barcode images that can be easily stored. The primary technique utilized
for training the barcode images was one-class SVM. The results of this approach were
promising, with an excellent EER (Equal Error Rate) of 1.83%.

As the dimensionality of data increases, the data become sparse and all data points
seem like outliers when using distance measures. To address this issue, a subspace-based
algorithm was proposed in [14], which uses the sparsity coefficient for finding outliers.
Partitioning high-dimensional space into subspaces results in a large number of subspaces,
making it difficult to search through each one in a timely manner. To solve this issue,
Modified Differential Evolution (MDE) is used to search for sparse subspaces by using the
sparsity coefficient as the objective function. MDE’s crossover rate and mutation explore
and exploit these sparse subspaces, achieving an equal error rate of 3.48%.

In [15], the limitations of keystroke dynamics algorithms when multiple users share
an account were addressed. The authors introduced a four-stage approach that utilizes pre-
existing algorithms to autonomously ascertain the number of users who share an account
and provide reliable support for accounts that are shared by multiple users. The approach
resulted in an average improvement of 9.2% for the AUC and 8.6% for the EER in cases
where multiple users were involved. Several research studies have employed the K-nearest
neighbor (KNN) method for user authentication. For example, KNN was used together with
dependence clustering [16], resulting in an equal error rate (EER) of 7.7%. In another study,
KNN was combined with dimensionality reduction and localization [17], which was found
to be effective in handling anomalies and deviations with an accuracy of 87.5%. Another
paper [18] proposed a novel method for keystroke dynamics-based authentication using
the Generalized Fuzzy Model (GFM), which outperformed the Gaussian Mixture Model
(GMM) on the CMU dataset. The best equal error rate (EER) of 7.86% was achieved with
GFM using Hold Time and Up-Down Time with 16 components. GFM’s superiority over
GMM was attributed to the use of uncertainty representation in keystroke measurements,
which allows for good accuracy with few Gaussian mixture components.

Ali et al. [19] proposed a hybrid POHMM/SVM method for efficient user identification
in keystroke biometrics. The POHMM model extracts features and handles missing or
infrequent data, and SVM is used as the classifier. The proposed model achieved the best
accuracy of 91.3% and inherited the benefits of both the POHMM and SVM models.

Benoît et al. suggested an authentication method based on a bagging ensemble of
three different classifiers: SVM, KNN, and decision tree [20]. The method uses keystroke
dynamics to authenticate users based on their typing style and achieved an accuracy of
95.65% on the CMU dataset. The proposed approach combines the outputs of the three
classifiers using majority voting, resulting in better accuracy than previous works.

2.2. Deep Learning Techniques

Deep learning techniques have demonstrated exceptional performance in classification
tasks across various fields, including keystroke dynamics. By training deep neural networks
on keystroke data, researchers have been able to automatically extract features and patterns
that distinguish individual typing behaviors, such as keystroke timing, duration, and
pressure. This has enabled the development of more accurate and reliable keystroke
dynamics authentication systems, which can effectively identify individuals based on their
typing patterns.

Adesh et al. [21] analyzed a keystroke dataset using SVM, RF, and ANN, with the latter
achieving the best accuracy of 91.8%. The ANN had 6 layers and 56 output nodes, with
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various activation functions and dropout regularization used. The authors of [22] proposed
a deep learning approach using three different neural network models trained for each user.
Resilient backpropagation with a momentum factor was used to reduce weight change
fluctuations. The 20-30-20 neural network configuration provided the best results, with an
ERR of 0.049 and identification accuracy of 94.7%, outperforming models with more than
three hidden layers. In [23], transfer learning was proposed, which converts keystroke data
into image data and applies fine-tuning to pre-trained AlexNet and ResNet models for
classification. The authors also used a support vector machine for feature extraction. The
approach achieved 98.57% accuracy. An autoencoder model with encoder and decoder
phases was utilized for keystroke authentication [24]. An MLP architecture was used in the
encoder phase to obtain features, and the decoder phase reconstructed the original features
using the extracted features. The encoded features with minimum errors were fed into a
Gaussian mixture algorithm to determine abnormal users, achieving an EER of 6.51.

The use of various optimizers in deep learning approaches has shown significant
improvements in performance. Muliono et al. [25] employed several independent learning
layers that can learn separately. Their research highlighted the significance of using the
Nadam optimizer, which demonstrated an impressive accuracy of 92.60%. To speed up
the training process of deep networks, researchers frequently utilize various optimizers,
in particular, the Adam optimizer [26]. The authors of [26] proposed a three-hidden-layer
architecture utilizing LeakyReLU and softmax functions, achieving an overall accuracy of
93.59% and an EER of 3%. Andrean et al. [27] proposed a Multilayer Perceptron (MLP)-
based deep learning approach for keystroke authentication. The MLP architecture has an
input layer, two hidden layers, and an output layer. The approach achieved an optimal
EER of 4.45% using 31 input neurons and 23 hidden neurons. Table 1 provides an overview
of the most recent advances made in the CMU dataset utilizing both machine and deep
learning techniques.

It is evident from the literature that researchers mainly use one of two approaches.
The first approach involves the use of various machine learning algorithms to improve
classification performance and the second approach involves the utilization of deep learning
approaches to extract features and enhance performance. In our study, we aim to develop
a new approach that combines the benefits of both these approaches by employing a
customized deep learning architecture to extract optimal features and using boosting
techniques to classify the features into the correct category and identify malicious users. In
addition to combining the advantages of both approaches, we also employ two efficient
data processing techniques to improve performance. The first is data synthesization to
increase the amount of data and the second is quantile transformation to effectively reduce
the impact of outliers. As stated in the literature, most studies focus on improving the EER
and accuracy, which still require further advancement and refinement.

3. Methodology

As illustrated in Figure 1, our approach begins with data gathering that relies on
the CMU dataset. This dataset consists of 51 participants who entered their passwords
400 times. Every example contains 31 features. The number of examples for each user is
increased via data synthesization, which is important and necessary to enhance model
performance. After data synthesization, quantile transformation is employed to convert the
data distribution into a uniform distribution, which dramatically minimizes the extreme
values that impede model performance. These converted features are fed into a robust
and efficient convolutional neural network architecture that is designed to extract robust
and immutable features, mitigating issues such as overfitting and underfitting. These
extracted features are finally fed into ensemble learning algorithms to detect whether the
user is normal or malignant. The methods and techniques used in our research, such
as preprocessing, CNN architecture, and learning algorithms, are fully described in the
remainder of this section.
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Figure 1. Proposed framework for our methodology.

3.1. Preprocessing

• Data Synthesization (DS) is considered one of the most important phases in our
approach. It generates new synthesized data-based statistical techniques. The standard
deviation is utilized to generate new data by computing it for each column feature
and then adding it to the old values of the column feature. For every user, there
are 800 original rows (400 normal and 400 imposters). Data synthesization is used to
generate 5 synthesized rows for each original row, resulting in 2000 normal rows and
2000 imposter rows, with a total of 4000 synthesized rows. Figure 2 illustrates the flow
of data synthesization.
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 400 Imposter Rows  400 Normal Rows 

800 Original Rows 

 2000 Synthesized Rows  2000 Synthesized Rows 

4000 Synthesized Rows 

Std.Dev Std.Dev 

Figure 2. Flow of data synthesization.

• Quantile Transformation (QT) is a creative approach that alters the features to achieve
a normal distribution. Each feature is individually subjected to this transformation.
The native features are converted into novel features that are uniformly distributed
using the cumulative distribution function [28]:

F(X) =
x− a
b− a

(1)

where a and b are two fixed values such that a < x < b.
This method is very useful and successful at removing anomalies and extremes, which
can have a significant impact on performance.

3.2. CNN Architecture

As shown in Figure 3, our CNN architecture consists of 14 layers comprising 4 convo-
lutional layers, 4 dropout layers, 2 batch normalizations, 1 flatten layer, and 3 dense layers.
In the remainder of this subsection, the important layers of our architecture are explained
in detail, including the dropout layer, batch normalization, and ELU activation function.
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Figure 3. CNN architecture.

• Dropout Layer: This is a very important technique used to enhance deep learning
layers and prevent overfitting problems. It works by shutting down or freezing some
neurons according to the dropout rate while unfreezing other neurons. It sets 0 for
certain neurons at a specific rate while other neurons are updated by multiplying their
values by 1/(1-rate), which ensures that the total sum of all the inputs remains the
same before applying dropout [29]. In our architecture, four dropout layers with a
rate of 0.4 are used to mitigate the overfitting problem and enable the model to learn
different features from a different perspective.

• Batch Normalization: Deep learning takes a long time in training due to the different
distributions of the batches in each layer. Batch normalization normalizes all the
batches of the different distributions into a standard distribution, with the mean set
to 0 and the variance set to 1. Then, it scales the inputs and shifts them to another
space [30]. The following equations show how batch normalization works.

µB =
1
m

m

∑
i=1

xi (2)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (3)

x̂i =
xi − µB√

σ2
B + ε

(4)

yi = γx̂i + β (5)

The mean and variance of the batch are computed, as shown in Equations (2) and (3).
Every sample xi of the batch is normalized into a zero mean and unit variance. In
Equation (5), the samples are scaled and shifted with learnable parameters γ and
β. In our architecture, we use two batch normalization layers, which enhances our
approach and has a significant effect on preventing the overfitting problem.

• ELU Activation Functions: The Exponential Linear Unit (ELU) is a modified and
developed version of the RELU function that suffers from the dying problem. The
RELU function works by passing the positive values while setting the negative values
to zero. The network does not learn anything during the backpropagation due to the
zero output for the negative values. This problem is called the dying problem. The
ELU function solves this problem using the following equation [31]:

f (x) =
{

α(ex − 1) for x < 0
x for x ≥ 0

(6)
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The positive values are passed while the negative values are smoothed by the α
constant. The ELU has fast convergence and better generalization than the RELU. In
addition, it avoids the problems of vanishing or exploding gradients. The ELU function is
utilized in our architecture through the convolutional and dense layers. The ELU efficiently
solves the dying problem caused by the RELU function and enhances model performance.

Table 2 presents the details of our CNN architecture and the learned parameters for
each layer.

Table 2. Details of all layers in CNN architecture.

Layer Type Kernel Size Padding Activation Function # of Kernels Output Shape Learned Parameters

Conv 1D 7 × 1 Same Elu 128 31 × 128 1024
Conv 1D 7 × 1 Same Elu 128 31 × 128 114,816

Dropout - Rate = 0.4 - - 31 × 128 0
BatchNormalization - - - - 31 × 128 512

Conv 1D 5 × 1 Same Elu 64 31 × 64 41,024
Conv 1D 5 × 1 Same Elu 64 31 × 64 20,544

Dropout - Rate = 0.4 - - 31 × 64 0
BatchNormalization - - - - 31 × 64 256

Flatten - - - - 1984 0
Dense (120) - - Elu - 120 238,200

Dropout - Rate = 0.4 - - 120 0
Dense (60) - - Elu - 60 7260
Dropout - Rate = 0.4 - - 60 0

Dense (30) - - Elu - 30 1830

3.3. Learning Algorithms

In our study, a variety of ensemble learning algorithms that offer reduced training
time and improved efficiency are examined. These algorithms belong to the boosting
method which is a branch of ensemble learning. The boosting method consists of several
algorithms that turn weak learners into strong ones. It is very popular, efficient, and
produces outstanding results. The algorithms are described in this subsection.

- LightGBM: Gradient Boosting Decision Tree (GBDT) is time-consuming and has low
efficiency, especially in a large and high-dimensional dataset, as it scans all the features
to calculate the information gain for each potential split. LightBoost is an extension and
improvement of GBDT [32] that has proven to function effectively and extremely fast
on big datasets and requires significantly less training time than the other algorithms.

- XGBoost is exclusively designed and optimized for model effectiveness and computa-
tional speed. It makes full use of each byte of memory and hardware and offers the
advantages of algorithm improvement, model tuning, and deployment in computing
settings. XGBoost enhances performance by optimizing the objective function, as
shown in the following equation [33]:

obj(θ) = TL(θ) + R(θ) (7)

The objective function consists of two terms (TL and R). TL refers to the training loss
that computes the difference between the prediction and actual labels and R refers
to the regularization that penalizes the training loss in order to solve the overfitting
problem and makes the model generalize efficiently on the unseen data.

- AdaBoost: The AdaBoost model of Freund and Schapire [34] was the first useful
boosting model and is now one of the most popular and extensively studied models,
with implementations in many different industries. The AdaBoost technique is built
on the concept of merging numerous weak rules to obtain a high-accuracy prediction
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rule. The sign of a weighted aggregation of weak classifiers is computed by the final
or combined classifier F [35].

F(x) =
T

∑
t=1

αtht(x) (8)

where the final classifier is computed as a weighted majority vote of the weak classifiers
ht, where each classifier is given the weight αt.
AdaBoost aims to minimize the cost function, also known as the exponential loss [35]

1
m

m

∑
i=1

exp(−yiF(xi)) (9)

where F(x) is as given in Equation (8) and y is the actual label.
- CatBoost is an open source library that utilizes gradient boosting on decision trees.

It is a machine learning algorithm that produces high-quality predictions by using
categorical features to build an ensemble of decision trees. CatBoost uses a novel
technique called “Ordered Boosting”, which helps to reduce overfitting and improve
accuracy. The equation for CatBoost is as follows [36]:

F(x) =
N

∑
i=1

αiFi(x) (10)

where αi is the weight of each tree in the ensemble, Fi(x) is the prediction of the ith
tree, and x is the input vector.

We utilized a variety of software tools in our implementation, including Pandas for
data processing; Matplotlib, Matlab, and Python for visualization; Sklearn library for ma-
chine learning algorithms; and Keras and TensorFlow for the convolutional neural network.

4. Experiments and Results
4.1. Dataset

The CMU dataset consists of 51 users’ keyboard dynamics. Each user inputs the
password “.tie5Roanl” 400 times in 8 sessions, with 50 repetitions per session. The sessions
were spaced at least one day apart to capture daily variations in rhythm [37]. The model
was given various timing features as input, including Hold Time, Down-Down Time, and
Up-Down Time features. Hold Time describes the duration between pressing and releasing
a key. Down-Down Time represents the time elapsed between two consecutive key presses,
and Up-Down Time describes the time elapsed between releasing a key and pressing the
next key. The CMU dataset includes a total of 31 timing features, with 11 categorized
as Hold-Time, 10 as Down-Down Time, and 10 as Up-Down Time features. The timing
features used in the model are presented in Figure 4. A key press is represented by a down
arrow and a key release is represented by an up arrow, as described in [22].

Figure 4. Features of keystroke dynamics.

4.2. Evaluation

Many previous studies used common evaluation metrics such as accuracy and EER.
However, in our study, we incorporated additional evaluation metrics, such as precision,
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recall, and F1 score, which are shown in Figure 5. The ROC curve was utilized to create a
graphical representation of the model’s performance and robustness, and the area under
the curve (AUC) was computed to determine the quality of the classifier. An AUC of 1
indicates a perfect classifier, whereas an AUC of 0.5 indicates a random classifier. The
EER was calculated using the ROC curve by determining the point where the rates of false
acceptance and false rejection were equal, as described in [38]. The lower the EER, the better
the performance of the algorithm. Our study considered the use of multiple evaluation
metrics to ensure that our methodology is efficient, robust, and free from overfitting and
underfitting problems.

Figure 5. Confusion matrix and evaluation metrics.

4.3. Data Exploration

The CMU dataset contains 31 features divided into 3 subsets: Down-Down Time,
Up-Down Time, and Hold Time features. We performed a statistical analysis to determine
whether there were significant differences between the three subsets. To conduct data
exploration, 4 out of 51 users were randomly selected.

The line graphs presented in Figure 6a show 400 input samples for each user, and the
patterns in these samples indicate a significant level of consistency in the Down-Down
Time features subset. This suggests that users can be accurately classified based on their
typing patterns. Furthermore, by comparing the average cases of the four selected users in
Figure 6b, it can be observed that their typing patterns were quite similar to each other.

(a) Individual

1 2 3 4 5 6 7 8 9 10

Down Down Features

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

T
im

e

Average Down Down for Four Users

(b) Average

Figure 6. Down-Down Time features for four subjects (400 keystrokes).

The outcomes for the Up-Down Time features are displayed in Figure 7, which appear
to be similar to those of the Down-Down Time features illustrated in Figure 6.
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(a) Individual

1 2 3 4 5 6 7 8 9 10

Up Down Features
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(b) Average

Figure 7. Up-Down Time features for four subjects (400 keystrokes).

Figure 8a compares the four users based on the Hold-Time features, where it is more
apparent that there are variations among them. The average examples in Figure 8b show
even more significant differences. Therefore, these observations suggest that the Hold-Time
features can be used to distinguish between users.

(a) Individual

0 2 4 6 8 10 12

Hold Features

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

T
im

e

Average Hold Time for Four Users 

(b) Average

Figure 8. Hold-Time features for four subjects (400 keystrokes).

4.4. Quantile Transformation Effect

Figure 9 depicts the features of six users and demonstrates the importance of QT. For
each user, 400 samples were regarded, and their features were retrieved and represented
utilizing the t-SNE mechanism [39]. The same features are presented from two perspectives:
in Figure 9a, before applying QT, and in Figure 9b, after applying QT. The utilization of
QT in Figure 9b helps in narrowing the gap between users’ anomalies and non-anomalies,
making it simpler for our approach to recognize users. Although the samples from the six
users are merged, applying QT allows for the easy differentiation of the correct clusters.
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(a) Before applying QT (b) After applying QT

Figure 9. Projection of 6 users’ features before and after applying QT.

Furthermore, in order to emphasize the significance of QT and illustrate the process of
transforming data into a standard normal distribution, Figure 10 presents a visualization
of this transformation by selecting 400 samples of 4 random timing features for a specific
user. Figure 10a displays the original distribution of the data, whereas 10b displays the
variation in the data distribution after applying QT. The transformed data show significantly
improved conformity to a standard normal distribution, which effectively minimizes the
occurrence of outliers.

(a) Before applying QT (b) After applying QT

Figure 10. Distribution of 6 users’ features before and after applying QT.

4.5. Results

In our study, we assessed the effectiveness of our proposed methodology using the
CMU Benchmark Dataset. To evaluate the model, we designated 1 user as genuine and 50
as imposters. We randomly selected 400 timing features for the genuine user and 400 timing
features for each imposter, with 8 timing features taken from each imposter, resulting in a
combined total of 800 features. The dataset was split into training and testing sets, with
70% of the data used for training and the remaining 30% for testing. This was done for
each user, with the user being treated as genuine and the other users as imposters. The
evaluation process used is described in [34].

To assess the performance and robustness of our approach, we employed efficient
boosting algorithms, including LightGBM, XGBoost, AdaBoost, and CatBoost. The results
demonstrate that our methodology performs well and is robust.

• Performance:

Four boosting algorithms were used to evaluate the performance of the models trained
on the features extracted from the tailored convolutional neural network. The algorithms
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were tested with various preprocessing techniques, and the results were measured using
accuracy, precision, recall, and F1 score. Figure 11 displays the results obtained when
training the boosting algorithms on the original data without any preprocessing techniques,
which demonstrated poor performance.

Original Data

CatBoost XGBoost AdaBoost LightGBM
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90.89
92.34

89.34
90.77 90.47

91.83
90.34

88.68 89.28 88.10 88.64
90.58 91.68

89.49 90.5089.01

Figure 11. Original data.

However, by applying quantile transformation, as shown in Figure 12, the results were
enhanced by transforming the data into a normal standard distribution, thereby reducing
the impact of outliers.

Original Data With Quantile Transformation (QT)

CatBoost XGBoost AdaBoost LightGBM
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Figure 12. Original data with quantile transformation (QT).

According to the results presented in Figure 13, applying data synthesization led to a
significant improvement. The performance of our methodology greatly increased when
the dataset was increased from 800 to 4000 samples. This expansion of the dataset not only
resulted in better performance but also prevented our methodology from experiencing
issues related to overfitting and underfitting.
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Original Data with Data Synthesization

CatBoost XGBoost AdaBoost LightGBM
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97.85 96.77
97.8899.03

97.67 96.42
99.05
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98.09 96.90 98.11 97.16

99.15 98.14

Figure 13. Original data with data synthesization (DS).

The boosting algorithms exhibited their highest level of performance when both
quantile transformation and data synthesization techniques were combined, as depicted in
Figure 14. The results clearly demonstrate that the utilization of these two techniques in
tandem is highly beneficial for improving the performance of the boosting algorithms.

Quantile Transformation with Data Synthesization

CatBoost XGBoost AdaBoost LightGBM
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99.98 99.9199.95 99.95 99.76 99.75 99.77 99.76 99.51 99.45 99.57 99.51 99.84 99.85 99.8499.83

Figure 14. Data synthesization (DS) with quantile transformation (QT).

All the algorithms demonstrated significant improvements after applying both quan-
tile transformation (QT) and data synthesization (DS), especially in the case of the CatBoost
algorithm. The accuracy, precision, recall, and F1 score of the CatBoost algorithm increased
to 99.95, 99.98, 99.91, and 99.95, respectively. The performance of the best-performing clas-
sifier (CatBoost) was evaluated using four different sets of data: original data only, original
data with QT, original data with DS, and QT with DS. Figure 15 presents the results, which
clearly show that the performance of the classifier was significantly enhanced through the
use of various preprocessing techniques.
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Figure 15. All experiments using CatBoost.

Figure 16 depicts the performance of the CatBoost algorithm in the form of a confusion
matrix. To showcase the effectiveness of the model, we randomly selected four users and
computed their confusion matrices. The results indicated that the model could accurately
classify almost all the samples for each user, with only a few instances of misclassification.

Figure 16. Confusion matrix for four random users.

Table 3 presents a summary of the results obtained from the evaluation of all the
preprocessing techniques and boosting algorithms.
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Table 3. The impact of data synthesization (DS) and quantile transformation (QT).

Method/Metric Accuracy (%) Precision (%) Recall (%) F1 Score (%) ERR (%)

LightGBM 90.58 91.68 89.49 90.50 8.2

XGBoost 90.47 91.83 89.01 90.34 8.5

AdaBoost 88.68 89.28 88.10 88.64 11.2
DS + QT (Off)

CatBoost 90.89 92.34 89.34 90.77 7.6

LightGBM 99.84 99.85 99.83 99.84 0.15

XGBoost 99.76 99.75 99.77 99.76 0.24

AdaBoost 99.51 99.45 99.57 99.51 0.53
DS + QT (On)

CatBoost 99.95 99.98 99.91 99.95 0.65

The table highlights the importance of the quantile transformation and data synthe-
sization techniques and shows the results before and after applying both techniques to
all the models. Applying DS and QT led to significant improvements for all the models,
especially the CatBoost algorithm, which achieved accuracy, precision, recall, F1 score, and
EER values of 99.95, 99.98, 99.91, 99.95, and 0.65, respectively, compared to values of 90.89,
92.34, 89.34, 90.77, and 7.6 without DS and QT.

• Robustness:

One of the key aspects of evaluating the effectiveness and reliability of any new
technique or approach is conducting a rigorous analysis of its performance metrics. In this
regard, the ROC curve is a widely recognized and highly effective tool that can be used to
assess the robustness and efficiency of a given approach.

To demonstrate the effectiveness of our approach, we utilized the ROC curve as a
metric to evaluate its performance. In particular, we randomly selected four users and
generated ROC curves for each of them, which are illustrated in Figure 17.
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Figure 17. ROC curves for four random users.
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The results indicate a significant improvement in the performance of our approach,
with the curves approaching a value of 1. This suggests that our approach is highly robust,
efficient, and capable of delivering accurate results.

In order to further reinforce the robustness and efficiency of our approach, we visu-
alized the ROC curves for 51 users, as shown in Figure 18, where it can be seen that the
plotted curves consistently approach the upper boundary, indicating that our approach is
highly reliable and consistent across a large and diverse user base. The average AUC (Area
Under the Curve) value for the 51 ROC curves was found to be 99.99%, which is a strong
indicator of the success and effectiveness of our methodology.
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Figure 18. ROC curves for 51 users.

Overall, the ROC curve analysis provides a powerful and highly informative tool
for assessing the performance of our approach. The results clearly demonstrate that our
approach is not only highly robust and efficient but also highly reliable and consistent
across a large user base. These findings are likely to have significant implications for a wide
range of applications and industries, where accurate and reliable performance metrics are
critical for achieving success.

To benchmark our research against prior literature, we analyzed the evaluation metrics
used in previous studies. Our investigation revealed that accuracy and EER were the most
commonly used metrics in prior research. Hence, we adopted these metrics to compare the
performance of our approach with that of earlier studies. As demonstrated in Figure 19, the
accuracy of our approach was compared with that of prior studies. The results demonstrate
that our model outperformed all of the previous algorithms in terms of accuracy.
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Figure 19. Comparison of accuracy with the related literature (from left to right: [17], [19], [21], [25],
[26], [22], [20], [12], [11], [23]).

Additionally, we compared the EER of our model with that of prior studies, as shown
in Figure 20. Notably, our approach achieved the lowest EER among all the algorithms
previously proposed in the literature. These findings further underscore the superior
performance and efficacy of our proposed approach in comparison to earlier methods.
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Figure 20. Comparison of EER with the related literature (from left to right: [15], [18], [16], [24], [27],
[14], [26], [13], [11]).

5. Conclusions

This research introduces a tailored convolutional neural network that is specifically
designed for feature extraction, as well as a boosting technique to improve classification
accuracy in keystroke dynamics-based user authentication. The proposed model addresses
the challenges of lower accuracy and robustness by utilizing innovative data synthesization
techniques and quantile transformation methods. The approach demonstrates excellent
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performance, achieving an average accuracy of 99.95%, an average equal error rate of
0.65%, and an average area under the curve of 1% on the CMU dataset, surpassing recent
developments in this field. This study contributes to the development of user authentication
systems and can improve the security of online services. Future research will focus on
using transfer learning approaches, autoencoders, graph neural networks, and generative
adversarial networks (GANs) to further advance the model.
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