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Abstract: Recent advancements in sensor technologies, in conjunction with signal processing and
machine learning, have enabled real-time traffic control systems to adapt to varying traffic conditions.
This paper introduces a new sensor fusion approach that combines data from a single camera and
radar to achieve cost-effective and efficient vehicle detection and tracking. Initially, vehicles are
independently detected and classified using the camera and radar. Then, the constant-velocity model
within a Kalman filter is employed to predict vehicle locations, while the Hungarian algorithm is
used to associate these predictions with sensor measurements. Finally, vehicle tracking is accom-
plished by merging kinematic information from predictions and measurements through the Kalman
filter. A case study conducted at an intersection demonstrates the effectiveness of the proposed
sensor fusion method for traffic detection and tracking, including performance comparisons with
individual sensors.

Keywords: sensor fusion; roadside camera and radar; traffic monitoring; Kalman filter; vehicle
detection and tracking; intelligent traffic system

1. Introduction

The growing number of vehicles and increasing traffic congestion pose global chal-
lenges such as extended wait times, a rise in car accidents, environmental pollution, and
higher fuel consumption. To address these issues, considerable effort has been made to
develop effective traffic control systems, particularly in large cities and areas prone to traffic
congestion [1–3]. To make optimal, condition-based decisions, a traffic control system
requires accurate traffic information, including real-time vehicle locations and traffic flows.
Collecting and analyzing these data are crucial for optimizing traffic management and
reducing negative impacts on the environment, safety, and overall quality of life.

Traditionally, inductive-loop detectors have been utilized to provide real-time traffic
flow information. However, these sensors can only detect vehicles within a small detection
zone, providing limited data. Moreover, traffic may be disrupted during sensor installation
under road surfaces. To overcome these drawbacks, advanced sensors such as cameras,
radars, and LiDARs are increasingly employed in traffic control applications. These sensors
enable the collection of comprehensive, real-time traffic data, including precise vehicle
location, type, and trajectory information. Furthermore, different sensors can provide
complementary data, which can be combined to overcome individual sensor limitations
and produce more accurate information through sensor fusion. Consequently, research on
sensor fusion algorithms has gained popularity, as it presents an opportunity to improve
the accuracy of traffic state estimation by integrating data from multiple sensors.

The sensor fusion algorithm proposed in this paper consists of three main components:
object detection and classification, data association, and object tracking. First, for object
detection and classification using a camera, the high accuracy and real-time performance of
the well-known algorithm You Only Look Once (YOLO) have made it a popular choice in
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recent years [4]. Also, a radar module featuring built-in vehicle detection and classification
algorithms on the hardware level, produces detected vehicle information without additional
data processing. As the camera and radar have separate coordinate systems, it is essential
to unify their coordinates and obtain a list of detected vehicles in the same coordinate
system. Object classification serves as an auxiliary function to help to improve tracking
algorithm decision-making. Second, although traditional data association algorithms, such
as Probability Data Association (PDA) [5] and Joint Probability Data Association (JPDA) [6],
can achieve good results for tracking performance, the probability calculation requires
significant computational resources as the number of detected objects increases. In contrast
to Probability Data Association algorithms, the Hungarian algorithm efficiently solves the
assignment problem by minimizing the matching distance, without directly comparing all
the possible pairs. Thus, the Hungarian algorithm is applied for data association in the
proposed method [7]. Lastly, since the results of the camera and radar are presented in the
same Cartesian coordinates and the transformation is linear, the tracking algorithm uses a
standard Kalman filter to predict the motion of the detected vehicles [8] rather than using a
more sophisticated extended Kalman filter (EKF) [9] or unscented Kalman filter (UKF) [10].
A weight matrix is created by calculating the distance between the predictions of the
Kalman filter and the measurements of each sensor, and then the Hungarian algorithm is
applied to find the best correlation using the weight matrix. With the integration of these
three components, more efficient and effective vehicle tracking is expected to be achieved
for traffic-monitoring applications using two different types of sensors. It is the first time
that the three selected components are systematically integrated to improve vehicle tracking
in a traffic network.

This paper is organized as follows: Section 2 reviews the relevant literature and
state-of-the-art research. Section 3 details the object detection and classification using the
camera and radar sensors, with data alignment offering a solution for unifying the results
from different sensors in the same space. Section 4 presents the proposed sensor fusion
algorithm framework and explains the vehicle motion estimation, data association, and
vehicle tracking processes. Section 5 provides validation results, and Section 6 concludes
with a discussion.

2. Related Works

Recently, various approaches in multi-sensor fusion for traffic-monitoring applications
have been developed. Based on the level of abstraction, sensor fusion algorithms can be
categorized into three primary approaches. The first approach is based on the integration of
raw data collected using multiple sensors. For example, stereo vision was used to perform
object detection based on a disparity map created by combining information from two
cameras [11,12]. Other examples include the combination of loop detectors and Bluetooth
measurements [13,14]. The second approach considers the features obtained from each
sensor individually and then combines these features to perform detection. In [15], a fusion
approach that combines different features from a LiDAR and a camera was presented. In
these two prevalent sensor fusion approaches, the sensor fusion is based on combining raw
data or concatenating features from different sensors. However, it may be challenging to
perform sensor fusion in certain situations where one of the sensors does not function nor-
mally or the environmental conditions do not allow a particular type of sensor to perform
properly [16]. To overcome these difficulties, in the third approach, each sensor performs
detection independently, and the detection results of multiple sensors are combined accord-
ing to their accuracies and uncertainties. In this manner, the detection system can operate
with adequate robustness under a variety of operating conditions. In [17–19], sensor fusion
algorithms that combine detection results obtained independently from radar, LiDAR, and
camera are presented. These fusion algorithms produce reliable results and demonstrate
sufficient robustness in most situations. However, the prohibitive development and main-
tenance costs have hindered the widespread adoption of this technology in real-world
applications [20].
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Several state-of-the-art methods within the third general approach have been pro-
posed for accurate vehicle localization without relying on expensive sensors. One such
method combines multiple sensors, including GPS, IMU, and a single camera [21]. This
system employs a Kalman-filter-based sensor fusion algorithm to integrate the multi-sensor
data and estimate the vehicle’s position and trajectory. However, due to the different data
formats of the various sensors, the system requires a more sophisticated extended Kalman
filter for data integration. This, in turn, increases the development and computational costs
associated with the system, potentially posing a significant drawback for real-time traffic
control applications. Another example utilizes camera sensors for vehicle detection and
tracking [22]. This method is specifically designed for the real-time estimation and monitor-
ing of highway traffic flow, employing several deep learning techniques and a unique data
association algorithm. However, relying solely on vision-based sensors poses challenges
when used in inclement weather conditions. Other studies have leveraged deep learning
and association algorithms to estimate and monitor traffic flow using camera and radar
sensors [23,24]. While employing multimodal sensors can improve the vehicle localization
accuracy of these methods, the multiple steps required, including pre-calibration, object
matching, and parameter optimization, make them complex and computationally intensive.

In this paper, a new sensor fusion algorithm is proposed based on the third general
approach. By taking advantage of the complementary characteristics of different sensor
types, such as millimeter-wave and vision-based sensors, the algorithm achieves a higher
precision that would be difficult to attain using a single sensor type. This presents a
cost-effective solution that can be used to improve traffic safety and efficiency. A novel
fusion method, consisting of three components, is introduced, which can systematically
incorporate multiple sensors. This renders the algorithm even more versatile than the
existing ones that utilize only two sensors. Furthermore, the Hungarian algorithm, in
data association, can be further optimized by adding parameters that reduce errors in
mismatched data associations. Additionally, a differential GPS is employed as a reference
for the quantitative assessment of the performance of the proposed sensor fusion algorithm.

3. Object Detection and Classification

Cameras and radar sensors both possess distinct strengths and weaknesses in terms
of their detection accuracy, detection range, and robustness to environmental changes.
Vision-based sensors, such as cameras, are highly effective in accurately detecting and
recognizing objects up to 100 m away. However, beyond this range, the camera accuracy
gradually declines, and at distances exceeding 150 m, accurate object recognition becomes
nearly unachievable. In contrast, radar sensors can provide longer-distance measurements
and are known for their robustness in low-light and adverse weather conditions. While
radar sensors might be affected by rare environmental factors such as lightning, their
performance is generally more reliable under challenging conditions compared to cameras.
To leverage the advantages of both types of sensors, object detection and classification are
performed independently by the camera and radar sensors, and the results are combined
through a fusion algorithm.

3.1. Camera-Based Object Detection and Classification

The camera-based object detection algorithm is based on YOLO due to its high accu-
racy and real-time performance [25,26]. This research used its fourth version, YOLOv4,
which consists of darknet Convolutional Neural Networks as the backbone, Spatial Pyra-
mid Pooling (SPP) [27] and Path Aggregation Network (PANet) [28] as the neck, and
YOLOv3 [29] as the head. As explained in the authors’ previous publication, YOLO draws
rectangular boxes around vehicles detected in video images [26]. The size of the rectangular
boxes depends on the proximity of the vehicles to the camera, as the vehicle size in the
image increases when they get closer to the camera. Since only the centers of the vehicles in
the image coordinates are converted into 3D world coordinates through coordinate trans-
formation and used as the vehicle locations, the scaling of the vehicle size is not a concern.
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This entire procedure is described in detail in the referenced work. The camera-based object
detection aims to obtain the locations of all the detected vehicles so that this information
can be used in the fusion process. In contrast to many sensor fusion techniques, the camera
sensor utilized in this research extracts appearance information from images solely for
classification, rather than for tracking purposes, for two primary reasons. First, this helps to
increase the processing speed of the overall sensor fusion system. Since the goal of this re-
search is to develop a light system that can process the sensor fusion algorithm in real time,
an enhanced processing speed is highly desirable. Second, although a tracking algorithm
based solely on kinetic information without visual features may cause an ID-switching
problem, the radar sensor can significantly mitigate this issue. As a result, the camera
sensor provides only a list of detected vehicle locations.

The YOLO algorithm employed in this study for vehicle detection and classification
was pretrained with the COCO dataset, which is a larger-scale object detection, segmenta-
tion, and captioning dataset for computer vision projects [30]. The camera-based classifica-
tion model can recognize several vehicle types, including cars (sedans and SUVs), trucks,
and motorcycles. The classification information can help to improve data association, and
different types of vehicles are utilized to select different fusion parameters in the data
association algorithm.

3.2. Radar-Based Object Detection and Classification

In this study, a commercially available radar (Model iSYS-5220 from InnoSenT, Don-
nersdorf, Germany) was used for vehicle detection at a traffic intersection. As shown in
Figure 1, two radars are installed to monitor two approaching lanes each situated at an
intersection. For optimal object detection, the radar employs proprietary signal processing
techniques designed for a long-range and wide-horizontal view. The enhanced coverage
ensures the improved detection of moving and stationary objects compared to the camera
sensor. However, due to the interference of the two nearby radars, the detection accuracy
near the intersection area is not reliable, causing false positives. The radar can classify only
two types of vehicles based on the size of the vehicles: cars (sedans and SUVs) and trucks.
Similar to the output of the camera-based object detection system, a list of detected vehicle
locations is the output of the radar-based detection system.
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3.3. Data Alignment

Multiple sensors are usually not placed in the same location, and thus, data alignment
is required by matching the coordinate systems of the different sensors. Since both the
camera and radar are installed on the same traffic light pole in this research, their coordinate



Sensors 2023, 23, 4888 5 of 15

origins are the same. Consequently, one only needs to rotate their coordinates towards
the common north–east (Y–X) coordinates for coordinate system matching. After the
coordinate system matching, all calculations of the fusion algorithm are performed in
the north–east (Y–X) coordinate system. The camera coordinates, radar coordinates, and
north–east coordinates are shown in an aerial view map (from Google) in Figure 2.
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In sensor fusion applications, accessing remote sensors via a network cable can pose
challenges due to communication system and network latency. The synchronization of
multiple sensor data points can be affected by significant communication delays [31].
Furthermore, sequential accessing of sensor data on the host computer may cause additional
non-synchronization errors. A potential solution for addressing these issues is to use the
‘multiprocessing’ module in Python to store the most recent sensor data in a shared memory
and then access the shared memory in every iteration. While this approach may not fully
resolve all the timing issues, it can leverage the available computing power to mitigate
latency problems. The basic concept is shown in Figure 3.
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data.

4. Sensor Fusion Algorithm

To enhance the vehicle detection capability, a fusion algorithm was developed to
optimally combine the vehicle detection results obtained from the two sensors. The pro-
posed sensor fusion algorithm consists of three main steps: vehicle motion estimation, data
association, and vehicle tracking.
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4.1. Vehicle Motion Estimation

A Kalman filter is used in the motion estimation model to track target vehicles detected
by the camera and radar sensors. The Kalman filter consists of two phases: prediction
and update.

In the prediction phase, the state vector for each target vehicle is calculated as follows:

X =
[
x, y,

.
x,

.
y
]

(1)

where x and y are the center location of the target vehicle, while
.
x and

.
y represent the

longitudinal and lateral velocity all in the global coordinates, respectively. The estimation
for each target vehicle at the current time step, t, using a constant-velocity model is obtained
using a kinematic formula as follows:

X̂t = FtX̂t−1 (2)

P̂t = Ft P̂t−1FT
t + Q (3)

where X̂t represents the mean prediction of the target vehicle location, P̂t is the covariance
matrix that represents the uncertainty in the estimated state, Ft is the state transition matrix,
and Q is the system noise matrix. The state vectors of the sensor measurements are given by:

Zc = [xc, yc] (4)

Zr =
[
xr, yr,

.
xr,

.
yr
]

(5)

where Zc and Zr represent the camera and radar measurement vectors, respectively. In the
state vectors, xc, yc are the vehicle location measured by the camera, and xr, yr,

.
xr,

.
yr are

the vehicle location and velocity measured by the radar.
During the update phase, sensor measurements are used to refine the prediction for

the target vehicle. Note that the units, scale, and variables of the sensor measurements may
not be the same as those for the prediction for the target vehicle. To match these different
quantities, the prediction for the target vehicle is projected to the sensor measurement
spaces using the following equations:

µit = Hit X̂t (6)

Σit = Hit P̂tHT
it (7)

where µit and Σit represent the projected mean and covariance matrices obtained using
the estimation in the prediction stage, and Hit is the sensor measurement transition matrix.
The index i represents the two different sensors: the camera and radar. The Kalman filter
assumes that the predicted state and two measurements exhibit a Gaussian distribution.
The next step is to reconcile the difference between the predicted state and the measure-
ments of the two sensors, i.e., the camera and radar. Then, the optimal estimation can
be obtained by multiplying the probability density function of the predicted state and
the two measurements [32]. Mathematically, the multiplication of these three probability
density functions still yields a Gaussian distribution. There are two different ways to
multiply the probability density functions of the predicted state and two measurements,
depending on the order in which the measurements are multiplied to the predicted state.
Both orders were tested, and the results were found to be quite similar. Consequently, only
the results from one order are presented in the validation section below. As an example, the
derivation of the equations is presented here for the case where the camera measurement
is multiplied first and the radar measurement is multiplied next. After multiplying the
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camera measurement, the state and covariance of the target vehicle, with camera correction,
can be written as:

X̂′t = X̂t + K′
(
Zct − Hct X̂t

)
(8)

P̂′t = P̂t − K′Hct P̂t (9)

K′ =
P̂tHT

ct

Hct P̂t HT
ct + Rc

(10)

where K′ is a matrix called the Kalman filter gain that minimizes the covariance, and Rc is
the measurement noise of the camera. Using the same multiplication method, the state and
covariance of the target vehicle with radar correction can be written as:

X̂′′t = X̂′t + K′′
(
Zrt − Hrt X̂

′
t
)

(11)

P̂′′t = P̂′t − K′′Hrt P̂
′
t (12)

K′′ =
P̂′t HT

rt

Hrt P̂′t HT
rt + Rr

(13)

where Rr is the measurement noise of the radar. Once the updated Equations (11) and (12)
are calculated, the system transitions into the prediction phase at the next time step, and
the algorithm repeats itself. This sensor fusion process is illustrated in Figure 4, where each
curve represents the probability distribution of the measured or predicted vehicle locations.
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4.2. Data Association

Data association involves the assignment of target vehicle predictions to the corre-
sponding sensor measurements. In this research, the data association is performed using the
Hungarian algorithm. The Hungarian algorithm provides an efficient way to associate pre-
dicted and measured vehicle locations by minimizing the total sum of distances, J, between
the predicted and measured vehicle locations, represented in the following equation:

J = ∑
i

∑
j

Ci,jDi,j (14)

where i is the index for the predicted vehicle locations, and j is the index for the measured
vehicle locations. Additionally, C is the cost matrix representing the Euclidean distance
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between various combinations of predicted and measured vehicle locations such that its
element, Ci,j, can be calculated as:

Ci,j =
√(

xp,i − xm,j
)2

+
(
yp,i − ym,j

)2 (15)

where xp,i and yp,i denote the i-th predicted vehicle location, and xm,j and ym,j denote the
j-th vehicle location measured by the sensors. If the i-th row is associated with the j-th
column, Di,j = 1, and otherwise, Di,j = 0.

Additionally, four conditional statements are applied using the following parame-
ters: the maximum matching threshold, lateral threshold, sensor boundary, and oversized
truck identification. First, the maximum matching threshold is employed to reject assign-
ments of measurements to predictions that are too far away. Second, when the lateral
distance between the measurement and prediction exceeds the lateral threshold value, indi-
cating that the two vehicles are in different traffic lanes, the assignment is rejected. Third,
the sensor boundary is used to apply different weights to the sensors’ trustworthiness
depending on the location of the vehicles with respect to the boundary. The radar sensor
should be given a higher weighting for a detection beyond 80 m, since the camera cannot
recognize objects in this range. Conversely, the camera sensor should be trusted to a greater
degree for a detection within 80 m due to interference issues between the two radar sensors
near an intersection. Finally, if a sensor detects that the target vehicle is an oversized truck,
different matching parameters will be used for this target.

The sensor fusion algorithm effectively manages short-term occlusions by relying
solely on the camera. For extended occlusions, the radar assists the camera in tracking the
object, as it demonstrates a superior performance in distinguishing an occluded vehicle
from the one in front of it. However, in certain cases where a vehicle remains entirely
hidden by other vehicles for an extended duration, neither sensor can detect it. In such
instances, the sensor fusion algorithm loses the target vehicle’s trajectory and treats it as a
new target when it reappears in a subsequent time step.

4.3. Vehicle Tracking

Each sensor can detect vehicles within a specific area with high accuracy. By using mul-
tiple sensors, the vehicle-tracking performance and localization accuracy can be enhanced
by compensating for the deficiencies of individual sensors. Many tracking algorithms use
both kinematic states and appearance features [33]. However, there exists another type of
method, called the Simple Online and Realtime Tracking algorithm (SORT), which relies
solely on kinematic states for object tracking [34]. In this study, a new tracking algorithm
based on SORT was developed, using only the kinematic state to fuse the Kalman filter’s
predictions with the measurements from the two sensors.

When a vehicle is detected by either sensor, a tracker is created within the tracking
algorithm. For the prediction phase of the Kalman filter, the constant-velocity model
approximates the tracker locations at the next time step. The Hungarian algorithm is
applied to correlate the tracker predictions with the measurements from the first sensor.
The tracker locations are then corrected using the measurements from the first sensor
following the update phase of the Kalman filter. The results obtained after fusion with the
first sensor’s measurements can show one of three cases: matched trackers correlated with
the first sensor’s measurements, unmatched trackers not correlated with the first sensor’s
measurements, and unmatched detections from the first sensor that are not associated with
the existing trackers. The second sensor’s measurements correct these combined results of
matched and unmatched trackers using the same Hungarian algorithm.

After fusion with the second sensor, the results still consist of three cases: new matched
trackers, new unmatched trackers, and new unmatched detections. In the first case, new
matched trackers, which are correlated with either both sensors or the second sensor alone,
remain in place. In the second case, new unmatched trackers are not associated with the
second sensor. Trackers not associated with either sensor and those that have a credit
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number no greater than one are filtered out. In the third case, new unmatched detections
from the second sensor are not associated with the existing trackers. Finally, the repeatedly
unmatched detections from the first and second sensors are removed by a filter, and new,
unrepeated detections from both sensors are obtained. These three components constitute
the fusion result at the current time step and serve as the input for the next time step. The
algorithm is explained in greater detail in the flow chart shown in Figure 5.
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In the Hungarian algorithm, the maximum matching threshold rejects assignments
if the Euclidean distance between a tracker and a measurement exceeds a predetermined
threshold value. When either sensor detects a tracker, one credit is added to its count. If
the tracker’s credit count is greater than one, this indicates that the vehicle was detected in
the previous time step and was also detected by either of the sensors in the current time
step. These trackers are retained to prevent the loss of detections from either sensor.

The constant-velocity model in the Kalman filter is not an ideal predictor of the
location of an object, since a real vehicle’s velocity changes continuously. Consequently, the
covariance of velocity should be initialized with a large value to minimize reliance on the
predicted velocity value. The initial velocity value is empirically set to be slightly lower
than the average velocity of the vehicles in the dataset so as to achieve a better performance.
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5. Experimental Results

The proposed sensor fusion algorithm was assessed using a real dataset collected from
two sensors positioned at a traffic intersection. A camera and radar sensor were mounted
on a traffic light to monitor a state route with a speed limit of 55 mph. The algorithm’s
accuracy was evaluated using three metrics. First, the vehicle localization performance in
single-vehicle scenarios was assessed. Second, the vehicle-counting accuracy was measured.
Finally, the detection and tracking accuracy of the proposed algorithm was evaluated using
multiple object tracking (MOT) metrics [35].

5.1. Vehicle Localization Performance

The vehicle localization performance at a traffic intersection was quantitatively evalu-
ated using a differential GPS as the reference. A vehicle equipped with a high-accuracy
differential GPS receiver was driven through an intersection at approximately 30 mph, as
illustrated in Figure 6. The figure depicts the moving vehicle, along with its location in the
world coordinates. The red, blue, and green dots represent the vehicle location measured by
the differential GPS, camera, and radar, respectively. The yellow dot represents the sensor
fusion result. For the analysis, over one hundred data points were collected in each lane.

Sensors 2023, 23, x FOR PEER REVIEW  10  of  15 
 

 

5. Experimental Results 

The proposed sensor  fusion algorithm was assessed using a  real dataset collected 

from  two  sensors positioned at a  traffic  intersection. A  camera and  radar  sensor were 

mounted on a traffic light to monitor a state route with a speed limit of 55 mph. The algo-

rithm’s accuracy was evaluated using three metrics. First, the vehicle localization perfor-

mance  in  single-vehicle  scenarios was assessed. Second,  the vehicle-counting accuracy 

was measured. Finally, the detection and tracking accuracy of the proposed algorithm was 

evaluated using multiple object tracking (MOT) metrics [35]. 

5.1. Vehicle Localization Performance 

The vehicle localization performance at a traffic intersection was quantitatively eval-

uated using a differential GPS as the reference. A vehicle equipped with a high-accuracy 

differential GPS receiver was driven through an intersection at approximately 30 mph, as 

illustrated in Figure 6. The figure depicts the moving vehicle, along with its location in the 

world coordinates. The red, blue, and green dots represent the vehicle location measured 

by  the differential GPS, camera, and radar, respectively. The yellow dot represents  the 

sensor fusion result. For the analysis, over one hundred data points were collected in each 

lane. 

 

Figure 6. Vehicle equipped with a differential GPS receiver and its location in an aerial view map. 

The camera records videos at approximately 20 frames per second, with each frame 

being processed using the YOLO and a vehicle center error correction algorithm to deter-

mine the vehicle’s location. The radar and GPS detect vehicles approximately 10 times per 

second (10 Hz). To synchronize the vehicle detections made asynchronously by the cam-

era, radar, and GPS, the detected vehicle locations are linearly interpolated at a common 

sampling time, as illustrated in Figure 7. Since the vehicle velocity does not change signif-

icantly over short periods of time, the linear interpolation yields highly accurate results 

with minimal errors. 

Figure 6. Vehicle equipped with a differential GPS receiver and its location in an aerial view map.

The camera records videos at approximately 20 frames per second, with each frame be-
ing processed using the YOLO and a vehicle center error correction algorithm to determine
the vehicle’s location. The radar and GPS detect vehicles approximately 10 times per second
(10 Hz). To synchronize the vehicle detections made asynchronously by the camera, radar,
and GPS, the detected vehicle locations are linearly interpolated at a common sampling
time, as illustrated in Figure 7. Since the vehicle velocity does not change significantly
over short periods of time, the linear interpolation yields highly accurate results with
minimal errors.

Table 1 presents the vehicle localization performance of the camera, radar, and the
proposed sensor fusion algorithm, respectively. In the table, the lateral location errors
correspond to those perpendicular to the vehicle’s travel direction, while the longitudinal
location errors correspond to those parallel to the vehicle’s travel direction. Considering
the fact that the standard lane width in the United States is 3.66 m, the proposed sensor
fusion algorithm’s average lateral error of 0.3 m demonstrates its ability to accurately
localize vehicles within their respective traffic lanes. Although the radar’s results after the
use of the interpolation method are marginally better than those of the proposed sensor
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fusion algorithm, the latter remains valuable, as it can address issues such as detection loss
during brief periods or difficulties in adverse weather conditions, which the radar sensor
may encounter.
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Table 1. Localization performance in different traffic lanes.

Lane

Error Camera Results (m) Radar Results (m) Sensor Fusion Results (m)
The Number

of Data PointsLateral
Error

Longitudinal
Error

Euclidean
Error

Lateral
Error

Longitudinal
Error

Euclidean
Error

Lateral
Error

Longitudinal
Error

Euclidean
Error

Left 0.92 2.38 2.55 0.34 1.37 1.41 0.49 1.71 1.78 125

Middle left 0.62 1.81 1.91 0.24 0.70 0.74 0.35 0.99 1.06 109

Middle right 0.18 0.75 0.77 0.23 0.81 0.84 0.23 0.89 0.92 147

Right 0.22 0.82 0.85 0.19 0.74 0.76 0.11 0.46 0.47 124

Average 0.49 1.44 1.52 0.24 0.91 0.94 0.30 1.01 1.06 126

Currently, there exist few publications on vehicle detection and tracking using roadside
sensors for traffic-monitoring applications. One such method, presented in [21], employs
a sensor fusion algorithm that combines data from multiple sensors using an extended
Kalman filter algorithm, resulting in a lateral error of 0.53 m, longitudinal error of 1.19 m,
and combined Euclidean error of 1.43 m. Another method, proposed in [36], uses multiple
cameras to construct 3D bounding boxes around vehicles to determine the vehicles’ loca-
tions. The results showed an average localization error of 1.81 m in the Euclidean distance
using a differential GPS as a reference and 1.68 m in the Euclidean distance using a drone
as a reference. Compared to those previous studies, the sensor fusion algorithm proposed
in this research achieves a higher accuracy using only a single camera and radar, with a
0.30 m lateral error, 1.01 m longitudinal error, and 1.06 m Euclidean distance error.

5.2. Vehicle Count Performance

The vehicle-counting accuracy for each lane was quantitatively evaluated in a heavy
traffic scenario using camera-based, radar-based, and sensor fusion approaches. The camera
recorded a two-minute video at 20 frames per second, generating 2400 still images, while
the radar captured data at 10 Hz. The proposed sensor fusion system processes high-
resolution images with a resolution of 3072 × 1728 pixels at 25 frames per second, utilizing
YOLO, center error correction, and sensor fusion algorithms on a 2080 Ti NVIDIA graphics
card. To assess the accuracy, the vehicles in each still image were manually counted and
used as a ground truth reference. Table 2 presents the vehicle-counting accuracies for
camera-only detection with a Kalman filter, radar-only detection with a Kalman filter, and
combined camera-and-radar detection using the sensor fusion algorithm.
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Table 2. Vehicle counting accuracies of different sensing methods at a traffic intersection. ‘C’, ‘R’,
and ‘SF’ represent the number of vehicles counted using different combinations of sensors, while ‘G’
denotes the ground truth number of vehicles.

Camera Only with Kalman Filter Radar Only with Kalman Filter Sensor Fusion

C G Accuracy R G Accuracy SF G Accuracy

Left lane 319 443 72.12% 370 443 83.73% 386 443 87.34%

Middle left lane 2333 2568 90.87% 2221 2568 86.51% 2368 2568 92.25%

Middle right lane 2573 2730 94.26% 2464 2730 90.27% 2588 2730 94.82%

Right lane 339 349 97.42% 333 349 95.62% 341 349 97.71%

Average 91.36% 88.47% 93.32%

The table clearly demonstrates that the sensor fusion algorithm outperforms the indi-
vidual sensors in all cases regarding vehicle detection and counting accuracy. A momentary
loss of vehicle detection, caused by internal sensor noise and external environmental effects,
negatively impacts the vehicle counting performance of each sensor. Consequently, the
average accuracies of camera-only and radar-only methods were 91.36% and 88.47%, re-
spectively. However, by combining the outputs of both sensors, the sensor fusion algorithm
could reduce the number of instances of missed vehicle detection, thereby increasing the
average vehicle-counting accuracy to 93.32%. Errors occurred only when both sensors
missed vehicle detection simultaneously, which was rare.

The vehicle-counting accuracy of all three methods gradually increased from the left
lane to the right lane. These results can be attributed to the clearer visibility of the vehicles
and the reduced occlusion as the view shifted from the further left lane to the closer right
lane. The vehicle-counting accuracy of the sensor fusion algorithm ranged from 87.34%
to 97.71%, which is comparable to the accuracy range of 70.58% to 99.63% reported in the
literature [22]. However, the sensor fusion algorithm proposed in this study is simpler,
offering an advantage over the more complex systems.

5.3. Vehicle-Tracking Performance

The collected two-minute-long dataset is divided into two traffic scenarios: light and
heavy. Table 3 shows the tracking performance results for the three methods: camera-only
detection using a Kalman filter, radar-only detection using a Kalman filter, and the sensor
fusion algorithm, all applied to both scenarios. In the table, “#Image” represents the total
number of images used in the analysis. “#IDS” indicates the number of instances when
an ID switches from one tracked object to another previously tracked object. Meanwhile,
“#Vehicle” represents the total number of detected vehicles in each scenario. Using Multiple
Object Tracking (MOT) metrics [35], the multi-object tracking accuracy, MOTA, can be
calculated as:

MOTA = 1− ΣtFNt + FPt + IDSt

ΣtGT
(16)

where FN denotes the instances of false negatives in each image, FP represents the instances
of false positives in each image, and GT refers to the ground truth number of vehicles
in each image. In Table 3, it is shown that the number of ID switches for the sensor
fusion algorithm is far less than those of the single-camera and single-radar methods for
both traffic scenarios. This can be attributed to the fact that the two different sensors can
complement each other, minimizing the number of instances where both sensors miss the
vehicle detection. Consequently, the sensor fusion algorithm can provide better precision
and a more robust solution in a variety of situations.
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Table 3. Vehicle tracking results in light and heavy traffic scenarios.

Light Traffic Scenarios Heavy Traffic Scenarios

MOTA #Image #IDS #Vehicles #Vehilces
(Ground Truth) MOTA #Image #IDS #Vehicle #Vehicle

(Ground Truth)

Camera 75.1% 1425 672 7259 8065 59.09% 941 1243 9452 12,287

Radar 83.2% 1425 361 7662 8065 72.26% 941 820 10,397 12,287

Sensor
Fusion 93.37% 1425 7 7756 8065 82.51% 941 32 10,996 12,287

6. Conclusions

This paper presented a novel sensor fusion algorithm that utilizes a single camera
and radar. The algorithm combines vehicle detection data from both sensors, accurately
determining the location and trajectory of detected vehicles in a fast and cost-effective
manner. By using YOLOv4 and center error correction algorithms, the camera system
identifies the locations and types of detected vehicles based on kinematic information,
without relying on appearance characteristics. The radar system detects vehicles using
its own signal processing hardware. Subsequently, a Kalman filter predicts the vehicle’s
trajectory, while the Hungarian algorithm correlates the prediction with the detections from
both sensors. The vehicle classification feature further improves tracking by accurately
localizing oversized trucks. The sensor fusion algorithm outperforms the camera-only and
radar-only methods, achieving an average Euclidean distance error of approximately 1 m,
compared to 1.52 m and 0.93 m for the two other respective approaches. Additionally,
the sensor fusion algorithm demonstrates a superior vehicle-counting performance, with
an overall accuracy of 93.32%, compared to 91.36% and 88.47% for the camera-only and
radar-only approaches, respectively. The algorithm also achieves MOTA metrics of 93.73%
and 82.51% for light and heavy traffic scenarios. The advantages of the proposed sensor
fusion algorithm include its remarkable accuracy, cost-effectiveness, and high processing
speed. Although demonstrated with two sensors here, the sensor fusion algorithm could
integrate additional sensors if there is sufficient computational power available. Lastly, the
computational speed of the proposed fusion algorithm was tested for real-time application
in a traffic control system using an NVIDIA AI board, Xavier, achieving a processing speed
of seven frames per second. While this processing speed may not be sufficient for real-time
applications such as autonomous driving, it is suitable for traffic monitoring and control
applications where decision making typically occurs at intervals of 10 s or longer.

In summary, we obtained three key findings with significant implications for the field
of traffic monitoring and control, as follows: First, the proposed sensor fusion algorithm
outperforms individual sensors, yielding a more robust and accurate solution. Second, the
use of kinematic information, without relying on appearance characteristics, is sufficient
for the accurate localization and tracking of vehicles. Lastly, a higher accuracy can be
achieved with the proposed sensor fusion algorithm, employing a simpler algorithm
compared to other state-of-the-art approaches. Overall, the results of this research have
significant implications for the field of traffic monitoring and control. More efficient and
effective solutions for managing traffic could be developed by continuing to build upon
these findings.
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