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Abstract: A new Near InfraRed (NIR) fluorescent chemosensor for metal ions and anions is herein
presented. The fluorophore is based on a styrylflavylium dye, a synthetic analogue of the natural
anthocyanin family, with a di-(2-picolyl)amine (DPA) moiety as the metal chelating unit. The
substitution pattern of the styrylflavylium core (with tertiary amines on positions 7 and 4′) shifts
the optical properties of the dye towards the NIR region of the electronic spectra, due to a strong
push-pull character over the π-conjugated system. The NIR chemosensor is highly sensitive to the
presence of Zn2+, which induces a strong CHelation Enhanced Fluorescence (CHEF) effect upon
binding to the DPA unit (2.7 fold increase). The strongest competing ion is Cu2+, with a complete
fluorescence quenching, while other metals induce lower responses on the optical properties of
the chemosensor. Subsequent anion screening of the Zn2+-chemosensor coordination compound
has demonstrated a distinct selectivity towards adenosine 5′-triphosphate (ATP) and adenosine
5′-diphosphate (ADP), with high association constants (K ~ 106 M−1) and a strong CHEF effect (2.4
and 2.9 fold fluorescence increase for ATP and ADP, respectively). Intracellular studies with the
Zn2+-complexed sensor showed strong luminescence in the cellular membrane of Gram– bacteria
(E. coli) and mitochondrial membrane of mammalian cells (A659), which highlights its possible
application for intracellular labelling.

Keywords: Near InfraRed fluorescent sensor; styrylflavylium; di-(2-picolyl)amine; zinc binding;
adenosine 5′-triphosphate detection

1. Introduction

Fluorescent chemosensors have been widely investigated over the past decades, mainly
due to their high sensitivity when compared to other sensor systems, allowing for a high
spatio-temporal resolution and continuous monitoring of analyzed samples [1,2]. Over
more recent years, a significant research effort has been directed to designing chemosensors
with optical properties in the Near InfraRed (NIR) region, i.e., with absorption and emission
above 650 nm. This specific class of sensors is particularly relevant for biological samples,
since it is in this spectral region that light can penetrate deeper into cellular tissues, thus
allowing in-vivo monitoring with minimal radiation damage [3]. Many systems have
already been developed to target biologically important analytes, of which metal cations
and anions represent the vast majority of reported works [4], although a strong emphasis
has been directed also towards other relevant biomolecules such as enzymes or proteins [5].

Strategies for targeting metal cations generally involve coupling fluorophores with
metal chelating moieties, which can be bound directly or via a spacer [6]. Amongst the
many known binding units for metal cations, di-(2-picolyl)amine (DPA) emerges as one
of the most commonly employed, as it has been widely reported to preferentially bind to
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Zn2+ cations, usually yielding a CHelation Enhancement of Fluorescence (CHEF) which is
highly desirable to discard artefacts such auto-fluorescence or inner-filter effects (typically
associated with emission quenching) [7–9]. Nevertheless, several systems based on DPA
have also been developed for selective detection of Cu2+, and most of these sensors exhibit
CHElation induced Quenching (CHEQ) [10].

The major breakthrough for DPA arose from the reports by Hamachi and co-workers,
who used fluorescent Zn2+-DPA coordination compounds to detect phosphorylated pep-
tides and other phosphate derivatives [11,12]. These pioneering works opened a whole
sub-field of fluorescent sensors, directed to the detection of anionic species [13–16].

With respect to NIR fluorophores, some of the most noteworthy include heptamethyne
cyanine [17], BODIPYs [18], squaraine [19,20], dicyanomethylene [21,22] and modified
rhodamines [23,24] (Figure 1). Although not regarded as your typical fluorescent unit,
synthetic flavylium dyes can be easily modified to include moieties for binding external
analytes, thereby allowing for the development of new probes [25–27]. Furthermore,
extension of the π-conjugated benzopyrilium core is readily achieved with the appropriate
precursors to produce styrylflavylium derivatives [28,29] (Figure 1, blue). Indeed, these
styrylflavylium dyes have been recently reported as red or NIR fluorescent probes for
hydrogen sulfide [30], sulfur dioxide [31], hydrazine [32] and sensing DNA replication [33].
With this in mind, we designed a novel styrylflavylium chemosensor bearing a DPA
receptor, and assessed its potential as a sensor for cations and anions.
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Figure 1. Examples of NIR fluorophores. The styrylflavylium core is highlighted in blue.

2. Experimental Section
2.1. Synthesis

All used chemicals were of analytical grade and used as purchased. Fine chemicals
were acquired from Sigma-Aldrich (St. Louis, MO, USA), while solvents were purchased
either from Sigma-Aldrich or Carlo Erba (Barcelona, Spain).

Synthesis of 4-(4-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)benzylidene)-
6-(diethylamino)-1,2,3,4-tetrahydroxanthylium (1)

In a 25 mL round-bottom flask, A (1 eq, 200 mg, 0.45 mmol) and 4-(Diethylamino)
salicylaldehyde (1 eq, 87.7 mg, 0.45 mmol) were dissolved in 6 mL of acetic acid. Later,
under vigorous stirring, a solution of sulfuric acid (1.5 mL) was added dropwise, immedi-
ately turning into a dark purple color. The reaction was followed by TLC using as eluent
hexane:ethyl acetate (7:3) until the complete consumption of the starting material (~24h).
The final reaction mixture had a dark blue/purple color. The solvent was removed under
reduced pressure, and the reaction mixture was dried under vacuum. Afterwards, the
crude was purified by RP18 column chromatography starting with HCl 0,1 M:MeOH 75:25
as eluent and gradually changing its polarity until 100% methanol. The collected fractions
were analyzed by HPLC to identify the product fractions (following absorption at 670 nm),
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and the solvents were removed under reduced pressure. Finally, 170 mg of 1 were obtained
as a dark blue oil (η= 62.54%), which was further washed with ether and centrifugated to
obtain a dark blue precipitate. 1H RMN (400 MHz, MeOD) δ (ppm): 8.31 (d, J = 5.6 Hz, 2H),
8.06 (t, J = 7.6 Hz, 2H), 7.88 (s, 1H), 7.65 (d, J = 7.7 Hz, 2H), 7.57 (s, 1H), 7.50 (t, J = 6.7 Hz,
2H), 7.36 (d, J = 9.4 Hz, 1H), 7.23 (q, J = 8.4 Hz, 4H), 6.93 (d, J = 9.4 Hz, 1H), 6.79 (s, 1H), 3.82
(s, 4H), 3.61 (t, J = 6.4 Hz, 2H), 3.24 (q, J = 7.0 Hz, 4H), 2.77 (s, 3H), 2.43 (q, J = 5.5 Hz, 6H),
1.43 (q, J = 5.8 Hz, 2H), 0.82 (t, J = 6.9 Hz, 6H). 13C NMR (101 MHz, MeOD) δ (ppm): 163.04,
160.73, 158.23, 153.38, 149.84, 148.64, 143.01, 142.53, 137.83, 134.97, 133.94, 133.51, 131.35,
129.12, 127.86, 125.33, 122.14, 121.64, 97.00, 66.91, 56.69, 55.58, 50.84, 47.48, 46.82, 28.36,
28.17, 22.71, 12.97 (all collected spectra and peaks assignments are found in the Supporting
Information, Figures S1–S5 and Table S1). HR-ESI-MS (+) m/z: 598.3547 ([M + H]+, calcd:
598.3541) (Figure S6).

2.2. UV-Vis and Fluorescence Measurements

Solutions for UV-Vis absorption and fluorescence measurements were prepared by
adding an aliquot of 30 µL of a 3× 10−4 M methanolic solution of flavylium 1, to 1470 µL of
methanol, and 1100 µL of aqueous buffer, for a final chemosensor concentration of 1 µM. For
all metal titrations, 10 mM 3-(N-morpholino)propanesulfonic sodium salt (MOPS) buffer at
pH 7.0 ± 0.2 was used. pH titrations were performed using Theorell and Stenhagen univer-
sal buffer [34]. Metal ion titrations were performed by adding small aliquots of solution
containing 1 and each of the studied metals to a cuvette containing solely chemosensor 1,
to ensure that the concentration of the latter remained constant. Both UV-Vis as well as
luminescence spectra were recorded in between additions. The limit of detection (LOD) and
limit of quantification (LOQ) of Zn2+ were determined according to IUPAC guidelines [35],
by measuring five independently prepared samples of styrylflavylium 1 with no metal
(blank) and applying the formulae: LOD = 3σ/b and LOQ = 10 σ/b, where σ represents
the standard deviation of these measurements, and b represents the slope over a fixed
linear range (0–3µM was selected). Anion titrations were performed in a similar manner
but using a cuvette containing 1-Zn2+ as the starting point, to which aliquots of solution
containing 1-Zn2+ and anion were successively added. Absorption spectra were acquired
in a 1 cm quartz cuvette on a Varian Cary 100 Bio UV- spectrophotometer. Emission spectra
were obtained in a 1 cm fluorescence quartz cuvette, using a Horiba-Jobin-Yvon SPEX
Fluorolog 3.22 spectrofluorometer. Fluorescence quantum yield for 1 was determined
using Cryptocyanine as reference (φf = 0.007 in ethanol) [36]. The binding constants for
1-Zn2+, (1-Zn2+)-ATP and (1-Zn2+)-ADP were determined by fitting the experimental data
to a Henderson-Hasselbalch 1:1 binding model using the Solver Add-In from Microsoft
Excel [37].

2.2.1. Minimum Inhibitory Concentration (MIC) Determination

The MICs of 1 for Staphylococcus aureus (S. aureus) strain JE2 (Community-acquired
Methicillin Resistant S. aureus, CA-MRSA) and Escherichia coli (E. coli) strain DC10B were
determined in sterile 96-well microplates using Muller Hinton Broth (MHB) or Luria Broth
(LB), respectively, supplemented with 4 equivalents of Zn2+ (ZnSO4) for each concentration
of 1. 1 was added to each microplate well to obtain 2-fold serial dilutions of the compound
with the highest concentration being 32 µg/mL. Cultures of S. aureus and E. coli were added
to the wells at a final density of 5 × 105 CFU/mL. A number of wells were reserved in each
plate for sterility control (no inoculum added) and inoculum viability (no 1 added). Plates
were incubated at 37 ◦C and growth was recorded visually at 24 and 48 h. All MICs were
determined in triplicate for each condition assayed.

2.2.2. Biocompatibility Assay in A549 Lung Carcinoma Cells

A549 lung carcinoma cells were seeded (1 × 105) in 8-well slides and incubated in
DMEM containing 10% FBS, 100 U/mL penicillin and 100µg/mL streptomycin at 37 ◦C
with 5% CO2 in a humidified incubator for 24 h. Cells were subsequently incubated for
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24 h in the presence or absence of 1 (2 and 4 µg/mL) supplemented with 4 equivalents of
Zn2+ (ZnSO4). Upon 24 h incubation cells were washed (with 1X Phosphate-buffer Saline,
PBS) to removed dead cells, incubated in Trypsin/EDTA solution (0.05% trypsin, 0.53 mM
EDTA) and enumerated using a cell drop (DeNovix) in triplicate, following manufactures
recommendations.

2.2.3. Microscopy Experiments

For microscopy experiments with A549 cells (European Collection of Authenticated
Cell Cultures (ECACC), #86012804 [38]. Cells were grown in DMEM containing 10% FBS,
100 U/mL penicillin and 100µg/mL streptomycin at 37 ◦C with 5% CO2 in a humidified
incubator. Before imaging cells were seeded at 1 × 105 on to 8-well slides and grown for
24 h. 1 was added at 4 µg/mL (with 4 equivalents of Zn2+, ZnSO4) and cells were imaged
for up to 16 h at 37 ◦C with 5% CO2 in a humidified microscope incubator (Pecon).

For microscopy experiments with S. aureus JE2 [39] strain and E. coli DC10B strain [40]
bacterial cells. Bacteria were grown in MHB or LB, respectively, until mid-exponential
phase (OD600nm of 0.5). 1 mL of cells was pelleted (13.000 RPM, 1 min) and subsequently
resuspended in 10 mM MOPS with 1 at 4 µg/mL (with 4 equivalents of Zn2+, ZnSO4) and
incubated for 5 min at 23 ◦C. Cells were pelleted (13.000 RPM, 1 min), resuspended in
10 µL, and 2 µL were mounted on a thin layer of 1X PBS with 1.2% agarose, covered with a
1.5H coverslip, and imaged.

Imaging was performed on a motorised inverted widefield (WF) fluorescence mi-
croscopy system (Axio Observer 7, Zeiss) equipped with Colibri 7 LED illumination (Zeiss),
with excitation LED of 653 nm and emission filter EM BP 681/45 (Filter set 90, Zeiss), using
a Plan-Apochromat 63×/1.4 oil objective (Zeiss). Focus during experiments was kept using
the definite focus 3 (Zeiss). Images were captured using a Prime PB 95B (Photometrics)
camera using ZEN software (Blue edition, SW ZEN 3.4 pro).

3. Results and Discussion
3.1. Synthesis and Photophysical Characterization

Chemosensor 1 was designed to possess the flavylium chromophoric unit coupled to a
DPA metal chelating moiety. The synthesis was performed by condensation of (E)-2-(4-((2-
(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)benzylidene)cyclohexanone (A) [41]
with 4-(diethylamino)salicylaldehyde (B) allowed to obtain styrylflavylium 1 (Figure 2).
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Figure 2. Synthesis reaction for styrylflavylium 1.

Flavylium and styrylflavylium salts are involved in a multi-state equilibrium which is
determined by the pH of the medium. The molar fraction of each chemical species at the
different pH values/ranges is highly dependent on the substitution pattern of the flavylium
core [27]. Furthermore, the energetic barrier associated with the isomerization process,
from the hemiketal species B to the cis-chalcone Cc may also play a key role [25]. As such,
we performed pH titrations of 1, in order to get a general overview of the species present at
the different pH values (Figure 3 and Figure S7).
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Figure 3. (A) UV-Vis absorption spectra of 1 in neutral to basic conditions (4.8 < pH < 12.9); (B) exper-
imental data points collected at 673 nm, with corresponding fit for the pH equilibrium. Experimental
conditions: [1] = 1.7 × 10−5 M, in MeOH:Theorell and Stenhagen universal buffer:H2O 50:25:25.

The pH titration shows that, at moderately acid conditions (pH~4), the main species
present is the styrylflavylium cation AH+ (blue in Figure 4) with an absorption maximum
at around 670 nm. As the pH increases, the equilibrium is shifted towards the formation of
the trans-chalcone species in its deprotonated state, Ct– (red in Figure 4) revealed by the
appearance of a new band at around 530 nm. The overall pKa of this transformation (pKa1)
was determined to be at pH = 9.26, which tells us that the styrylflavylium is suitable for
sensing applications within the physiological pH range.
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Figure 4. (A) UV-Vis absorption spectra of 1 in neutral to basic conditions (4.8 < pH < 12.9). Multi-
state equilibria for 1, at different pH values. Styrylflavylium (AH+, blue) is stable in moderately acid
to neutral pH.

At extremely acidic conditions, it is possible to observe the protonation of the styrylfla-
vylium to form AH2

2+ (violet in Figure 4), with a pKa2 value of 1.41 (Figure S7B). All other
species are not observable at equilibrium conditions, indicating that they exist as transient
species as observed in other similar systems [28,29,42].

The fluorescence quantum yield of 1 was determined to be 0.003 (cryptocyanine was
used as reference [36]), with a large Stokes shift (~75 nm, 1460 cm−1). These values indicate
the presence of a deactivation mechanism related to Planar Internal Charge Transfer (PICT),
as suggested previously for the 7-(N,N-diethylamino)-4′-hydroxy-flavylium analogue [43].
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3.2. Metal Sensitivity/Selectivity

Styrylflavylium 1 comprises a di-(2-picolylamine) moiety (DPA), capable of binding
metal cations [6]. A screening of mono- and divalent cations was performed to assess the
potential selectivity and the effect of the binding event in the optical properties of 1, by
adding two equivalents of each cation and monitoring the changes in UV-Vis absorption
and fluorescence spectra (Figure 5).
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Figure 5. (A) UV-Vis absorption spectra and (B) emission spectra of 1 (5 µM), in the presence of
different metal cations (10 µM). Conditions: MeOH:MOPS 10 mM pH7 (50:50); λexc = 620 nm.

In the UV-Vis spectra (Figure 5A), we can observe that several cations induce a
hypochromic shift on the absorption of 1, namely Ni2+, Fe2+, Pb2+, Zn2+, Cd2+, Co2+

an Cu2+, with this latter ion being the one that exhibits the strongest effect, with the original
absorption band disappearing and a new band rising at circa 600 nm of absorption maxi-
mum. In the emission (Figure 5B), the panorama is quite different. Indeed, while Ni2+, Co2+

and Cu2+ promote fluorescence quenching, Zn2+, Cd2+ and Pb2+ (this latter to a smaller
extent) induce an enhancement in the emission of 1. This effect is similar to previously
reported fluorescent sensor molecules bearing DPA units [44–50].

It is therefore noteworthy that the ions that induce the strongest changes are Zn2+ and
Cu2+, even though their effect upon binding to 1 is opposite when looking at the emission.
To better understand the differences in binding strength, independent titrations of 1 with
each of these two metals were made.

Addition of gradual amounts of Zn(II) to a solution of 1 led to a decrease in the UV-Vis
absorption spectra, with a hypsochromic shift of the absorption maximum, from ~680 to
~660 nm (Figure S8). These changes in the absorption of 1 suggest that the nitrogen in
position 4′ of the styrylflavylium core is also participating in the coordination of the metal
ion (Figure S9). In terms of emission, the luminescence of 1 exhibited CHelation Enhanced
Fluorescence (CHEF), with a 2.7 fold increase and a slight shift to shorter wavelengths
(~15 nm), similar to the corresponding absorption spectra (Figure 6A).

The binding constant was obtained by fitting the experimental data to a 1:1 binding
model, yielding a value of 1.9 × 106 M−1 (Figure 6B). This value is in line with previously
reported DPA sensor systems for divalent ions [7–10]. As a comparison, the same exper-
iments were also performed for Cd2+, since it exhibited a similar behavior as Zn2+ (see
Figure 5B), resulting in a lesser fluorescence enhancement and a binding constant 4 times
lower than that of Zn2+ (Figure S10). The limit of detection (LOD) and limit of quantifica-
tion (LOQ) for Zn2+ were determined according to IUPAC guidelines (see Section 2) and
were found to be 0.39 µM and 1.29 µM, respectively. On the other hand, Cu2+ induced a
much stronger response on the optical properties of chemosensor 1. Indeed, the UV-Vis
absorption spectra changes dramatically upon increasing Cu2+ concentrations, with a new
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band appearing at λmax = 589 nm (Figure S11A), while the emission exhibits a CHElation
induced Quenching effect (Figure 7A).
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Figure 6. (A) Emission spectra and (B) corresponding changes in the total emission of 1 (5 µM),
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Figure 7. (A) Emission spectra and (B) corresponding changes in the total emission of 1 (5 µM), in
the presence of increasing amounts of Cu2+. The red line represents the best fit with the experimental
data (K1 = 4.97 × 106 M−1 and K2 = 1.15 × 105 M−1). Conditions: MeOH:MOPS 10 mM pH7 (50:50);
λexc = 680 nm.

Interestingly, plotting the emission intensity (or the maximum absorbance) against
the concentration of Cu2+ reveals the presence of a small plateau at the lowest metal
concentration range, with the strongest changes appearing as we approach 1 equivalent
of metal (Figure 7B and Figure S11B). This behavior suggests that, at an initial stage, the
metal ion may be capable coordinating with the DPA units from two different fluorophore
molecules without affecting the nitrogen in position 4′, which results in little effect on the
optical properties of 1. After 1 equivalent, an abrupt emission quenching and absorption
change is observed, signaling a disruption in the π-conjugated system, which indicates
the participation of the nitrogen in position 4′ in the coordination sphere with Cu(II)
(Scheme 1). The data (absorption and emission) were fitted to an equilibrium comprising
the formation of a 1:1 complex and a 2:1 complex (i.e., two units of chemosensor 1 binding
to one Cu2+ ion), yielding association constants with values of K1 of 4.97 × 106 M−1 and a
K2 = 1.15 × 105 M−1 (see Supporting Information for details). Despite this behavior, Job’s
plot indicates a 1:1 binding stoichiometry with 1 for both Zn2+ and Cu2+ (Figure S12).
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Scheme 1. Proposed mechanisms for the coordination of Cu(II) with chemosensor 1.

Since our focus was on applying this sensor system in biological applications and
free intracellular Cu(II) concentration are extremely low, we decided to direct our efforts
towards Zn(II). As such, we performed a competition assay in which 1 equivalent of each
competing metal cation was added to solutions containing 1 equivalent of Zn2+, and the
corresponding emission was recorded (Figure 8).
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Figure 8. Fluorescence competition assay illustrating the influence of other metals (1 eq.) in the
detection of Zn2+ ions (1 eq.) (blue). Emission intensity of 1 in the absence of any metal (grey) or in
the presence of 1 eq. of Zn2+ (red) was added for comparison. Conditions: MeOH:MOPS 10 mM pH7
(50:50); λexc = 620 nm.

The results show that Cu(II) is, by far, the strongest interferent in Zn2+ detection with
1, which is consistent with the higher association constant values obtained for this ion. Of
the remaining studied metals, only Co2+ and Ni2+ induce some emission quenching (23%
and 18% respectively) with respect to the emission of 1-Zn2+, while the effect of other metal
cations in the emission of 1 are much smaller or negligible (≤10%).

In order to further evaluate Zn(II) coordination, NMR titration of 1 was carried out
in MeOD:D2O (1:1) with zinc between 0 and 2 equivalents (Figure 9 and Figures S13 and
S14). According to the results obtained in the NMR spectra, aromatic proton peaks at
circa 8.6 and 6.7 ppm become gradually unshielded upon adding zinc, which translates
to the appearance of new peaks at around 8.75 and 6.9 ppm (Figure 9). In addition, the
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singlet present at 4.4 ppm, corresponding to CH2 protons of the DPA unit, disappears in
the presence of Zn2+, giving rise to two small doublets in the same spectral region. This
observation is consistent with the rigidification of the DPA unit upon complexation with the
metal, since these protons may behave like diastereotopic protons (Figure S9). Moreover,
an additional experiment was performed, through the addition of excess (5 equivalents)
of ethylenediamine tetraacetate (EDTA), a known complexing agent for Zn2+ and other
divalent metals (Figure 9c) [51]. As we expected, the protons signals of free 1 in solution
were regenerated, meaning that the complexation between sensor and metal is reversible
in the presence of a stronger chelating agent.
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Figure 9. 1H NMR spectra of [1] = 0.78 mM: (A) with no metal; (B) in the presence of 2 equiv. of
zinc; (C) in the presence of 2 eqs. of zinc and 5 eqs. of EDTA. All spectra were conducted at room
temperature in a mixture of MeOD:D2O (1:1).

3.2.1. Anion Sensing

Many examples of metal-coordinated DPA fluorescent chemosensors are known to
exhibit the ability to subsequently detect anionic species. In particular, Zn2+-DPA co-
ordination compounds have been widely used for sensing of phosphate and phosphate
derivatives [2,13]. As such, we screened the optical properties Zn(II)-coordinated chemosen-
sor 1 (henceforth referred to as 1-Zn2+) against a series of anions (Figure S15). We observed
a strong selectivity of 1-Zn2+ towards adenosine 5′-triphosphate (ATP) and adenosine
5′-diphosphate (ADP), with an emission enhancement of 2.1- and 3.0-fold, respectively. Out
of the other studied anions, only citrate induced some emission enhancement (~0.36 fold),
while pyrophosphate (PPi) induced a slight (~22%) emission quenching. The remaining
anions exerted no effect on the emission of 1-Zn2+. Fluorescence titrations with ATP and
ADP fitted well to 1:1 binding stoichiometries and revealed a higher affinity towards ADP
in comparison to ATP, with association constants of 6.3 × 107 M−1 and 1.5 × 106 M−1,
respectively (Figure 10 and Figure S16).
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Conditions: MeOH:MOPS 10 mM pH7 (50:50); λexc = 680 nm.

The corresponding UV-Vis absorption spectra for both of these anions present an
interesting feature. Indeed, as the concentration of ATP (or ADP) increases, we observe
a slight bathochromic and hyperchromic shift, exactly opposite to the spectral behavior
before Zn(II) complexation (Figure S17). This seems to indicate that binding the anion to
the Zn(II) metal center causes the displacement of the nitrogen atom in position 4′ of the
styryl flavylium core (Figure S18).

To confirm that the presence of Zn2+ is essential for anion binding, a simple test
was performed. Briefly, fluorescence of 1 was recorded before and after the addition
of 5 equivalents of ATP, with no changes in the acquired spectra (Figure S19). Upon
subsequent addition of 2 equivalents of Zn2+, the emission from 1 registered the same
behavior as previously shown in the presence of both metal and anion.

3.2.2. Biocompatibility and Live-Cell Imaging Studies Using with Chemosensor 1

To understand the viability of using chemosensor 1 for ATP localization, biocompati-
bility and WF live-cell microscopy studies were performed in mammalian cells (A549 lung
carcinoma cells) and bacterial cells (S. aureus and E. coli, Gram positive (+) and negative (−)
bacterial cells, respectively).

Incubation of A549 cells with concentrations of 1 up to 4 µg/mL revealed a high
degree of biocompatibility, with a survival rate of this cell line, over a 24h time incubation
period, comparable to untreated cells (Figure 11a). This was further confirmed by live-
cell imaging microscopy experiments, where normal cell morphology and cell division
events were observed during a 16h time-lapse in the presence of chemosensor 1 (movieS1).
Fluorescence microscopy imaging showed that uptake of 1 resulted in a mitochondrial
subcellular localization (Figure 11b), with no effect on mitochondrial dynamics (movieS2).
The observed subcellular localization is consistent with the fact that ATP is significantly
more concentrated in mitochondria [52].

To assess the viability of using chemosensor in bacterial cells we determined the MIC
of 1 for two classical bacterial model organisms, the Gram (+) S. aureus and the Gram
(−) E. coli. For E. coli DC10B strain (non-pathogenic lab strain) we observed no toxicity
(MIC > 32 µg/mL, maximum concentration used). For S. aureus bacteria we observed
that 1 has antimicrobial activity, with a MIC of 2 µg/mL. This observation is especially
interesting considering the clinical importance of the JE S. aureus strain used in this assay,
the most prominent CA-MRSA lineage in the United States [39]. For both bacterial models
a homogeneous membrane associated localization was observed (Figure 11b), consistent
with ATP synthesis in the bacterial membrane [52].
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4. Conclusions

A new NIR emissive chemosensor system for the detection of cations was designed
and fully characterized. Sensor 1 was capable of binding to several divalent metal ions
through a di-(2-picolyl)amine (DPA) chelation moiety, presenting distinct spectral behaviors.
UV-Vis spectral profile revealed participation of the nitrogen atom directly coupled to the
fluorophore in the metal-coordination sphere. Of the studied metals, Zn2+ and Cd2+

induced a strong CHEF effect on 1, with Zn2+ presenting a higher binding constant and
Cu2+ acting as the strongest interferent. These results are comparable to previous works
that use DPA as metal binding unit. Subsequent binding of ATP and ADP to 1-Zn2+ was
observed through a further fluorescence enhancement, with substitution of the ancillary
nitrogen (position 4′) from the coordination sphere, a response which has been previously
described in other works [47]. Intracellular studies indicate that 1-Zn2+ may be employed
to label bacteria and mammalian cells, particularly targeting the cellular membrane for
the case of bacteria, and mitochondrial membranes from eukaryotic cells, due to the high
concentrations of ATP/ADP in these intracellular sites.
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