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Abstract: Brillouin spectroscopy is a powerful tool to measure the water temperature and salinity
profiles of seawater. Considering the insufficiency of the current spectral measurement methods in
real-time, spectral integrity, continuity, and stability, we developed a new lidar system for spectrum
measurement on an airborne platform that is based on a Fizeau interferometer and multichannel
photomultiplier tube. In this approach, the lidar system uses time-of-flight information to measure
the depth and relies on Brillouin spectroscopy as the temperature and salinity indicator. In this
study, the system parameters were first optimized and analyzed. Based on the analysis results, the
performance of the system in terms of detection depth and accuracy was evaluated. The results
showed that this method has strong anti-interference ability, and under a temperature measurement
accuracy of 0.5 ◦C and a salinity measurement accuracy of 1‰, the effective detection depth exceeds
40.51 m. Therefore, the proposed method performs well and will be a good choice for achieving
Brillouin lidar application in seawater remote sensing.

Keywords: Fizeau interferometer and multichannel PMT; Brillouin scattering spectrum; temperature
and salinity profiles; Brillouin lidar; remote sensing

1. Introduction

Oceans are closely related to human life and production as they produce oxygen
and regulate the Earth’s climate; they are also vital to economic development in terms of
shipping and other maritime activities [1–3]. Various environmental factors, such as the
temperature and salinity, are important parameters that can help characterize the state of
seawater. An accurate determination of the ocean temperature and salinity is the basis for
the development and sustenance of maritime activities [4–6].

Lidar, as an active remote sensing detector, is now widely used in ocean temperature
and salinity monitoring [7–12]. In recent remote sensing research, Brillouin lidar is an
attractive topic [13–17]. In Brillouin lidar, ocean environmental factors are mainly retrieved
by detecting spectral parameters related to Brillouin scattering (such as the frequency shift
and linewidth) [18,19]. Ergo, the accurate Brillouin spectrum measurement method is the
core technology for ocean Brillouin lidar.

The spectral measurement method using a scanning Fabry–Perot (FP) interferometer
was first used to gradually scan the energies at each frequency point in the spectrum to
obtain a complete Brillouin spectrum [20–22]. The Brillouin frequency shift was extracted
from the spectrum and used for seawater temperature measurements. The temperature
measurement accuracy reached 3 K, proving the feasibility and application prospects for the
Brillouin spectrum measurement of seawater information. However, this method requires a
long time (approximately 10 min) to acquire the Brillouin spectrum, which is not conducive
to the practical applications of lidar.
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Dai et al. [23] proposed a spectral measurement method based on edge technology to
obtain the Brillouin spectrum in real time. In edge technology [24], a narrowband filter with
a steep edge is placed near the Brillouin spectrum. A small shift in the spectrum causes
a significant change in the energy after passing through the edge filter, and the spectral
frequency shift can be measured through the change in the energy. In this edge detection
method, an I2 absorption cell is used as the filter. Because the absorption spectral line of
I2 is determined by the inherent characteristics of iodine molecules, the corresponding
wavelength/frequency of the absorption spectral line is fixed. In other words, the parame-
ters of the lidar system, such as the laser frequency, should strongly match the frequency
of the absorption spectral line, making the system less flexible. To solve this problem,
Walther et al. [25,26] designed an excited-state Faraday anomalous dispersion optical filter
(ES-FADOF) that can adjust the central frequency and line shape of the edge filter by
controlling the magnetic field strength, making the selection of the system parameters more
flexible. However, the scattering spectrum acquired using the edge method is incomplete,
and only one parameter, namely the Brillouin shift, can be obtained. Its application to the
synchronous measurement of multiple marine environmental elements is limited.

To quickly obtain a complete Brillouin spectrum to determine more spectral char-
acteristic parameters, such as the Brillouin linewidth, and satisfy the requirements of
multiparameter synchronous remote sensing, Shi et al. [27] proposed a spectral measure-
ment method using a Fabry–Perot (FP) etalon and intensified charge-coupled device (ICCD).
In this method, light passing through the FP etalon is separated at different frequencies in
the spatial position with coherent interference, forming a 2D interference ring with equal
inclination. The 2D image is then photoelectrically converted and outputted using an array
ICCD. After subsequent image and signal processing, a 1D complete scattering spectrum
can be obtained. Kun et al. [28,29] performed simultaneous measurements of seawater
temperature and salinity based on multispectral characteristic parameters, such as the
Brillouin frequency shift and linewidth, extracted from a complete scattering spectrum.
However, because of the limitations of the integration time and frame rate (millisecond
level) of the ICCD, the sampling rate of the Brillouin scattering spectrum is not high, and it
is impossible to measure the vertical profiles of the temperature and salinity of high-density
seawater at a vertical resolution of meters (time resolution of approximately 10 ns). In
other words, this spectral measurement method fails to meet the profile measurement
requirements for marine elements.

Considering the requirements of real-time spectrum measurement, spectral integrity,
and continuity, Kun et al. [30,31] proposed a spectral measurement method based on a
dual-edge etalon combined with a photomultiplier tube (PMT). In this method, the energies
of two local characteristic narrowband spectra are measured through two edge filters.
Because the function expression of the Brillouin scattering spectrum is known, a complete
Brillouin scattering spectrum can be reconstructed using these two energies. With this
method, a continuous Brillouin scattering spectrum is obtained, and rapid measurement
of the temperature and salinity profiles can be realized with a vertical resolution of 1 m
underwater (temperature and salinity accuracies of 0.5 ◦C and 1‰, respectively), further
promoting the application of Brillouin lidar in the profile measurement of multiple marine
environmental factors.

Compared with other Brillouin scattering spectral measurement methods, the mea-
surement method based on the double-edge technology can satisfy the requirements of
rapidity, spectral integrity, and profile continuity. However, a high environmental stability
is required to maintain the stability of the central frequency and bandwidth of the dual
etalon. A small change in the environment can change the instrument function of the etalon,
resulting in a significant change in the energy passing through the filter, which affects the
spectral reconstruction accuracy. An energy fluctuation error of 1% through the etalon can
cause a scattering spectrum reconstruction error of 40 MHz, and the corresponding temper-
ature error reaches 1 ◦C. Therefore, although this method can be used to reconstruct the
Brillouin scattering spectrum with a high accuracy in theory, considering that the measured
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energy is prone to interference under environmental conditions, the detection accuracy
of ocean environment parameters is limited in actual implementation. For example, this
method is unsuitable for applications with higher accuracy requirements (a temperature
measurement accuracy of 0.2 ◦C or higher).

In order to solve the shortage of the measurement method based on the double-edge
technology in high-precision detection, another method must be proposed. A theoretical
analysis of the Brillouin scattering spectrum has shown that this spectrum is symmetrically
distributed on the left and right sides at the center of the Rayleigh spectrum. If the Rayleigh
spectrum is taken as the reference ruler, even if the system is unstable and there is jitter in
the entire scattering spectrum, the relative positions of the Brillouin and Rayleigh spectra
will not change. Therefore, if the complete Rayleigh and Brillouin spectra can be measured,
the stability of the spectral measurement and the anti-interference ability can be improved,
and the measurement results will be more accurate.

Hence, this paper proposes a scattering spectrum measurement method based on a
Fizeau interferometer and multichannel PMT. When backscattered light passes through the
Fizeau interferometer, equal-thickness interference fringes are generated, and each fringe is
the expansion of one complete Rayleigh–Brillouin spectrum in space. After beam shaping,
1D line array images can be outputted and received by a multichannel PMT that quantifies
the continuous Rayleigh–Brillouin (RB) scattering spectrum into discrete sparse energy
points [32,33]. Finally, the complete RB scattering spectrum is reconstructed based on these
points. This method can solve the drawbacks of the double-edge technology in terms of
stability and accuracy, and improve the measurement accuracy and detection depth of
seawater parameter profiles when using the Brillouin scattering spectrum.

In the remainder of this article, we introduce the theory and system of the Fizeau
interferometer combined with the multichannel PMT method in the second part. The
system parameter optimization and analysis are described in Section 3. In Section 4, we
discuss the performance of the Brillouin lidar system. Finally, the conclusions are presented
in Section 5.

2. System and Theory
2.1. Brillouin Lidar System

Figure 1 shows the schematic of the Brillouin spectrum measurement system based on
the Fizeau interferometer combined with a multichannel PMT. The system can be divided
into two parts: a light emission part and a spectral reception part. The light emitted
from the pulsed laser is split into two. One beam with a low amount of light is set as the
reference beam received by PMT0 to monitor the jitter in the laser energy. After expansion,
the second beam enters the water to produce scattered light. In the spectral reception part,
the 180◦ backscattered light is first collected by a Cassegrain telescope and transmitted
through an optical fiber. After collimation, the light passes through a narrowband filter
to further reduce the background light and simultaneously suppress the Raman-scattered
light. Subsequently, the filtered scattering is yielded in the Fizeau interferometer. The
Fizeau interferometer in the system was designed to allow only one interference fringe
to appear. The interference fringe passes through a cylindrical lens to compress the light
in the direction in which the light in the fringe has the same frequency. Finally, the
compressed light is detected by the multichannel PMT, which converts the continuous
scattering spectrum into discrete electrical signals. The system also includes a control
circuit to control the pulse laser emission, read PMT data, enable real-time interaction
through a computer, and control the temperature regulation of the Fizeau interferometer.
Table 1 presents the designed parameters of the airborne platform system and typical
environmental parameters.
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Figure 1. Schematic of the Brillouin spectral method based on a Fizeau interferometer and multichan-
nel PMT. The light emitted by the pulse laser is split by M1 into two parts. One is collected by PMT0
as the reference beam to monitor the energy changes. The other part, after the beam expander system,
directly enters the water to produce a scattering light. Subsequently, the 180◦ backscattered light is
first collected by a Cassegrain telescope and transmitted through an optical fiber. After collimation,
the light successively passes through a narrowband filter (F) and the Fizeau interferometer (FI),
producing an interference fringe. The fringe is then sharpened by the cylindrical lens (CL) and finally
detected by the multichannel PMT. (Mi and Li indicate the mirrors and lenses, respectively, and C is
the fiber collimator).

Table 1. Design parameters of the system.

Parameter Value Parameter Value

Laser energy E 20 mJ Pulse width τ 10 ns
Laser wavelength λ 532 nm Brillouin backscattering coefficient σB 2.4× 10−4

Telescope radius r 0.05 m Height H 100 m
Attenuation coefficient α 0.08 Atmospheric attenuation efficiency αA 0.81

Detection efficiency ξs 0.13 Optical efficiency ξl 0.4
Refractive index n 1.33 Repetitive frequency 100 Hz

Figure 2 shows the detection process of the RB scattering spectrum for the spectral
reception part.
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The backscattered light passes through the Fizeau interferometer (FI). Under the
principle of multibeam interference, light of different frequencies is expanded in space
after FI, and a continuous RB scattering spectrum is formed and exactly distributed on the
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multichannel PMT after beam shaping. The continuous spectrum is then quantified by the
multichannel PMT, and a discrete RB scattering spectrum is obtained. Based on the spectral
reconstruction method, the discrete RB scattering spectrum was used to reconstruct the
continuous RB scattering spectrum using a software algorithm.

2.2. Theory of Measurement

Theoretically, the RB scattering spectrum of seawater is related to its temperature and
salinity and can be expressed by three Lorentzian functions:

fRB(v) = fB(v) + fR(v)

= IB
πΓB

{
1

1+[2(v−vB)/ΓB ]
2 +

1
1+[2(v+vB)/ΓB ]

2

}
+ IR

πΓR
· 1

1+[2(v−vR)/ΓR ]
2

(1)

where fB(v) and fR(v) represent the Brillouin and Rayleigh components, respectively. ΓB
is the Brillouin linewidth, vB is the Brillouin shift, v is the frequency, IB is the intensity of
the Brillouin light, vR is the central frequency of the Rayleigh spectrum (the same as the
laser center frequency), ΓR is the Rayleigh scattering linewidth, and IR is the intensity of
Rayleigh scattering.

Generally, the RB scattering light after passing through the Fizeau interferometer can
be expressed as the convolution of the RB scattering spectrum fRB(v) and the instrument
function of the Fizeau interferometer FI(v):

fCL= FI(v)⊗ f RB(v) (2)

where
FI(v)= I0· 1

1+
(

2·FSR
π ΓFI

)2
· sin2( π

FSR ·v)
(3)

Here, I0 is the maximum intensity of the transmission spectrum, FSR is the free spectral
range, and ΓFI is the half-height and full-width of the Fizeau interferometer.

In addition to the backscattered RB signal of seawater, the signal received after beam
shaping contains background and detector noise, which can be computed as follows:

I0(v) = FI(v)⊗ [ fRB(v) + NM + Nb] + Nd (4)

where Nb is the background noise, NM is the groundscattering noise generated by the
particles in water, and Nd is the dark-current noise of the detector. Because the PMT outputs
discrete voltage signals, the continuous signal I0(v) is discretized by the multichannel PMT.
Assuming that the number of channels in the multichannel PMT is N, the energy received
by each channel can be expressed as follows:

Ii = fCh(vi, Γi) · I0(v) =
vi−

Γi
2∫

vi+
Γi
2

I0(v)dv

=
∫ vi−

Γi
2

vi+
Γi
2

{FI(v)⊗ [ fRB(v) + NM + Nb] + Nd}dv

(5)

where Ii (i = 1, 2, . . . , N) represents the energy received by each channel, fCh (vi, Γi) is
the instrument function for each channel, vi is the center frequency of each channel, and
Γi is the bandwidth. A discrete array [I1, I2, . . . , IN] comprising Ii represents the energy
detected by the multichannel PMT.

Using this system, a discrete RB scattering spectrum can be obtained. The following
step is for the additional Brillouin characteristic parameters based on the discrete array
to retrieve the temperature and salinity. By fitting the discrete array [I1, I2, . . . , IN] using
Equation (1):

SRB(vB, ΓB) = f it([I1, I2, I3, · · · , In]) (6)
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the RB scattering spectra SRB (vB, ΓB) can be reconstructed, and the Brillouin shift and
linewidth can be acquired.

When substituting the Brillouin shift and linewidth into the dual-parameter inversion
model, the corresponding temperature and salinity of the seawater can be calculated, and
the measurement of the ocean environment parameter profile is realized. The synchronous
retrieval models for the temperature and salinity can be expressed as follows:

T(vB, ΓB) = m1 + m2·vB + m3
ΓB

+ m4·vB
2 + m5

ΓB2 +
m6·vB

ΓB

+m7·vB
3 + m8

ΓB3 +
m9·vB

ΓB2 + m10·vB
2

ΓB

(7)

S(vB, ΓB) = k1 +
k2
vB

+ k3
v2

B
+ k4

v3
B
+ k5

v4
B
+ k6

v5
B
+ k7 ln ΓB

+k8 ln ΓB
2 + k9 ln ΓB

3 + k10 ln ΓB
4 + k11 ln ΓB

5
(8)

where the coefficient values of mi and ki can be referred from [34]. For this dual-parameter
inversion model, the temperature and salinity inversion errors were within 0.08 ◦C and
0.21‰, respectively.

As the accuracy of the dual-parameter inversion model is high, the main factor affect-
ing the accuracy of the seawater temperature and salinity measurements is the accuracy
of the Brillouin scattering spectrum measurement. The quality of the spectrum can be
weighted using the SNR. For the lidar detection system using the PMT as the receiving
detector, the SNR of the received signal is as follows:

SNR =
NB(z)√

β·NB(z) + Nd + Nb
·
√

M (9)

where M is the cumulative number, and β is the noise coefficient, which is generally
between 1.2 and 2.0. Based on an analysis of existing experimental data [31], the value was
chosen to be 2.0.

In summary, based on system optimization, this study mainly analyzed the measure-
ment depth of the system, the accuracy of the Brillouin scattering spectrum measurement,
and the accuracy of the retrieved temperature and salinity under different SNR conditions.

3. System Parameters Optimization and Analysis

The measurement accuracy of the Brillouin scattering spectrum for the system based on
the Fizeau interferometer and multichannel PMT is mainly related to the spectral reception
and light emission parts. For spectral reception, the parameters of the Fizeau interferometer
and the channel number of the PMT significantly influence the accuracy of the results. For
the light emission part, the laser frequency stability is the major factor. Therefore, system
parameter optimization and analysis are discussed based on these three aspects.

A Fizeau interferometer was used for the spectrum separation. Two parameters are
important: the free spectral range (FSR) and the finesse. The FSR is the spacing in the optical
frequency between two successive reflected or transmitted optical intensities. If the FSR is
lower than that of the scattering spectrum, the spectrum after the Fizeau interferometer
overlaps with its adjacent spectrum. Considering that the frequency range of the RB
scattering spectrum of seawater is approximately 20 GHz [7,18], we set the FSR to 25 GHz.
The finesse decides the width of the single-frequency light after the Fizeau interferometer. If
the finesse is low, the spectrum after the Fizeau interferometer will be wide, corresponding
to a low-frequency resolution. In contrast, a high finesse can produce a high spectral
resolution. However, a high finesse reduces the amount of light transmitted after the
interferometer. Less light implies a reduced detection distance. Hence, it is important to
appropriately set the finesse. The finesse was determined based on the reflectivity of the
Fizeau interferometer. From the analysis reported in [35,36], the reflectivity of the Fizeau
interferometer was set to 90%.
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For the PMT, the dark current and quantification efficiency cannot be adjusted after it
is produced. The measurement accuracy of the Brillouin scattering spectrum is primarily
related to the number of channels in the PMT. During spectral reception, the number of
channels in the multichannel PMT determines the number of discrete spectral points. As
the channel number increases, the number of discrete points increases, and the accuracy of
the reconstructed spectrum increases. However, a higher number of channels implies that
the energy obtained by each channel is lower, which reduces the SNR, and the spectrum is
less precise. Therefore, it is necessary to appropriately select the number of channels for
the PMT.

To analyze the relationship between the channel number of the PMT and the mea-
surement accuracy, simulations of the Brillouin spectrum for different channel numbers
were performed. The simulations were made based on the parameters listed in Table 1
using Equations (1)–(4). Scattering spectra of seawater at different PMT channel numbers
were obtained, as shown in Figure 3. In the simulations, a typical condition with a water
temperature of 20 ◦C and a salinity of 5‰ was selected. For effective signal detection, the
SNR should be greater than 3. Considering the system margin, Poisson noise from the
signal was added during the simulation with an SNR of 30.
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Figure 3. RB scattering spectrum obtained under different channel numbers of the PMT: (a) 4; (b) 8;
(c) 16; and (d) 32.

Using the discrete spectra, the corresponding continuous spectra were reconstructed
based on Equation (4). The Brillouin shift and linewidth obtained from these continuous
spectra were extracted. Figure 4 shows their measurement accuracies under different
channel numbers of the PMT.
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Figure 4. Deviations under different channel numbers of the PMT: (a) Brillouin shift; (b) Bril-
louin linewidth.

As it can be seen from Figure 4, when the channel number is over 12, both the
deviations of the Brillouin shift and linewidth are less than 2 MHz. Moreover, the more
channels, the higher the spectral inversion accuracy, and the higher the corresponding
seawater temperature and salinity measurement accuracy. However, more PMT channels
mean that the system is more complex and costlier. Except that, the data processing
algorithm is more complex and the time complexity is greater. Considering the existing
productions of PMT and cost, as well as the results for the simulations we did with SNR
below 30, the channel number of 16 for the PMT is selected in this system.

For the light emission part, the instability of the light source causes error in the
measurement results. As the energy changes can be eliminated by the reference beam,
the laser frequency jitter is mainly discussed here. The laser frequency jitter makes the
spectrum received by the multichannel PMT produce a shift that influences the accuracy
of the retrieved Brillouin shift and linewidth. Therefore, the effect of the laser frequency
jitter is discussed here. The interval between the centers of two adjacent PMT channels
is 1 mm [37], which corresponds to the frequency of 0.762 GHz. It is only necessary to
consider the spectral offset within 1 mm, as the offset exceeding 1 mm can be converted to
less than 1 mm. The measurement errors of Brillouin shift and linewidth when the overall
spectral drift is 1 mm are shown in Figure 5.
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Figure 5 shows that when the laser or other factors cause spectral shift, the Brillouin
shift error is less than 2 MHz; the Brillouin linewidth error is mostly less than 3 MHz. This
demonstrates that the RB spectra measurement method has strong anti-interference capability.

4. Brillouin Lidar System Performance

In the last section, we optimized and analyzed the Brillouin lidar system. In this
section, we discuss its performance. To analyze the measurement performance of the
system, the depth detection ability was first analyzed. To analyze the actual depth detection
capability of the system, a Brillouin energy measurement experiment was conducted.
Using the measurement results, the depth deception of the system was explored through
an equivalent analogy. In addition, the measurement accuracy is an important aspect of
the measurement performance of the system. The temperature and salinity measurement
accuracies and effective detection distance of this method under noisy conditions were
evaluated. The detection performance of this method under different depth conditions
was analyzed, and the maximum measurement depth was determined under a given
temperature and salinity measurement accuracy.

4.1. Detection Depth Analysis of the Lidar System

The detection ability of a lidar system is related to the echo energy. For spontaneous
Brillouin scattering, the backscattering energy can be quantified by the number of Brillouin
scattering photons NB(z) in water, which can be expressed by the following equation:

NB(z) =
Eλ

hc
· cτ

2n
· πr2

(z + nH)2 ·αA·e−(2αz)σξsξl (10)

where z is the depth under water, c is the speed of light in vacuum, and σ is the backscat-
tering coefficient, which comprises the Rayleigh scattering coefficient σR and Brillouin
backscattering coefficient σB.

4.1.1. Experiment of Brillouin Energy Measurement

O’Connor et al. [38] proved that the energy ratio of Rayleigh scattering and Brillouin
scattering in pure water at temperatures in the range of 0–40 ◦C is less than 0.04, which
means that the Rayleigh light has a significantly lower intensity than the Brillouin light
in water. However, in actual measurements, water contains various impurities, that is,
the received scattering signals in water include Rayleigh scattering, Brillouin scattering,
and Mie scattering signals. Because the Brillouin scattering peaks are on both sides of the
Rayleigh and Mie scattering peaks in the spectrum, the intermediate Rayleigh and particle
scattering signals can be filtered to obtain the pure Brillouin scattering signal. Figure 6
shows the optical design. The backscattered light was collected by a collecting optics. After
filtering the background noise in the scattering spectrum, the light was split into two using
a beam splitter. One beam was received by PMT2 and used as the reference beam, while
the other passed through an absorption filter (iodine molecule absorption cell) to remove
the unshifted central Rayleigh and Mie scattering light. Finally, pure Brillouin light was
received by PMT1.

With this design, a setup for the Brillouin energy measurement was built. Figure 7
shows the schematic of the experimental system.

In this Brillouin energy measurement system, a parallel-axis transceiver design was
adopted. The laser emitted pulses into the water, and the telescope composed of L1 and L2
received the scattered signals. The received scattered signal was divided into two beams
using a 1:1 beam filter. One beam was directly received by PMT2, which was the total
energy of the scattering signal. The other beam, which was the Brillouin scattering energy,
was received by PMT1 after passing through the iodine molecular absorption cell. An
iodine molecule absorption cell can absorb the central Rayleigh and Mie scattering light in
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water. Figure 8 shows the experimentally measured absorption curves of the iodine cells at
different temperatures.
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Figure 8 shows the iodine absorption lines at temperatures ranging from 30 to 65 ◦C,
with a frequency of 0 Hz corresponding to the center frequency of the laser. The higher the
temperature, the more evident the inhibition effect of the iodine molecular absorption cell
on the Rayleigh–Mie scattering signal, but accordingly, the stronger the absorption ratio
of the Brillouin scattering signal. To remove the Rayleigh–Mie scattering signal as much
as possible and retain more of the Brillouin scattering signal, a temperature of 40 ◦C was
set in the experiment, and the transmission efficiency of the Brillouin scattering signal was
approximately 80%. Table 2 presents the system parameters used in the experiment.

Table 2. Parameters of the Brillouin energy measurement system.

Parameter Value Parameter Value

Laser energy E0 0.2 mJ Pulse width τ0 10 ns
Laser wavelength λ0 532.293 nm Repetitive frequency 100 Hz
Telescope diameter d0 0.025 m Scattering angle θ 179◦

Attenuation coefficient α 0.099 Height H0 2.45 m
Averaging number M0 100

When the water temperature was 28.2 ◦C and the salinity was 0‰, the scattering
signals before and after passing through the iodine cell were collected, as shown in Figure 9.
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Figure 9. Scattered signals before and after passing through an iodine cell: (a) overall scattered
signal before passing through the iodine cell; (b) Brillouin scattering signal after passing through the
iodine cell.

Figure 9a,b show the measurement signals in front of the iodine cell and after the
iodine cell, respectively. After averaging 100 times, we calculated the SNR to be 7.4, which
was high.

Figure 10 shows the results of the Brillouin scattering energy and total scattering
energy after averaging 100 times. The red and blue lines indicate the distributions of the
signal energy received before and after passing through the iodine cell, that is, the total
scattering energy and Brillouin scattering energy, respectively. The maximum values of
the red and blue lines are 0.47 and 0.077, respectively, with a corresponding energy ratio of
Brillouin scattering, and the total scattering energy is 16.38%.

The signal from 17 to 18 m at the tail of the signal in Figure 10 does not contain a
scattered signal; this signal is mainly the dark-current noise of the detector. The mean
value and variance of the dark-current noise were denoted by X and δ, respectively. When
subtracting the mean value X from the received signal, the remaining signal that is greater
than 3δ and has duration of more than 5 ns is considered an effective signal, and the
maximum measurement depth of the Brillouin scattering signal was found to be 13.68 m.
When the effective signal was determined with a rest signal greater than δ and with duration
of more than 5 ns, the maximum measurement depth was calculated as 16.04 m.
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The signal received by the PMT is the scattering energy over time. This can be
determined using Equation (10). When the parameters are selected, as listed in Table 2,
the attenuation coefficient of water can be obtained by fitting the signal in the range from
maximum to the bottom. Figure 11 shows the fitting results of the Brillouin scattering
energy and total scattering energy.
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Figure 11. Calculation of the attenuation coefficient of water: (a) fitting result for the total scattering
energy; (b) fitting result for the Brillouin scattering energy.

The attenuation coefficients obtained by fitting the total scattering energy signal and
Brillouin scattering energy signal are 0.091 and 0.108, respectively. The two fitting results
are very close. The attenuation coefficient of water in this experiment was set as α = 0.099.
Using this value and the parameters listed in Table 2, the number of Brillouin scattered
photons at different water depths was analyzed based on Equation (10), as shown in
Figure 12. The figure shows the relationship between the number of received scattered
photons and the measurement depth at integration times of 1, 100, and 1000. The black and
pink dotted lines in the figure correspond to depths of 13.68 and 16.04 m, respectively. The
number of system integrations is 100, and the numbers of scattered photons corresponding
to depths of 13.68 and 16.04 m are 111,169 and 55,700, respectively.
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4.1.2. Analogy of Maximum Detection Depth

For a Brillouin lidar with different system parameters, the corresponding detectable
Brillouin spectrum level remains the same as long as the number of Brillouin scattering
photons remains unchanged. Therefore, the detection depth can be deduced from one setup
to the next. In the experiment, the minimum number of photons of Brillouin scattering
that the PMT can detect was obtained. This result can be used to deduce the maximum
detection range of the lidar system based on the Fizeau interferometer and multichannel
PMT under the parameter conditions listed in Table 1.

The lidar equation, Equation (10), is used to make an equivalent analogy: for two
different lidar systems, under the condition that the number of Brillouin scattering photons
is the same, the maximum measurement depth under other conditions can be deduced by:NB(z0) = M0· E0λ0

hc ·
cτ0
2n ·

πr0
2

(z0+nH0)
2 ·αA·e−(2αz0)σξsξl

NB(zx) = M1· E1λ1
hc ·

cτ1
2n ·

πr1
2

(zx+nH1)
2 ·αA·e−(2αzx)σξsξl

(11)

where NB(z0) and NB(zx) are the numbers of Brillouin photons obtained under the experi-
mental conditions and by the designed system, respectively.

The maximum measurement depth of the experiment was z0 = 13.68 m. By substi-
tuting the parameters listed in Table 1 into Equation (11), we can obtain the maximum
Brillouin scattering signal detection depth under the equivalent condition of M1 = 1000
as zx = 42.90 m. Under different water quality conditions and cumulative numbers of
measurement, the maximum measurement depths will be different, as shown in Figure 13.
The results show that, as the attenuation coefficient increases, the maximum measurement
depth decreases, and when adding the cumulative number of measurements, the detection
distance increases.

4.2. Detection Accuracy Analysis of Lidar System

The detection accuracy of the Brillouin lidar in ocean environments is related to the
spectral signal corresponding to Brillouin scattering. Theoretically, the greater the depth, the
weaker the scattering echo signal energy and the lower the detection accuracy. To analyze
the effective detection depth of the system, the detection accuracies of the temperature and
salinity based on the system at different depths obtained from the SNR of the echo signal
are discussed in this section.
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4.2.1. SNR and Measurement Depth Analysis

The detection depth of the system is not only affected by the strength of the received
signal but also by the detected noise. In the measurement of the profiles of water environ-
ment elements by a Brillouin scattering lidar, the main noise sources are radiation light
from external light sources, random particle noise of photons, dark current, and thermal
noise of detectors. For a lidar system based on a Fizeau interferometer and 16-channel PMT,
the noise sources mainly include the detector noise Nd and scattering noise of the external
light source Nb, expressed as follows:{

Nd = CPS·∆t

Nb = ηλ
hc ·Eb·π·

(
θr
2

)2
·∆t·A·Ts·∆λ

(12)

where η is the receiving efficiency of the detector, θr is the receiving field angle of the
telescope, A is the aperture area, Eb is the energy of the external light source (Eb = 0 at
night), ∆λ is the half-height linewidth of the filter, and Ts is the optical receiving efficiency
of the detector.

Equation (9) shows that, the greater the number of accumulated pulses, the higher the
SNR of the system; that is, the longer the integration time, the better the SNR of the system.
However, integration for long periods limits the temporal resolution; therefore, the relation-
ship between the SNR and the temporal resolution should also be comprehensively considered.

To analyze the measurement accuracy of the ocean environmental element profiles
obtained by the system, a temperature of 20 ◦C and salinity of 5‰ was set as the condition
for the simulation in this section. The relationship between the SNR and the measurement
accuracy of a single-pulse measurement can be obtained by substituting the scattering echo
signal with different SNRs into the Fizeau interferometer and multichannel PMT system,
as shown in Figure 14.

Figure 14 shows that as the SNR increases, which corresponds to a decrease in depth,
the results of the temperature and salinity measurements become increasingly accurate.
For a temperature accuracy of 0.5 ◦C and salinity accuracy of 1‰, the SNR should be
greater than 35. At this time, the effective detection depth of the single-pulse measurement
was 27.73 m. The SNR of the scattered signal must be improved to increase the effective
detection depth of the system.

In addition to increasing the laser energy and improving the system reception effi-
ciency, the SNR can be improved by adding the number of photons detected by the PMT
through the integration and accumulation of multiple measured signals. Therefore, we
focused on analyzing the relationship between the number of echo photons in the signal
and the measurement depth.
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4.2.2. Echo Photon Number and Detection Depth Analysis

The SNR of the echo signal not only determines the temperature and salinity measure-
ment accuracies of the system but also determines its effective detection range. Under a
temperature accuracy of 0.5 ◦C and salinity accuracy of 1‰, the effective detection SNR
was 35, corresponding to a detection depth of 27.73 m for a single measurement. When
the number of received photons was kept unchanged, the SNR remained unchanged, and
the measurement accuracies of the temperature and salinity would not change. Therefore,
when the SNR of the signal was set to 35 by means of cumulative integration, the tempera-
ture and salinity measurement accuracies were ensured to be 0.5 ◦C and 1‰, respectively.
At this time, the depth corresponding to the photon number measured at a single time
was the effective detection depth. To explore the effect of cumulative times, repeated
measurement results under an SNR of 35 were simulated, as shown in Figure 15. The
different colors in the figure represent the energy results after a 16-channel PMT receives
the spectrum. The red line indicates the original RB spectrum. The results show that a
single measurement value is random owing to the influence of noise. Through averaging,
we can obtain more accurate multichannel PMT measurement results.
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Theoretically, the number of scattered echo photons excited by a single laser pulse
remains constant. Considering that the laser repetition frequency of this system was 100 Hz,
typical integration times of 1, 10, and 100 s, which correspond to accumulation numbers of
100, 1000, and 10,000, respectively, were selected for analysis, as shown in Figure 16.
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Figure 16. Relationship between the SNR and detection depth under different accumulation numbers.

The number of received echo photons and SNR can be ensured to remain unchanged
by means of cumulative integration. The results in Figure 16 show that under a temperature
measurement accuracy of 0.5 ◦C and salinity measurement accuracy of 1‰ (the correspond-
ing SNR is 35), the effective detection depths under accumulation numbers of 100, 1000,
and 10,000 are 75.48, 97.71, and 119.28 m, respectively.

Under the condition of ensuring the same measurement accuracy, despite the longer
integration time, the corresponding effective detection depth was greater. However, the
time resolution was reduced with a longer integration time. Considering the requirements
of the effective measurement depth and time resolution, we chose an integration time of
10 s for the system, that is, 1000 pulses were measured accumulatively.

When the ocean environmental parameters change, for example, when the water
quality changes, the measurement depth of the lidar system varies. Here, the effective
detection depth of the system is discussed for typical water attenuation coefficients of 0.05,
0.08, 0.1, and 0.2. Figure 17 shows the single-pulse measurement results for different water
attenuation coefficients under an integration time of 10 s.
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As shown in Figure 17, under the condition that the measurement accuracies of the
temperature and salinity are 0.5 ◦C and 1‰, respectively, the effective detection depth is
152.10 m for an attenuation coefficient α = 0.5. When the attenuation coefficient α = 0.2,
the effective detection depth is 40.51 m. The results show that for an accumulation time
of 10 s, the effective detection depth with the measurement method involving the Fizeau
interferometer and 16-channel multichannel PMT in water of various qualities exceeds
40.51 m.

In Section 4.1.2, Figure 13 shows that, after applying the equivalent analogy, the
maximum detection range is greater than 20 m when the attenuation coefficient is 0.2,
and the accumulation number is 1000. Compared with the theoretical maximum effective
detection range of 40.51 m, the detection capability of the actual system is lower. This
may be attributed to the fact that the system efficiency of the actual experimental system
is lower than that of the theoretical simulation system (for example, the passing rate of
the iodine molecular absorption cell at 40 ◦C is 0.8). In an actual system, considering the
attenuation of the optical lens and the efficiency of the detector, the theoretical detection
efficiency cannot be achieved.

5. Discussion

A measurement method for the Brillouin scattering spectrum of seawater based on a
Fizeau interferometer and multichannel PMT was established. According to the principle of
equal inclination interference, equal-thickness RB interference fringes were produced using
the Fizeau interferometer. After compression in the direction where light has the same
frequency, the discrete scattering spectrum was quickly obtained using the multichannel
PMT. With the spectrum reconstruction method, the Brillouin frequency shift and linewidth
were obtained, and the temperature and salinity of the water could be retrieved.

The Brillouin frequency shift and linewidth error for different numbers of PMT chan-
nels were simulated and analyzed. The parameters of the Fizeau interferometer were
determined based on the Brillouin spectrum and the interferometer characteristics. Consid-
ering the existing experimental instruments and cost, the number of PMT channels was set
to 16. To verify the anti-jamming capability of the proposed method, the Brillouin shift and
linewidth were retrieved by simulation when the spectrum was shifted. The results showed
that the Brillouin frequency shift error was less than 2 MHz in the range of 0.762 GHz,
and the Brillouin linewidth error was mostly less than 3 MHz. This demonstrated that the
proposed method has strong anti-interference ability.

Moreover, a Brillouin energy experimental system was designed and built to analyze
the detection performance of the proposed method for depth detection. The experimen-
tal results showed that the Brillouin scattering energy under experimental conditions
accounted for 10–30% of the total scattering echo energy. The attenuation coefficient of the
water was 0.099, and the maximum measurement depth was 13.68 m. Based on the analogy
method, the maximum detection depth of the proposed system was found to be 42.90 m
under the same attenuation coefficient.

In the end, a simulation analysis of the measurement depths under different SNRs
was performed to further analyze the detection performance in terms of the accuracy. The
results showed that under a condition where the temperature and salinity measurement
accuracies were 0.5 °C and 1‰, respectively, the SNR of the scattered signal could not be
lower than 35, and the effective detection distance for a single measurement was 27.73 m
for a single measurement time. The depth display under different measurement times
was calculated to analyze the influence of the cumulative number on the measurement
depth. The effective detection depth for 100 laser pulses was 75.48 m, the effective detection
depth for 1000 laser pulses was 97.71 m, and the ranger detection depth for 10,000 laser
pulses was 119.28 m. The best cumulative pulse measurement time of 1000 was selected
when integrating the effective measurement depth and time resolution. The measurement
depths under different water quality parameters were analyzed. The results showed that
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the effective detection depth of the proposed method exceeded 40.51 m for various water
bodies when an accumulation time of 10 s was adopted.

Compared with the current Brillouin spectral measurement methods, the proposed
method offers a number of advantages. First, this method can obtain the Rayleigh Brillouin
spectrum quickly compared with the spectral measurement method by using the FP inter-
ferometer. Second, as the response of the multichannel PMT is faster than that of ICCD, the
proposed method can effectively overcome the disadvantage of the method by using FP
etalon and ICCD in profile measurement. In addition, the completed Rayleigh–Brillouin
scattering spectra can be acquired by the proposed method, the stability of the spectral
measurement and the anti-interference ability are improved compared with the method
based on the double-edge technology. Therefore, this method satisfies the requirements
of real-time spectrum measurement, spectral integrity, continuity, and stability in ocean
remote sensing.

Owing to the multibeam interference used in this system, a careful fabrication process
for the Fizeau interferometer is required to ensure the integrity and accuracy of the Rayleigh–
Brillouin spectra. Additionally, for the multichannel PMT, the response performance of
each channel will not be completely consistent. Therefore, a nonuniform correction must
be used for actual application. Hence, the actual performance of this method remains to
be verified.

6. Conclusions

Considering the requirements of real-time spectrum measurement, spectral integrity,
continuity, and stability, a measurement method based on a Fizeau interferometer and
multichannel PMT is proposed to measure the temperature and salinity of seawater. In
this paper, the design of a corresponding measurement system on an airborne platform
is described. This method has strong anti-interference ability; under a temperature mea-
surement accuracy of 0.5 ◦C and a salinity measurement accuracy of 1‰, the effective
detection depth exceeds 40.51 m. The proposed method can meet the requirements for
high-precision synchronous measurements of environmental element profiles of seawater.
In future studies, a setup should be built for verification and analysis and our method will
further promote the application of Brillouin lidar in the ocean.
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