
Citation: Wu, L.; Hou, Y.; Xu, J.;

Zhao, Y. Robust Mesh Segmentation

Using Feature-Aware Region Fusion.

Sensors 2023, 23, 416. https://

doi.org/10.3390/s23010416

Academic Editors: Robert Sitnik and

Guangtao Zhai

Received: 30 September 2022

Revised: 19 December 2022

Accepted: 28 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust Mesh Segmentation Using Feature-Aware
Region Fusion †

Lulu Wu 1, Yu Hou 1, Junli Xu 2 and Yong Zhao 1,*

1 School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China
2 School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
* Correspondence: zhaoyong@ouc.edu.cn
† This paper is an extension version of the conference paper: Hou, Y.; Zhao, Y. A Robust Segmentation

Algorithm for 3D Complex Meshes. In Proceedings of the 7th International Conference on Computer-Aided
Design, Manufacturing, Modeling and Simulation (CDMMS), Busan, South Korea, 14–15 November 2020;
p. 032045.

Abstract: This paper introduces a simple but powerful segmentation algorithm for 3D meshes. Our
algorithm consists of two stages: over-segmentation and region fusion. In the first stage, adaptive
space partition is applied to perform over-segmentation, which is very efficient. In the second stage,
we define a new intra-region difference, inter-region difference, and fusion condition with the help of
various shape features and propose an iterative region fusion method. As the region fusion process is
feature aware, our algorithm can deal with complex 3D meshes robustly. Massive qualitative and
quantitative experiments also validate the advantages of the proposed algorithm.

Keywords: 3D meshes; feature-aware region fusion; robust segmentation

1. Introduction

In computer vision, computer graphics, and multimedia processing, the segmentation
of 3D meshes is a popular but difficult research topic. As an important operation, mesh
segmentation is helpful for conducting 3D analysis and developing our understanding,
and can be applied to various subsequent operations. For example, segmentation results
can provide semantic information for high-level feature extraction. Moreover, the user
can first segment a variety of 3D meshes. Then, some mesh parts from different meshes
can be composed to generate new 3D meshes. Therefore, the accuracy and robustness of
segmentation algorithms are indispensable.

The purpose of mesh segmentation is to decompose an input 3D mesh into multiple
semantic parts. The key is how to make full use of its shape features to obtain a perception-
aware segmentation result. Three-dimensional meshes often have complex shapes or
rich details, which makes mesh segmentation very challenging. Many works focus on
automatic segmentation algorithms [1–3]. Interactive segmentation algorithms [4,5] guide
the segmentation process through user-specified strokes. In recent years, data-driven
methods have been used to deal with the mesh segmentation problem [6–8]. In particular,
deep learning techniques have been employed to enhance the generalization ability [9–12].
However, segmentation accuracy still needs to be improved for practical applications.

To address the mesh segmentation problem robustly, we developed a feature-aware
algorithm that utilizes various shape features of 3D meshes and can obtain perception-
aware results efficiently. Figure 1 shows the overview of the algorithm conducted on a
mesh with a complex shape and rich details. The input mesh is large and the segmentation
run-time depends nonlinearly on mesh size, as an input mesh may have millions of facets.
Therefore, we group input facets into collections of contiguous mesh facets; each collection
is called a superfacet. There are about 40× fewer superfacets than input facets; thus, we
perform segmentation on these superfacets for a speed up to about 100×.

Sensors 2023, 23, 416. https://doi.org/10.3390/s23010416 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010416
https://doi.org/10.3390/s23010416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23010416
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010416?type=check_update&version=1

Sensors 2023, 23, 416 2 of 15

Sensors 2023, 23, x FOR PEER REVIEW 2 of 15

Therefore, we group input facets into collections of contiguous mesh facets; each collec-

tion is called a superfacet. There are about 40× fewer superfacets than input facets; thus,

we perform segmentation on these superfacets for a speed up to about 100×.

Figure 1. Algorithm overview conducted on an armadillo mesh [6]. Firstly, we perform a rapid over-

segmentation using the adaptive space partition to yield a set of superfacets. Secondly, we use a

feature-aware region fusion method to merge similar superfacets to generate the final segmentation

result. For demonstration, all superfacets and segmentation parts are rendered with random colors.

Then, a variety of shape features are calculated to represent local attributes of super-

facets, such as normal, Gaussian curvature [13], shape diameter function [14], average ge-

odesic distance [15], conformal factor [16], and heat kernel signature [17] attributes. We

further introduce an intra-region difference, inter-region difference, and fusion condition,

and iteratively fuse neighboring superfacets with similar attributes to generate a segmen-

tation result.

In order to validate the effectiveness and robustness of our algorithm, segmentation

experiments are conducted on a large number of 3D meshes with complex shapes or rich

details. Even if Gaussian noises, holes, missing parts, pose changes, or sampling changes

appear on the 3D meshes, our algorithm can still obtain visually pleasing results. There-

fore, we can qualitatively and quantitatively compare it with many state-of-the-art meth-

ods. Quantitative metrics for the evaluation of the segmentation results include accuracy,

Rand Index, Cut Discrepancy, Consistency Error, and Hamming Distance. All the com-

parisons demonstrate the advantages of our algorithm. The proposed algorithm has sev-

eral parameters. We tune them manually to obtain the best result.

The main contributions of this paper can be summarized by the following two points:

1. An efficient over-segmentation method is introduced via adaptive space partition.

2. By defining a new intra-region difference, inter-region difference, and fusion condi-

tion, a simple but powerful feature-aware region fusion algorithm is proposed that

can robustly achieve mesh segmentation.

2. Related Work

Many automatic segmentation algorithms have been proposed. Chazelle et al. [18]

presented a method for decomposing a polygonal surface using a flooding heuristic. Zhou

and Huang [19] decomposed a polygon mesh into meaningful parts or regions by means

of critical points. Katz et al. [1] addressed mesh segmentation through fuzzy clustering

and graph cuts. Lavoue and Wolf [20] presented a mesh segmentation method based on

Markov random fields. Golovinskiy et al. [21] adopted randomized cuts for mesh segmen-

tation and analysis. A 3D mesh segmentation benchmark, proposed by Chen et al. [22],

can analyze and compare different segmentation algorithms quantitatively. Au et al. [2]

introduced a mesh segmentation algorithm using concavity-sensitive scalar fields. Theol-

ogou et al. [23] constructed a heterogeneous graph containing local features and patch

affinities and performed spectral partitioning with the help of nodal set and nodal domain

theory. Zhang et al. [24] obtained their initial result via spectral clustering, and then

Figure 1. Algorithm overview conducted on an armadillo mesh [6]. Firstly, we perform a rapid
over-segmentation using the adaptive space partition to yield a set of superfacets. Secondly, we use a
feature-aware region fusion method to merge similar superfacets to generate the final segmentation
result. For demonstration, all superfacets and segmentation parts are rendered with random colors.

Then, a variety of shape features are calculated to represent local attributes of super-
facets, such as normal, Gaussian curvature [13], shape diameter function [14], average
geodesic distance [15], conformal factor [16], and heat kernel signature [17] attributes.
We further introduce an intra-region difference, inter-region difference, and fusion con-
dition, and iteratively fuse neighboring superfacets with similar attributes to generate a
segmentation result.

In order to validate the effectiveness and robustness of our algorithm, segmentation
experiments are conducted on a large number of 3D meshes with complex shapes or
rich details. Even if Gaussian noises, holes, missing parts, pose changes, or sampling
changes appear on the 3D meshes, our algorithm can still obtain visually pleasing results.
Therefore, we can qualitatively and quantitatively compare it with many state-of-the-art
methods. Quantitative metrics for the evaluation of the segmentation results include
accuracy, Rand Index, Cut Discrepancy, Consistency Error, and Hamming Distance. All the
comparisons demonstrate the advantages of our algorithm. The proposed algorithm has
several parameters. We tune them manually to obtain the best result.

The main contributions of this paper can be summarized by the following two points:

1. An efficient over-segmentation method is introduced via adaptive space partition.
2. By defining a new intra-region difference, inter-region difference, and fusion condition,

a simple but powerful feature-aware region fusion algorithm is proposed that can
robustly achieve mesh segmentation.

2. Related Work

Many automatic segmentation algorithms have been proposed. Chazelle et al. [18]
presented a method for decomposing a polygonal surface using a flooding heuristic. Zhou
and Huang [19] decomposed a polygon mesh into meaningful parts or regions by means
of critical points. Katz et al. [1] addressed mesh segmentation through fuzzy clustering
and graph cuts. Lavoue and Wolf [20] presented a mesh segmentation method based
on Markov random fields. Golovinskiy et al. [21] adopted randomized cuts for mesh
segmentation and analysis. A 3D mesh segmentation benchmark, proposed by Chen
et al. [22], can analyze and compare different segmentation algorithms quantitatively. Au
et al. [2] introduced a mesh segmentation algorithm using concavity-sensitive scalar fields.
Theologou et al. [23] constructed a heterogeneous graph containing local features and
patch affinities and performed spectral partitioning with the help of nodal set and nodal
domain theory. Zhang et al. [24] obtained their initial result via spectral clustering, and
then discretized the Mumford–Shah model for further refining. Tong et al. [3] formulated
mesh segmentation as a L0 optimization problem with respect to the Fiedler vector. Zhang
et al. [25] segmented a mesh by blending regions into different patches and fitted each

Sensors 2023, 23, 416 3 of 15

patch through a surface primitive. Lin et al. [26] performed segmentation based on a medial
axis transform, which encodes both geometrical and structural information.

Interactive segmentation algorithms are employed to reflect user intentions. Ji et al. [4]
drew a foreground stroke and a background stroke on the mesh model for guidance. Then,
the segmentation result can be generated via region growth. Later on, various interaction
tools were presented. Zheng et al. [27] introduced cross-boundary strokes to identify the
desired cut. Fan et al. [28] only specified a stroke on the foreground region. Zheng et al. [5]
only needed to draw a boundary point. Further, Hou et al. [29] combined random walks
with the L0 constraint to locate segmentation boundaries.

Recently, data-driven methods have been adopted to deal with the segmentation
problem. Based on some labeled meshes, Kalogerakis et al. [6] applied a conditional
random field model to learn the segmentation results. Benhabiles et al. [7] used the
AdaBoost classifier to learn the boundaries between mesh parts. Wang et al. [8] projected a
3D model onto a set of binary images, found the initial labels in a labeled image set, and
optimized them by using the graph cut method.

Subsequently, deep neural networks can be utilized to improve the generalization
ability. Guo et al. [9] organized mesh features into 2D matrices and used these data as
the input of the network to learn the facets’ labels. George et al. [12] and Shu et al. [30]
used feature vectors as the network input to reduce the mutual influence among different
features. Taking multi-view rendered images and depth images as the input, Kalogerakis
et al. [10] trained convolutional neural networks and a conditional random field in an end-
to-end way. To handle the unstructured sampling of mesh models, Xu et al. [11] defined
rotation-invariant convolution and pooling operations. Yi et al. [31] generated segmentation
results by combining the neural network and spectral analysis. Wang et al. [32] investigated
the segmentation problem by using volumetric representation and proposed a voxel-based
feature extraction module and an attention-based feature aggregation module. Hu et al. [33]
operated on both voxels and a mesh surface to incorporate Euclidean information and
geodesic information. Additionally, weakly supervised and semi-supervised schemes were
employed to reduce the requirements of the training data [34,35].

Some segmentation methods were designed for medical treatment. Xu et al. [36] aimed
to cut out each tooth in a 3D dental model. Lawonn et al. [37] performed segmentation on
the 3D surfaces of vessels and then identified aneurysms. As an extension, the segmentation
of point clouds has drawn a lot of attention. For example, Wang et al. [38] introduced a
similarity group proposal network for instance segmentation on point clouds. Furthermore,
the segmentation problem is closely related to many other 3D processing problems, such as
object classification [39], shape unfolding [40], and surface denoising [41,42].

Our main idea was published during the CDMMS2020 [43]. This paper presents
substantial improvements over the previous short conference version in both the algorithm
and experiments. Generally, we improve our algorithm (e.g., the intra-region difference,
the inter-region difference, and the threshold function), and provide further analysis and
discussion, which explains why the proposed algorithm works well. Firstly, the intra-region
difference is defined as the maximum of the differences between adjacent superfacets in [43].
As the maximum would overestimate the difference, we adopt the average in this paper.
Secondly, the inter-region difference is defined as the minimum of the differences at the
boundary in [43]. Considering that the minimum would underestimate the difference, we
also adopt the average in this paper. By contrast, our new definitions are more reasonable
and more effective for handling different kinds of 3D meshes. Thirdly, the threshold func-
tion is based on the formulation of 1

x in [43]. We adopt the formulation of 1
ex in this paper.

As proved by the existing algorithms of [29,44,45], the formulation of 1
ex is more flexible

when dealing with complex cases. Additionally, in our prior paper [43], we only conducted
limited segmentation experiments. In this paper, we provide comprehensive segmentation
results, and further evaluate the robustness in regard to Gaussian noises, holes, missing
parts, pose changes, and sampling changes. We also compare our algorithm with existing

Sensors 2023, 23, 416 4 of 15

state-of-the-art algorithms qualitatively and quantitatively to show our advantages, and
then demonstrate its high-time performance.

3. Feature-Aware Mesh Segmentation Algorithm

A 3D mesh consists of mesh vertices and triangular facets. Each mesh vertex has a
3D position. Three vertices form a triangular facet. In this section, we will elaborate the
proposed segmentation algorithm, including the binary space partition and feature-aware
region fusion.

3.1. Efficient Adaptive Space Partition

Three-dimensional meshes usually contain a large number of triangular facets, and
exhibit complex shapes or rich details. If the segmentation is performed on triangular facets,
it would lead to a low-time performance. Hence, binary space partition [46] is adopted
to split a 3D mesh into a set of superfacets, which could reduce computational costs and
improve time performance. Suppose pi(1 ≤ i ≤ k) is a mesh vertex, and k is the number of
vertices in the current partition space; then, the 3× 3 covariance matrix can be expressed as:

C =

p1 − p
· · ·

pk − p

T

·

p1 − p
· · ·

pk − p

,

where p is the centroid of all vertices in the current partition space.
The eigen equation of C can be expressed as: C · vl = λl · vl , where l ∈ {0, 1, 2}, λl is

an eigenvalue, and vl is an eigenvector. λl is a good measure of the variation in the mesh
along the direction of vl . Assuming λ0 ≤ λ1 ≤ λ2, according to [46], the surface variation
is defined as follows:

σ =
λ0

λ0 + λ1 + λ2

Closely related to the mean curvature, this surface variation can effectively estimate
the characteristics of the mesh.

The partition plane is defined as follows:

P(x) : (x− p) · v0 = 0,

where v0 is the corresponding eigenvector of λ0. In other words, we always partition the
mesh model along the direction of the greatest variation.

In practice, we perform binary space partition recursively. Each partitioned subspace
should be further partitioned until its number of triangular facets is less than the threshold
qmax and its surface variation is less than the threshold σmax. When this process is finished,
the triangular facets in each partitioned subspace are treated as a superfacet. Please note
that the number of superfacets is far less than that of triangular facets. We denote the
set of superfacets as F = {Fi, 1 ≤ i ≤ |F|}, where Fi is a superfacet, and |F| is the number
of superfacets.

Figure 2 shows an example of over-segmentation. The horse model has 48,485 vertices
and 96,966 facets. Due to the high efficiency of binary space partition, it only takes 0.094 s
to complete the over-segmentation. This example produces 1218 superfacets. Thus, per-
forming segmentation on superfacets greatly reduces computational cost and improves
time efficiency.

Sensors 2023, 23, 416 5 of 15Sensors 2023, 23, x FOR PEER REVIEW 5 of 15

(a) (b)

Figure 2. Over-segmentation carried out on a horse mesh. (a) The original mesh. (b) Over-segmen-

tation result.

Previous methods pay little attention to over-segmentation, and fulfill this task via

existing segmentation algorithms. Algorithm parameters are tuned to generate superfac-

ets rather than mesh parts. However, over-segmentation is very important for mesh seg-

mentation. We introduce a very efficient over-segmentation scheme through adaptive

space partition.

3.2. New Feature-Aware Region Fusion

3.2.1. Feature Description

We can describe local mesh attributes via various shape features. For example, nor-

mal, Gaussian curvature [13], shape diameter function [14], average geodesic distance

[15], conformal factor [16], and heat kernel signature [17]. These shape features are com-

puted for each superfacet 𝐹𝑖. As the above features have different scales, we first normal-

ize each shape feature separately, and then concatenate them to form a feature vector

𝑻(𝐹𝑖) for superfacet 𝐹𝑖. We further define the difference between adjacent superfacets 𝐹𝑖

and 𝐹𝑗 as follows:

𝑑(𝐹𝑖 , 𝐹𝑗) = ‖𝑻(𝐹𝑖) − 𝑻(𝐹𝑗)‖
2
 (1)

where ‖∙‖2 is the L2 norm. In other words, the difference is the Euclidean distance be-

tween feature vectors.

3.2.2. Region Fusion

Initially, each superfacet represents a local region. Region fusion is an intuitive

method that fuses these regions together to obtain the final segmentation result. Two ad-

jacent regions have similar attributes and should belong to the same part of the model if

their difference is relatively small. Under this condition, we fuse them into one region. In

the following, we elaborate our intra-region difference, inter-region difference, fusion con-

dition, and fusion process.

Suppose 𝑅 is a local region that consists of several superfacets. Its intra-region dif-

ference is defined as the average of the differences between adjacent superfacets. That is,

𝐷(𝑅) = Average
𝐹𝑖,𝐹𝑗∈𝑅

{𝑑(𝐹𝑖 , 𝐹𝑗)}, (2)

where 𝐹𝑖 and 𝐹𝑗 are two adjacent superfacets in 𝑅. Our prior paper [43] used the maxi-

mum, which would overestimate the difference. Obviously, this new definition can reflect

surface changes in 𝑅 more effectively.

Suppose 𝑅1 and 𝑅2 are two adjacent regions. We define their inter-region differ-

ence as the average of the differences at the boundary:

𝐷𝑖𝑠(𝑅1, 𝑅2) = Average
𝐹𝑖∈𝑅1,𝐹𝑗∈𝑅2

{𝑑(𝐹𝑖 , 𝐹𝑗)}, (3)

Figure 2. Over-segmentation carried out on a horse mesh. (a) The original mesh. (b) Over-
segmentation result.

Previous methods pay little attention to over-segmentation, and fulfill this task via
existing segmentation algorithms. Algorithm parameters are tuned to generate super-
facets rather than mesh parts. However, over-segmentation is very important for mesh
segmentation. We introduce a very efficient over-segmentation scheme through adaptive
space partition.

3.2. New Feature-Aware Region Fusion
3.2.1. Feature Description

We can describe local mesh attributes via various shape features. For example, normal,
Gaussian curvature [13], shape diameter function [14], average geodesic distance [15],
conformal factor [16], and heat kernel signature [17]. These shape features are computed
for each superfacet Fi. As the above features have different scales, we first normalize
each shape feature separately, and then concatenate them to form a feature vector T(Fi)
for superfacet Fi. We further define the difference between adjacent superfacets Fi and Fj
as follows:

d
(

Fi, Fj
)
=‖ T(Fi)− T

(
Fj
)
‖2 (1)

where ‖ · ‖2 is the L2 norm. In other words, the difference is the Euclidean distance between
feature vectors.

3.2.2. Region Fusion

Initially, each superfacet represents a local region. Region fusion is an intuitive method
that fuses these regions together to obtain the final segmentation result. Two adjacent
regions have similar attributes and should belong to the same part of the model if their
difference is relatively small. Under this condition, we fuse them into one region. In the
following, we elaborate our intra-region difference, inter-region difference, fusion condition,
and fusion process.

Suppose R is a local region that consists of several superfacets. Its intra-region differ-
ence is defined as the average of the differences between adjacent superfacets. That is,

D(R) = Average
Fi ,Fj∈R

{
d
(

Fi, Fj
)}

, (2)

where Fi and Fj are two adjacent superfacets in R. Our prior paper [43] used the maximum,
which would overestimate the difference. Obviously, this new definition can reflect surface
changes in R more effectively.

Suppose R1 and R2 are two adjacent regions. We define their inter-region difference as
the average of the differences at the boundary:

Dis(R1, R2) = Average
Fi∈R1,Fj∈R2

{
d
(

Fi, Fj
)}

, (3)

Sensors 2023, 23, 416 6 of 15

where Fi and Fj are two adjacent superfacets from R1 and R2, respectively. Our prior
paper [43] used the minimum, which would underestimate the difference. In contrast, this
new definition is more reasonable for measuring geometric changes between R1 and R2.

Two adjacent regions can be fused into a new region if their inter-region difference
is less than the minimum value of their intra-region differences. We formulate this fusion
condition as:

Dis(R1, R2) ≤ Min{D(R1) + t(R1), D(R2) + t(R2)}, (4)

where D(R1) and D(R2) are the intra-region differences of R1 and R2, respectively, and t(·)
is a threshold function with respect to local regions. t(·) is used to adjust the above fusion
condition. Initially, each local region contains only one superfacet; thus, D(R1) = 0, and
D(R2) = 0. The fusion process would fail to start if there is no t(·) in Equation (4).

When there are fewer superfacets in the region, t(·) should have a relatively large value
to relax the fusion condition. When the regions contain more superfacets due to fusing,
t(·) should be closer to 0 and should have little effect on the fusion process. Therefore,
t(·) should be a decreasing function, which decreases as the number of superfacets in the
region increases. As proved by the existing algorithms of [29,44,45], the formulation of 1

ex

works well in practice. In this paper, our threshold function is defined as:

t(R) =
m

1 + e|R|
, (5)

where |R| is the number of superfacets in the local region R, and m is a constant. The
prior threshold function is based on the formulation of 1

x in [43]. In comparison, the new
threshold function is more flexible for handling complex cases.

All inter-region differences of the adjacent regions are sorted from small to large. Then,
the fusion is performed according to this order. After the two regions are fused, we update
their intra-region differences and inter-region differences with other adjacent regions. This
fusion process will only stop if all adjacent regions fail to meet the fusion condition

3.2.3. Boundary Smoothing

When the above fusion is finished, if a region contains few superfacets, we will merge
it into an adjacent region with the smallest inter-region difference. Furthermore, there
might be jaggy boundaries between adjacent regions. The graph cut algorithm [47] is
applied to smooth these boundaries. Without a loss of generality, we discuss this process
between two adjacent regions, R1 and R2. We grow a narrow fuzzy region S from their
current boundary. Those facets that directly connect to R1 or R2 are collected as setM
or set N , respectively. For any facet fi in S, its unit normal and local neighborhood are
denoted as n fi

and Ni, respectively. Additionally, we use R fi
to represent which region fi

belongs to. In other words, R fi
should be either R1 or R2.

The graph cut algorithm needs to optimize an energy function consisting of a data
term and a regularization term. The data term is defined as:

∑ fi∈S Ed(R fi
),

where Ed(R fi
) =

{
1, i f R fi

con f licts withM and N
0, otherwise

. The regularization term is defined as:

∑ fi∈S ∑ f j∈Ni
wijEr(R fi

, R f j
),

where Er(R fi
, R f j

) =

{
1, R fi

6= R f j

0, R fi
= R f j

, wij = e
−‖n fi

−n f j
‖

2 , n f j
is the unit normal of f j, and R f j

represents which region f j belongs to. wij describes the similarity between fi and f j. The
larger it is, the more likely it is that fi and f j should belong to the same region. As shown
in the close-up views in Figure 3, this scheme is able to smooth region boundaries.

Sensors 2023, 23, 416 7 of 15Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

(a) (b)

Figure 3. Segmentation boundary smoothing. Please note that jaggy boundaries become smoother.

(a) Boundaries before smoothing. (b) Boundaries after smoothing.

Finally, each region forms a segmentation part of the mesh. Figure 4 shows the seg-

mentation process of our algorithm. First, adaptive space partition is used to obtain an

over-segmentation result. Then, regions that meet the fusion condition are iteratively

merged to obtain the final segmentation result.

Figure 4. Feature-aware segmentation process.

4. Experiments and Discussions

4.1. Results and Analysis

We implemented our algorithm by using C++ on a computer with an Intel Core i5-

5200U CPU. There are three parameters of this algorithm: {𝑞𝑚𝑎𝑥 , 𝜎𝑚𝑎𝑥 , m}. The parameters

𝑞𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 are used to control over-segmentation. Here, 𝑞𝑚𝑎𝑥 ∈ [10, 80]. The default

value for 𝜎𝑚𝑎𝑥 is 0.1. The parameter 𝑚 is used to adjust 𝑡(⋅) to control the fusion con-

dition, and 𝑚 ∈ [2,12]. The segmentation experiments were performed on a large number

of 3D meshes, some of which have Gaussian noises, holes, missing parts, pose changes, or

sampling changes. In addition, we also made qualitative and quantitative comparisons

with some previous state-of-the-art methods. All these results validate the advantages of

the proposed algorithm.

Figure 5 demonstrates some segmentation results from the different kinds of 3D

meshes, such as a bird, armadillo, horse, cup, hand, teddy, and octopus. Each mesh has a

complex shape and specific semantics. It is difficult to work well on all of them. Our algo-

rithm utilizes various shape features effectively and fuses neighboring regions with simi-

lar attributes to yield satisfactory results.

Figure 3. Segmentation boundary smoothing. Please note that jaggy boundaries become smoother.
(a) Boundaries before smoothing. (b) Boundaries after smoothing.

Finally, each region forms a segmentation part of the mesh. Figure 4 shows the
segmentation process of our algorithm. First, adaptive space partition is used to obtain
an over-segmentation result. Then, regions that meet the fusion condition are iteratively
merged to obtain the final segmentation result.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 15

(a) (b)

Figure 3. Segmentation boundary smoothing. Please note that jaggy boundaries become smoother.

(a) Boundaries before smoothing. (b) Boundaries after smoothing.

Finally, each region forms a segmentation part of the mesh. Figure 4 shows the seg-

mentation process of our algorithm. First, adaptive space partition is used to obtain an

over-segmentation result. Then, regions that meet the fusion condition are iteratively

merged to obtain the final segmentation result.

Figure 4. Feature-aware segmentation process.

4. Experiments and Discussions

4.1. Results and Analysis

We implemented our algorithm by using C++ on a computer with an Intel Core i5-

5200U CPU. There are three parameters of this algorithm: {𝑞𝑚𝑎𝑥 , 𝜎𝑚𝑎𝑥 , m}. The parameters

𝑞𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 are used to control over-segmentation. Here, 𝑞𝑚𝑎𝑥 ∈ [10, 80]. The default

value for 𝜎𝑚𝑎𝑥 is 0.1. The parameter 𝑚 is used to adjust 𝑡(⋅) to control the fusion con-

dition, and 𝑚 ∈ [2,12]. The segmentation experiments were performed on a large number

of 3D meshes, some of which have Gaussian noises, holes, missing parts, pose changes, or

sampling changes. In addition, we also made qualitative and quantitative comparisons

with some previous state-of-the-art methods. All these results validate the advantages of

the proposed algorithm.

Figure 5 demonstrates some segmentation results from the different kinds of 3D

meshes, such as a bird, armadillo, horse, cup, hand, teddy, and octopus. Each mesh has a

complex shape and specific semantics. It is difficult to work well on all of them. Our algo-

rithm utilizes various shape features effectively and fuses neighboring regions with simi-

lar attributes to yield satisfactory results.

Figure 4. Feature-aware segmentation process.

4. Experiments and Discussions
4.1. Results and Analysis

We implemented our algorithm by using C++ on a computer with an Intel Core i5-
5200U CPU. There are three parameters of this algorithm: {qmax, σmax, m}. The parameters
qmax and σmax are used to control over-segmentation. Here, qmax ∈ [10, 80]. The default
value for σmax is 0.1. The parameter m is used to adjust t(·) to control the fusion condition,
and m ∈ [2, 12]. The segmentation experiments were performed on a large number of
3D meshes, some of which have Gaussian noises, holes, missing parts, pose changes, or
sampling changes. In addition, we also made qualitative and quantitative comparisons
with some previous state-of-the-art methods. All these results validate the advantages of
the proposed algorithm.

Figure 5 demonstrates some segmentation results from the different kinds of 3D
meshes, such as a bird, armadillo, horse, cup, hand, teddy, and octopus. Each mesh has
a complex shape and specific semantics. It is difficult to work well on all of them. Our
algorithm utilizes various shape features effectively and fuses neighboring regions with
similar attributes to yield satisfactory results.

Sensors 2023, 23, 416 8 of 15

Sensors 2023, 23, x FOR PEER REVIEW 8 of 16

Figure 5. Segmentation results on different kinds of 3D meshes.

4.2. Robustness Evaluations
In this paper, we define the reasonable intra-region difference, inter-region differ-

ence, and fusion condition, which are effective and robust. The robustness can be vali-
dated by testing meshes with Gaussian noises, holes, missing parts, pose changes, and
sampling changes. In Figure 6, we added Gaussian noises to a goblet mesh along normal
directions and random directions, respectively. The intensities are 0.3, 0.4, and 0.5. Noise
affects the local shape features, and makes mesh segmentation more challenging. Our re-
gion fusion method is flexible in dealing with different noises. Therefore, the six results
are ideal and consistent with each other. Figure 7 shows the segmentation results for bird
and donkey meshes with holes. Each model has many holes of different sizes. In other
words, each model has a lot of missing data. The proposed algorithm makes full use of
the shape features and can obtain perception-aware results.

(a) (b) (c) (d) (e) (f)

Figure 6. Segmentation results on noisy goblet meshes. The meshes in (a–c) are corrupted by Gauss-
ian noises along normal directions with intensities of 0.3, 0.4, and 0.5, respectively. The meshes in
(d–f) are corrupted by Gaussian noises along random directions with intensities of 0.3, 0.4, and 0.5,
respectively.

Figure 5. Segmentation results on different kinds of 3D meshes.

4.2. Robustness Evaluations

In this paper, we define the reasonable intra-region difference, inter-region difference,
and fusion condition, which are effective and robust. The robustness can be validated by
testing meshes with Gaussian noises, holes, missing parts, pose changes, and sampling
changes. In Figure 6, we added Gaussian noises to a goblet mesh along normal directions
and random directions, respectively. The intensities are 0.3, 0.4, and 0.5. Noise affects
the local shape features, and makes mesh segmentation more challenging. Our region
fusion method is flexible in dealing with different noises. Therefore, the six results are
ideal and consistent with each other. Figure 7 shows the segmentation results for bird and
donkey meshes with holes. Each model has many holes of different sizes. In other words,
each model has a lot of missing data. The proposed algorithm makes full use of the shape
features and can obtain perception-aware results.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15

Figure 5. Segmentation results on different kinds of 3D meshes.

4.2. Robustness Evaluations

In this paper, we define the reasonable intra-region difference, inter-region differ-

ence, and fusion condition, which are effective and robust. The robustness can be vali-

dated by testing meshes with Gaussian noises, holes, missing parts, pose changes, and

sampling changes. In Figure 6, we added Gaussian noises to a goblet mesh along normal

directions and random directions, respectively. The intensities are 0.3, 0.4, and 0.5. Noise

affects the local shape features, and makes mesh segmentation more challenging. Our re-

gion fusion method is flexible in dealing with different noises. Therefore, the six results

are ideal and consistent with each other. Figure 7 shows the segmentation results for bird

and donkey meshes with holes. Each model has many holes of different sizes. In other

words, each model has a lot of missing data. The proposed algorithm makes full use of

the shape features and can obtain perception-aware results.

(a) (b) (c) (d) (e) (f)

Figure 6. Segmentation results on noisy goblet meshes. The meshes in (a–c) are corrupted by Gauss-

ian noises along normal directions with intensities of 0.3, 0.4, and 0.5, respectively. The meshes in

(d–f) are corrupted by Gaussian noises along random directions with intensities of 0.3, 0.4, and 0.5,

respectively.

Figure 7. Segmentation results of mesh models with holes.

Figure 8 shows the segmentation results of glasses meshes with missing parts. Alt-

hough these models are missing different parts, our algorithm can still generate results by

complying with semantics. Figure 9 demonstrates the segmentation results of teddy

Figure 6. Segmentation results on noisy goblet meshes. The meshes in (a–c) are corrupted by
Gaussian noises along normal directions with intensities of 0.3, 0.4, and 0.5, respectively. The meshes
in (d–f) are corrupted by Gaussian noises along random directions with intensities of 0.3, 0.4, and
0.5, respectively.

Sensors 2023, 23, 416 9 of 15

Sensors 2023, 23, x FOR PEER REVIEW 8 of 15

Figure 5. Segmentation results on different kinds of 3D meshes.

4.2. Robustness Evaluations

In this paper, we define the reasonable intra-region difference, inter-region differ-

ence, and fusion condition, which are effective and robust. The robustness can be vali-

dated by testing meshes with Gaussian noises, holes, missing parts, pose changes, and

sampling changes. In Figure 6, we added Gaussian noises to a goblet mesh along normal

directions and random directions, respectively. The intensities are 0.3, 0.4, and 0.5. Noise

affects the local shape features, and makes mesh segmentation more challenging. Our re-

gion fusion method is flexible in dealing with different noises. Therefore, the six results

are ideal and consistent with each other. Figure 7 shows the segmentation results for bird

and donkey meshes with holes. Each model has many holes of different sizes. In other

words, each model has a lot of missing data. The proposed algorithm makes full use of

the shape features and can obtain perception-aware results.

(a) (b) (c) (d) (e) (f)

Figure 6. Segmentation results on noisy goblet meshes. The meshes in (a–c) are corrupted by Gauss-

ian noises along normal directions with intensities of 0.3, 0.4, and 0.5, respectively. The meshes in

(d–f) are corrupted by Gaussian noises along random directions with intensities of 0.3, 0.4, and 0.5,

respectively.

Figure 7. Segmentation results of mesh models with holes.

Figure 8 shows the segmentation results of glasses meshes with missing parts. Alt-

hough these models are missing different parts, our algorithm can still generate results by

complying with semantics. Figure 9 demonstrates the segmentation results of teddy

Figure 7. Segmentation results of mesh models with holes.

Figure 8 shows the segmentation results of glasses meshes with missing parts. Al-
though these models are missing different parts, our algorithm can still generate results
by complying with semantics. Figure 9 demonstrates the segmentation results of teddy
meshes in different poses. This algorithm is oblivious to pose changes, and thus, locates
stable segmentation boundaries. In Figure 10, we exhibit the results of airplane meshes
with different samplings. Our algorithm is not affected by sampling changes. No matter if
the sampling is high or low, these segmentation results are consistent with each other.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

meshes in different poses. This algorithm is oblivious to pose changes, and thus, locates

stable segmentation boundaries. In Figure 10, we exhibit the results of airplane meshes

with different samplings. Our algorithm is not affected by sampling changes. No matter

if the sampling is high or low, these segmentation results are consistent with each other.

Figure 8. Segmentation results of glasses meshes with missing parts.

Figure 9. Segmentation results of teddy meshes in different poses.

(a) (b) (c)

(d) (e) (f)

Figure 10. Segmentation results of airplane meshes with different samplings. (a) A low-sampling

mesh rendered in wireframe (5400 vertices and 10,796 facets). (b) A middle-sampling mesh rendered

in wireframe (9417 vertices and 18,830 facets). (c) A high-sampling mesh rendered in wireframe

(19,533 vertices and 39,062 facets). (d) Result of (a). (e) Result of (b). (f) Result of (c).

4.3. Qualitative and Quantitative Comparisons

Figure 11 compares our algorithm with the automatic segmentation algorithm [2],

which depends on the Gaussian curvature and shape concavity. When a mesh model has

too many concave creases, redundant cuts occur [2]. Our algorithm fuses local regions of

the same part to obtain a better result. Figure 12 shows a comparison between our algo-

rithm and the deep learning segmentation algorithm [10], which utilizes convolutional

neural networks and a conditional random field. However, [10] is not robust to noise, thus

producing wrong segmentation boundaries. In contrast, our algorithm obtains accurate

boundaries.

Figure 8. Segmentation results of glasses meshes with missing parts.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

meshes in different poses. This algorithm is oblivious to pose changes, and thus, locates

stable segmentation boundaries. In Figure 10, we exhibit the results of airplane meshes

with different samplings. Our algorithm is not affected by sampling changes. No matter

if the sampling is high or low, these segmentation results are consistent with each other.

Figure 8. Segmentation results of glasses meshes with missing parts.

Figure 9. Segmentation results of teddy meshes in different poses.

(a) (b) (c)

(d) (e) (f)

Figure 10. Segmentation results of airplane meshes with different samplings. (a) A low-sampling

mesh rendered in wireframe (5400 vertices and 10,796 facets). (b) A middle-sampling mesh rendered

in wireframe (9417 vertices and 18,830 facets). (c) A high-sampling mesh rendered in wireframe

(19,533 vertices and 39,062 facets). (d) Result of (a). (e) Result of (b). (f) Result of (c).

4.3. Qualitative and Quantitative Comparisons

Figure 11 compares our algorithm with the automatic segmentation algorithm [2],

which depends on the Gaussian curvature and shape concavity. When a mesh model has

too many concave creases, redundant cuts occur [2]. Our algorithm fuses local regions of

the same part to obtain a better result. Figure 12 shows a comparison between our algo-

rithm and the deep learning segmentation algorithm [10], which utilizes convolutional

neural networks and a conditional random field. However, [10] is not robust to noise, thus

producing wrong segmentation boundaries. In contrast, our algorithm obtains accurate

boundaries.

Figure 9. Segmentation results of teddy meshes in different poses.

Sensors 2023, 23, 416 10 of 15

Sensors 2023, 23, x FOR PEER REVIEW 9 of 15

meshes in different poses. This algorithm is oblivious to pose changes, and thus, locates

stable segmentation boundaries. In Figure 10, we exhibit the results of airplane meshes

with different samplings. Our algorithm is not affected by sampling changes. No matter

if the sampling is high or low, these segmentation results are consistent with each other.

Figure 8. Segmentation results of glasses meshes with missing parts.

Figure 9. Segmentation results of teddy meshes in different poses.

(a) (b) (c)

(d) (e) (f)

Figure 10. Segmentation results of airplane meshes with different samplings. (a) A low-sampling

mesh rendered in wireframe (5400 vertices and 10,796 facets). (b) A middle-sampling mesh rendered

in wireframe (9417 vertices and 18,830 facets). (c) A high-sampling mesh rendered in wireframe

(19,533 vertices and 39,062 facets). (d) Result of (a). (e) Result of (b). (f) Result of (c).

4.3. Qualitative and Quantitative Comparisons

Figure 11 compares our algorithm with the automatic segmentation algorithm [2],

which depends on the Gaussian curvature and shape concavity. When a mesh model has

too many concave creases, redundant cuts occur [2]. Our algorithm fuses local regions of

the same part to obtain a better result. Figure 12 shows a comparison between our algo-

rithm and the deep learning segmentation algorithm [10], which utilizes convolutional

neural networks and a conditional random field. However, [10] is not robust to noise, thus

producing wrong segmentation boundaries. In contrast, our algorithm obtains accurate

boundaries.

Figure 10. Segmentation results of airplane meshes with different samplings. (a) A low-sampling
mesh rendered in wireframe (5400 vertices and 10,796 facets). (b) A middle-sampling mesh rendered
in wireframe (9417 vertices and 18,830 facets). (c) A high-sampling mesh rendered in wireframe
(19,533 vertices and 39,062 facets). (d) Result of (a). (e) Result of (b). (f) Result of (c).

4.3. Qualitative and Quantitative Comparisons

Figure 11 compares our algorithm with the automatic segmentation algorithm [2],
which depends on the Gaussian curvature and shape concavity. When a mesh model has
too many concave creases, redundant cuts occur [2]. Our algorithm fuses local regions of
the same part to obtain a better result. Figure 12 shows a comparison between our algorithm
and the deep learning segmentation algorithm [10], which utilizes convolutional neural net-
works and a conditional random field. However, [10] is not robust to noise, thus producing
wrong segmentation boundaries. In contrast, our algorithm obtains accurate boundaries.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

(a) (b) (c)

Figure 11. Comparison with automatic segmentation algorithm [2] carried out on a cup mesh. Please

note that [2] leads to redundant cuts. (a) The original mesh. (b) Result of [2] (c) Our result.

(a) (b) (c)

Figure 12. Comparison with deep learning segmentation algorithm [10] carried out on a chair mesh

with Gaussian noises along random directions. Please note that [10] is sensitive to noise. (a) The

original mesh. (b) Result of [10]. (c) Our result.

Quantitative comparisons are also very important. The most intuitive metric is seg-

mentation accuracy, which is defined as the percentage of correctly labeled facets accord-

ing to ground truth data. Table 1 demonstrates the accuracy comparisons with data-

driven segmentation algorithms of [6,9,10,12]. In particular, the algorithms of [9,10,12] are

based on deep learning. Data-driven algorithms, especially deep learning ones, are de-

pendent on having a large amount of labeled training data. In practice, their generaliza-

tion ability and robustness are their bottlenecks. In contrast, our algorithm (i.e., adaptive

space partition and iterative region fusion) does not need any training data and is flexible

and robust when handling various 3D meshes and complex cases. Therefore, our accuracy

is apparently higher than those of [6,9,10,12].

Table 1. Accuracy comparisons with data-driven segmentation algorithms [6,9,10,12]. Please note

that, higher values indicate better results.

Ours Shapeboost [6] TOG15 [9] ShapePFCN [10] 1DCNN [12]

0.9587 0.9371 0.9024 0.9398 0.9362

Chen et al. [22] introduced several metrics for the evaluation of mesh segmentation

methods: Rand Index, Cut Discrepancy, Consistency Error, and Hamming Distance. In

Figure 13, we further compare our algorithm with five state-of-the-art algorithms quanti-

tatively: ShapeDiam [14], CoreExtra [48], RandWalks [49], FitPrim [50], and KMeans [51].

Our results obtained lower values under these metrics. In other words, our algorithm is

superior to these state-of-the-art algorithms.

Figure 11. Comparison with automatic segmentation algorithm [2] carried out on a cup mesh. Please
note that [2] leads to redundant cuts. (a) The original mesh. (b) Result of [2] (c) Our result.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15

(a) (b) (c)

Figure 11. Comparison with automatic segmentation algorithm [2] carried out on a cup mesh. Please

note that [2] leads to redundant cuts. (a) The original mesh. (b) Result of [2] (c) Our result.

(a) (b) (c)

Figure 12. Comparison with deep learning segmentation algorithm [10] carried out on a chair mesh

with Gaussian noises along random directions. Please note that [10] is sensitive to noise. (a) The

original mesh. (b) Result of [10]. (c) Our result.

Quantitative comparisons are also very important. The most intuitive metric is seg-

mentation accuracy, which is defined as the percentage of correctly labeled facets accord-

ing to ground truth data. Table 1 demonstrates the accuracy comparisons with data-

driven segmentation algorithms of [6,9,10,12]. In particular, the algorithms of [9,10,12] are

based on deep learning. Data-driven algorithms, especially deep learning ones, are de-

pendent on having a large amount of labeled training data. In practice, their generaliza-

tion ability and robustness are their bottlenecks. In contrast, our algorithm (i.e., adaptive

space partition and iterative region fusion) does not need any training data and is flexible

and robust when handling various 3D meshes and complex cases. Therefore, our accuracy

is apparently higher than those of [6,9,10,12].

Table 1. Accuracy comparisons with data-driven segmentation algorithms [6,9,10,12]. Please note

that, higher values indicate better results.

Ours Shapeboost [6] TOG15 [9] ShapePFCN [10] 1DCNN [12]

0.9587 0.9371 0.9024 0.9398 0.9362

Chen et al. [22] introduced several metrics for the evaluation of mesh segmentation

methods: Rand Index, Cut Discrepancy, Consistency Error, and Hamming Distance. In

Figure 13, we further compare our algorithm with five state-of-the-art algorithms quanti-

tatively: ShapeDiam [14], CoreExtra [48], RandWalks [49], FitPrim [50], and KMeans [51].

Our results obtained lower values under these metrics. In other words, our algorithm is

superior to these state-of-the-art algorithms.

Figure 12. Comparison with deep learning segmentation algorithm [10] carried out on a chair mesh
with Gaussian noises along random directions. Please note that [10] is sensitive to noise. (a) The
original mesh. (b) Result of [10]. (c) Our result.

Sensors 2023, 23, 416 11 of 15

Quantitative comparisons are also very important. The most intuitive metric is seg-
mentation accuracy, which is defined as the percentage of correctly labeled facets according
to ground truth data. Table 1 demonstrates the accuracy comparisons with data-driven
segmentation algorithms of [6,9,10,12]. In particular, the algorithms of [9,10,12] are based
on deep learning. Data-driven algorithms, especially deep learning ones, are dependent on
having a large amount of labeled training data. In practice, their generalization ability and
robustness are their bottlenecks. In contrast, our algorithm (i.e., adaptive space partition
and iterative region fusion) does not need any training data and is flexible and robust when
handling various 3D meshes and complex cases. Therefore, our accuracy is apparently
higher than those of [6,9,10,12].

Table 1. Accuracy comparisons with data-driven segmentation algorithms [6,9,10,12]. Please note
that, higher values indicate better results.

Ours Shapeboost [6] TOG15 [9] ShapePFCN [10] 1DCNN [12]

0.9587 0.9371 0.9024 0.9398 0.9362

Chen et al. [22] introduced several metrics for the evaluation of mesh segmentation
methods: Rand Index, Cut Discrepancy, Consistency Error, and Hamming Distance. In
Figure 13, we further compare our algorithm with five state-of-the-art algorithms quanti-
tatively: ShapeDiam [14], CoreExtra [48], RandWalks [49], FitPrim [50], and KMeans [51].
Our results obtained lower values under these metrics. In other words, our algorithm is
superior to these state-of-the-art algorithms.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

(a) (b)

(c) (d)

Figure 13. Quantitative comparisons with five state-of-the-art segmentation algorithms of [14,48–

51]. RI is Rand Index, CD is Cut Discrepancy, GCE is Global Consistency Error, LCE is Local Con-

sistency Error, Hamming is Hamming Distance, Hamming-Rm is missing rate, and Hamming-Rf is

false alarm rate. Please note that lower values indicate better results. (a) Rand Index. (b) Cut Dis-

crepancy. (c) Consistency Error. (d) Hamming Distance.

4.4. Further Discussions and Time Performance

As with most segmentation methods, the parameters should be adjusted manually

for different meshes. In this paper, 𝑞𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 affect over-segmentation, and m af-

fects the fusion condition. We fine-tune these parameters to obtain the best result. Figure

14 demonstrates the segmentation results using different parameters. When m is too

small, some regions fail to merge together, thus resulting in apparent errors.

(a) (b)

Figure 14. Segmentation results of a teddy mesh with different parameters. Apparent errors appear

in (b). Please note that the parameters should be set properly to produce a satisfactory result. (a)

Our result with {𝑞𝑚𝑎𝑥 = 40, 𝜎𝑚𝑎𝑥 = 0.1,, m = 8}. (b) Our result with {𝑞𝑚𝑎𝑥 = 5, 𝜎𝑚𝑎𝑥 = 0.05, m = 1.9}.

Figure 13. Quantitative comparisons with five state-of-the-art segmentation algorithms of [14,48–51].
RI is Rand Index, CD is Cut Discrepancy, GCE is Global Consistency Error, LCE is Local Consistency
Error, Hamming is Hamming Distance, Hamming-Rm is missing rate, and Hamming-Rf is false
alarm rate. Please note that lower values indicate better results. (a) Rand Index. (b) Cut Discrepancy.
(c) Consistency Error. (d) Hamming Distance.

Sensors 2023, 23, 416 12 of 15

4.4. Further Discussions and Time Performance

As with most segmentation methods, the parameters should be adjusted manually
for different meshes. In this paper, qmax and σmax affect over-segmentation, and m affects
the fusion condition. We fine-tune these parameters to obtain the best result. Figure 14
demonstrates the segmentation results using different parameters. When m is too small,
some regions fail to merge together, thus resulting in apparent errors.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15

(a) (b)

(c) (d)

Figure 13. Quantitative comparisons with five state-of-the-art segmentation algorithms of [14,48–

51]. RI is Rand Index, CD is Cut Discrepancy, GCE is Global Consistency Error, LCE is Local Con-

sistency Error, Hamming is Hamming Distance, Hamming-Rm is missing rate, and Hamming-Rf is

false alarm rate. Please note that lower values indicate better results. (a) Rand Index. (b) Cut Dis-

crepancy. (c) Consistency Error. (d) Hamming Distance.

4.4. Further Discussions and Time Performance

As with most segmentation methods, the parameters should be adjusted manually

for different meshes. In this paper, 𝑞𝑚𝑎𝑥 and 𝜎𝑚𝑎𝑥 affect over-segmentation, and m af-

fects the fusion condition. We fine-tune these parameters to obtain the best result. Figure

14 demonstrates the segmentation results using different parameters. When m is too

small, some regions fail to merge together, thus resulting in apparent errors.

(a) (b)

Figure 14. Segmentation results of a teddy mesh with different parameters. Apparent errors appear

in (b). Please note that the parameters should be set properly to produce a satisfactory result. (a)

Our result with {𝑞𝑚𝑎𝑥 = 40, 𝜎𝑚𝑎𝑥 = 0.1,, m = 8}. (b) Our result with {𝑞𝑚𝑎𝑥 = 5, 𝜎𝑚𝑎𝑥 = 0.05, m = 1.9}.

Figure 14. Segmentation results of a teddy mesh with different parameters. Apparent errors appear
in (b). Please note that the parameters should be set properly to produce a satisfactory result. (a) Our
result with {qmax = 40, σmax = 0.1, m = 8}. (b) Our result with {qmax = 5, σmax = 0.05, m = 1.9}.

Our algorithm has substantial improvements over the prior one [43]. We define a new
intra-region difference, inter-region difference, and threshold function, which are more
reasonable and more flexible for handling different meshes and complex cases. In our prior
paper [43], we may have overestimated the difference within a region, and underestimated
the difference between adjacent regions. Figure 15 shows a comparison using an incomplete
vase mesh that is hard to segment. Some regions belonging to the top part, the handle part,
and the base part are fused into the cup part in the result of [43]. Our result looks natural.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 15

Our algorithm has substantial improvements over the prior one [43]. We define a

new intra-region difference, inter-region difference, and threshold function, which are

more reasonable and more flexible for handling different meshes and complex cases. In

our prior paper [43], we may have overestimated the difference within a region, and un-

derestimated the difference between adjacent regions. Figure 15 shows a comparison us-

ing an incomplete vase mesh that is hard to segment. Some regions belonging to the top

part, the handle part, and the base part are fused into the cup part in the result of [43]. Our

result looks natural.

(a) (b)

Figure 15. Comparison with our prior paper [43] carried out on an incomplete vase mesh. Please

note that [43] generates wrong segmentation boundaries. (a) Our result. (b) Result of [43].

Table 2 lists time statistics for some mesh models. The performance depends on sev-

eral factors, such as the number of facets, the number of superfacets,, etc. Overall, our

algorithm is very efficient due to binary space partition and region fusion.

Table 2. Time performance measured in seconds.

Mesh Number of Vertices Number of Facets Number of Superfacets Time

Airplane 5400 10,796 389 0.0844

Armadillo 25,273 50,542 1311 1.1754

Bird 7849 15,694 587 0.1507

Cup 15,198 30,396 1307 0.2736

Hand 7112 14,220 536 0.1298

Horse 48,485 96,966 1218 1.5426

Octopus 5944 11,888 412 0.1013

Teddy 11,090 22,176 329 0.0964

5. Conclusions and Future Work

This paper introduces a new feature-aware mesh segmentation algorithm. First, a set

of superfacets are generated efficiently by using binary space partition. Then, on the basis

of superfacets, regions belonging to the same part are fused to obtain the segmentation

result. The proposed algorithm makes full use of various shape features and is robust

when dealing with different kinds of 3D meshes. Our algorithm can still produce percep-

tion-aware segmentation results, even if there are Gaussian noises, holes, missing parts,

pose changes, or sampling changes in the mesh models.

The proposed algorithm has several parameters that affect the segmentation results

directly. For different mesh models, these parameters are adjusted manually to obtain sat-

isfactory results. We can find suitable parameters automatically through machine learning

methods. In addition, the extension of this algorithm to point clouds also deserves further

exploration.

Figure 15. Comparison with our prior paper [43] carried out on an incomplete vase mesh. Please
note that [43] generates wrong segmentation boundaries. (a) Our result. (b) Result of [43].

Table 2 lists time statistics for some mesh models. The performance depends on several
factors, such as the number of facets, the number of superfacets, etc. Overall, our algorithm
is very efficient due to binary space partition and region fusion.

Sensors 2023, 23, 416 13 of 15

Table 2. Time performance measured in seconds.

Mesh Number of Vertices Number of Facets Number of Superfacets Time

Airplane 5400 10,796 389 0.0844
Armadillo 25,273 50,542 1311 1.1754

Bird 7849 15,694 587 0.1507
Cup 15,198 30,396 1307 0.2736

Hand 7112 14,220 536 0.1298
Horse 48,485 96,966 1218 1.5426

Octopus 5944 11,888 412 0.1013
Teddy 11,090 22,176 329 0.0964

5. Conclusions and Future Work

This paper introduces a new feature-aware mesh segmentation algorithm. First, a set
of superfacets are generated efficiently by using binary space partition. Then, on the basis
of superfacets, regions belonging to the same part are fused to obtain the segmentation
result. The proposed algorithm makes full use of various shape features and is robust when
dealing with different kinds of 3D meshes. Our algorithm can still produce perception-
aware segmentation results, even if there are Gaussian noises, holes, missing parts, pose
changes, or sampling changes in the mesh models.

The proposed algorithm has several parameters that affect the segmentation results
directly. For different mesh models, these parameters are adjusted manually to obtain
satisfactory results. We can find suitable parameters automatically through machine
learning methods. In addition, the extension of this algorithm to point clouds also deserves
further exploration.

Author Contributions: Conceptualization, L.W. and Y.Z.; methodology, L.W. and Y.H.; software,
L.W. and J.X.; validation, Y.H. and J.X.; formal analysis, J.X.; investigation, L.W.; data curation, Y.H.;
writing—original draft preparation, L.W. and Y.H.; writing—review and editing, Y.Z.; supervision,
J.X.; project administration, Y.Z.; funding acquisition, J.X. and Y.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Shandong Province
(ZR2018MF006), the Open Project of State Key Lab of CAD&CG, Zhejiang University (A2228), and
the Natural Science Foundation of China (41606006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Katz, S.; Tal, A. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 2003, 22, 954–961.

[CrossRef]
2. Au, O.K.; Zheng, Y.; Chen, M.; Xu, P.; Tai, C. Mesh segmentation with concavity-aware fields. IEEE Trans. Vis. Comput. Graph.

2011, 18, 1125–1134.
3. Tong, W.; Yang, X.; Pan, M.; Chen, F. Spectral mesh segmentation via L0 gradient minimization. IEEE Trans. Vis. Comput. Graph.

2020, 26, 1807–1820.
4. Ji, Z.; Liu, L.; Chen, Z.; Wang, G. Easy mesh cutting. Comput. Graph. Forum 2006, 25, 283–291. [CrossRef]
5. Zheng, Y.; Tai, C.; Au, O.K. Dot scissor: A single-click interface for mesh segmentation. IEEE Trans. Vis. Comput. Graph. 2011, 18,

1304–1312. [CrossRef]
6. Kalogerakis, E.; Hertzmann, A.; Singh, K. Learning 3D mesh segmentation and labeling. ACM Trans. Graph. 2010, 29, 102.

[CrossRef]
7. Benhabiles, H.; Lavoué, G.; Vandeborre, J.; Daoudi, M. Learning boundary edges for 3D-mesh segmentation. Comput. Graph.

Forum 2011, 30, 2170–2182. [CrossRef]
8. Wang, Y.; Gong, M.; Wang, T.; Cohen-Or, D.; Zhang, H.; Chen, B. Projective analysis for 3D shape segmentation. ACM Trans.

Graph. 2013, 32, 192. [CrossRef]

http://doi.org/10.1145/882262.882369
http://doi.org/10.1111/j.1467-8659.2006.00947.x
http://doi.org/10.1109/TVCG.2011.140
http://doi.org/10.1145/1778765.1778839
http://doi.org/10.1111/j.1467-8659.2011.01967.x
http://doi.org/10.1145/2508363.2508393

Sensors 2023, 23, 416 14 of 15

9. Guo, K.; Zou, D.; Chen, X. 3D mesh labeling via deep convolutional neural networks. ACM Trans. Graph. 2015, 35, 3. [CrossRef]
10. Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S. 3D shape segmentation with projective convolutional networks. In Proceed-

ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 6630–6639.

11. Xu, H.; Dong, M.; Zhong, Z. Directionally convolutional networks for 3D shape segmentation. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2717–2726.

12. George, D.; Xie, X.; Tam, G.K. 3D mesh segmentation via multi-branch 1D convolutional neural networks. Graph. Model. 2018, 96,
1–10. [CrossRef]

13. Meyer, M.; Desbrun, M.; Schroder, P.; Barr, A.H. Discrete differential-geometry operators for triangulated 2-manifolds. In Proceed-
ings of the 3rd International Workshop Visualization and Mathematics (VisMath), Berlin, Germany, 22–25 May 2002; pp. 35–57.

14. Shapira, L.; Shamir, A.; Cohen-Or, D. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis.
Comput. 2008, 24, 249–259. [CrossRef]

15. Hilaga, M.; Shinagawa, Y.; Komura, T.; Kunii, T.L. Topology matching for fully automatic similarity estimation of 3D shapes.
In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), New York, NY,
USA, 12–17 August 2001; pp. 203–212.

16. Ben-Chen, M.; Gotsman, C. Characterizing shape using conformal factors. In Proceedings of the 1st Eurographics Workshop on
3D Object Retrieval (3DOR@Eurographis), Hersonissos, Greece, 15 April 2008; pp. 1–8.

17. Sun, J.; Ovsjanikov, M.; Guibas, L.J. A concise and provably informative multi-scale signature based on heat diffusion. Comput.
Graph. Forum 2009, 28, 1383–1392. [CrossRef]

18. Chazelle, B.; Dobkin, D.P.; Shouraboura, N.; Tal, A. Strategies for polyhedral surface decomposition: An experimental study.
Comput. Geom. 1997, 7, 327–342. [CrossRef]

19. Zhou, Y.; Huang, Z. Decomposing polygon meshes by means of critical points. In Proceedings of the 10th International Multimedia
Modeling Conference (MMM), Brisbane, QLD, Australia, 5–7 January 2004; pp. 187–195.

20. Lavoué, G.; Wolf, C. Markov random fields for improving 3D mesh analysis and segmentation. In Proceedings of the 1st
Eurographics Workshop on 3D Object Retrieval (3DOR@Eurographis), Crete, Greece, 15 April 2008; pp. 25–32.

21. Golovinskiy, A.; Funkhouser, T.A. Randomized cuts for 3D mesh analysis. ACM Trans. Graph. 2008, 27, 145. [CrossRef]
22. Chen, X.; Golovinskiy, A.; Funkhouser, T. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 2009, 28, 13. [CrossRef]
23. Theologou, P.; Pratikakis, I.; Theoharis, T. Unsupervised spectral mesh segmentation driven by heterogeneous graphs. IEEE Trans.

Pattern Anal. Mach. Intell. 2017, 39, 397–410. [CrossRef]
24. Zhang, H.; Wu, C.; Deng, J.; Liu, Z.; Yang, Y. A new two-stage mesh surface segmentation method. Vis. Comput. 2018, 34,

1597–1615. [CrossRef]
25. Zhang, L.; Guo, J.; Xiao, J.; Zhang, X.; Yan, D. Blending surface segmentation and editing for 3D models. IEEE Trans. Vis. Comput.

Graph. 2022, 28, 2879–2894. [CrossRef]
26. Lin, C.; Liu, L.; Li, C.; Kobbelt, L.; Wang, B.; Xin, S.; Wang, W. SEG-MAT: 3D shape segmentation using medial axis transform.

IEEE Trans. Vis. Comput. Graph. 2022, 28, 2430–2444. [CrossRef]
27. Zheng, Y.; Tai, C. Mesh decomposition with cross-boundary brushes. Comput. Graph. Forum 2010, 29, 527–535. [CrossRef]
28. Fan, L.; Liu, L.; Liu, K. Paint mesh cutting. Comput. Graph. Forum 2011, 30, 603–612. [CrossRef]
29. Hou, Y.; Zhao, Y.; Shan, X. 3D mesh segmentation via L0-constrained random walks. Multim. Tools Appl. 2021, 80, 24885–24899.

[CrossRef]
30. Shu, Z.; Qi, C.; Xin, S.; Hu, C.; Wang, L.; Zhang, Y.; Liu, L. Unsupervised 3D shape segmentation and co-segmentation via deep

learning. Comput. Aided Geom. Des. 2016, 43, 39–52. [CrossRef]
31. Yi, L.; Su, H.; Guo, X.; Guibas, L.J. SyncSpecCNN: Synchronized spectral CNN for 3D shape segmentation. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6584–6592.
32. Wang, Z.; Lu, F. VoxSegNet: Volumetric CNNs for semantic part segmentation of 3D shapes. IEEE Trans. Vis. Comput. Graph.

2020, 26, 2919–2930. [CrossRef] [PubMed]
33. Hu, Z.; Bai, X.; Shang, J.; Zhang, R.; Dong, J.; Wang, X.; Sun, G.; Fu, H.; Tai, C. Voxel-mesh network for geodesic-aware 3D

semantic segmentation of indoor scenes. IEEE Trans. Pattern Anal. Mach. Intell. 2022. [CrossRef]
34. Shu, Z.; Shen, X.; Xin, S.; Chang, Q.; Feng, J.; Kavan, L.; Liu, L. Scribble-based 3D shape segmentation via weakly-supervised

learning. IEEE Trans. Vis. Comput. Graph. 2020, 26, 2671–2682. [CrossRef]
35. Shu, Z.; Yang, S.; Wu, H.; Xin, S.; Pang, C.; Kavan, L.; Liu, L. 3D shape segmentation using soft density peak clustering and

semi-Supervised learning. Comput. Aided Des. 2022, 145, 103181. [CrossRef]
36. Xu, X.; Liu, C.; Zheng, Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput.

Graph. 2019, 25, 2336–2348. [CrossRef]
37. Lawonn, K.; Meuschke, M.; Wickenhöfer, R.; Preim, B.; Hildebrandt, K. A geometric optimization approach for the detection and

segmentation of multiple aneurysms. Comput. Graph. Forum. 2019, 38, 413–425. [CrossRef]
38. Wang, W.; Yu, R.; Huang, Q.; Neumann, U. SGPN: Similarity group proposal network for 3D point cloud instance segmentation.

In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–22 June 2018; pp. 2569–2578.

http://doi.org/10.1145/2835487
http://doi.org/10.1016/j.gmod.2018.01.001
http://doi.org/10.1007/s00371-007-0197-5
http://doi.org/10.1111/j.1467-8659.2009.01515.x
http://doi.org/10.1016/S0925-7721(96)00024-7
http://doi.org/10.1145/1409060.1409098
http://doi.org/10.1145/1531326.1531379
http://doi.org/10.1109/TPAMI.2016.2544311
http://doi.org/10.1007/s00371-017-1434-1
http://doi.org/10.1109/TVCG.2020.3045450
http://doi.org/10.1109/TVCG.2020.3032566
http://doi.org/10.1111/j.1467-8659.2009.01622.x
http://doi.org/10.1111/j.1467-8659.2011.01895.x
http://doi.org/10.1007/s11042-021-10816-0
http://doi.org/10.1016/j.cagd.2016.02.015
http://doi.org/10.1109/TVCG.2019.2896310
http://www.ncbi.nlm.nih.gov/pubmed/30714926
http://doi.org/10.1109/TPAMI.2022.3194555
http://doi.org/10.1109/TVCG.2019.2892076
http://doi.org/10.1016/j.cad.2021.103181
http://doi.org/10.1109/TVCG.2018.2839685
http://doi.org/10.1111/cgf.13699

Sensors 2023, 23, 416 15 of 15

39. Hoang, L.; Lee, S.-H.; Kwon, K.-R. A deep learning method for 3D object classification and retrieval using the global point
signature plus and deep wide residual network. Sensors 2021, 21, 2644. [CrossRef]

40. Liu, B.; Wang, W.; Zhou, J.; Li, B.; Liu, X. Detail-preserving shape unfolding. Sensors 2021, 21, 1187. [CrossRef] [PubMed]
41. Liu, Z.; Xiao, X.; Zhong, S.; Wang, W.; Li, Y.; Zhang, L.; Xie, Z. A feature-preserving framework for point cloud denoising. Comput.

Aided Des. 2020, 127, 102857. [CrossRef]
42. Liu, Z.; Li, Y.; Wang, W.; Liu, L.; Chen, R. Mesh total generalized variation for denoising. IEEE Trans. Vis. Comput. Graph. 2022, 28,

4418–4433. [CrossRef] [PubMed]
43. Hou, Y.; Zhao, Y. A robust segmentation algorithm for 3D complex meshes. In Proceedings of the 7th International Conference on

Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS), Busan, Republic of Korea, 14–15 November 2020;
p. 032045.

44. Jones, R.T.; Durand, F.; Desbrun, M. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 2003, 22, 943–949.
[CrossRef]

45. Zheng, Y.; Fu, H.; Kin-Chung Au, O.; Tai, C. Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph. 2011,
17, 1521–1530. [CrossRef]

46. Pauly, M.; Gross, M.H.; Kobbelt, L. Efficient simplification of point-sampled surfaces. In Proceedings of the 13th IEEE Visualization
Conference (IEEE Vis), Boston, MA, USA, 27 October–1 November 2002; pp. 163–170.

47. Boykov, Y.; Kolmogorov, V. An experimental comparison of Min-Cut/Max-Flow algorithms for energy minimization in vision.
IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [CrossRef]

48. Katz, S.; Leifman, G.; Tal, A. Mesh segmentation using feature point and core extraction. Vis. Comput. 2005, 21, 649–658. [CrossRef]
49. Lai, Y.; Hu, S.; Martin, R.R.; Rosin, P.L. Fast mesh segmentation using random walks. In Proceedings of the 2008 ACM Symposium

on Solid and Physical Modeling, New York, NY, USA, 2–4 June 2008; pp. 183–191.
50. Attene, M.; Falcidieno, B.; Spagnuolo, M. Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 2006, 22,

181–193. [CrossRef]
51. Chen, L.; Georganas, N.D. An efficient and robust algorithm for 3D mesh segmentation. Multim. Tools Appl. 2006, 29, 109–125.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s21082644
http://doi.org/10.3390/s21041187
http://www.ncbi.nlm.nih.gov/pubmed/33567637
http://doi.org/10.1016/j.cad.2020.102857
http://doi.org/10.1109/TVCG.2021.3088118
http://www.ncbi.nlm.nih.gov/pubmed/34115587
http://doi.org/10.1145/882262.882367
http://doi.org/10.1109/TVCG.2010.264
http://doi.org/10.1109/TPAMI.2004.60
http://doi.org/10.1007/s00371-005-0344-9
http://doi.org/10.1007/s00371-006-0375-x
http://doi.org/10.1007/s11042-006-0002-x

	Introduction
	Related Work
	Feature-Aware Mesh Segmentation Algorithm
	Efficient Adaptive Space Partition
	New Feature-Aware Region Fusion
	Feature Description
	Region Fusion
	Boundary Smoothing

	Experiments and Discussions
	Results and Analysis
	Robustness Evaluations
	Qualitative and Quantitative Comparisons
	Further Discussions and Time Performance

	Conclusions and Future Work
	References

