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Abstract: This paper presents a sliding mode control (SMC)-based path-tracking algorithm for
autonomous vehicles by considering model-free adaptive feedback actions. In autonomous vehicles,
safe path tracking requires adaptive and robust control algorithms because driving environment and
vehicle conditions vary in real time. In this study, the SMC was adopted as a robust control method to
adjust the switching gain, taking into account the sliding surface and unknown uncertainty to make
the control error zero. The sliding surface can be designed mathematically, but it is difficult to express
the unknown uncertainty mathematically. Information of priori bounded uncertainties is needed to
obtain closed-loop stability of the control system, and the unknown uncertainty can vary with changes
in internal and external factors. In the literature, ongoing efforts have been made to overcome the
limitation of losing control stability due to unknown uncertainty. This study proposes an integrated
method of adaptive feedback control (AFC) and SMC that can adjust a bounded uncertainty. Some
illustrative and representative examples, such as autonomous driving scenarios, are also provided
to show the main properties of the designed integrated controller. The examples show superior
control performance, and it is expected that the integrated controller could be widely used for the
path-tracking algorithms of autonomous vehicles.

Keywords: model-free adaptive feedback; sliding mode control; path tracking; autonomous vehicle;
recursive least squares; forgetting factor; Lyapunov stability

1. Introduction

In addition to advanced hardware components such as steering, braking, and driv-
ing components, autonomous driving technology is one of the most important mobility
technologies for improving safety, efficiency, and convenience. Because an autonomous
vehicle aims to drive under any driving conditions and environment by itself, it needs
various sensors—such as cameras, LiDAR, radar, and ultrasonic sensors—that can replace
human sensory organs. In addition, mechanical actuators such as electric or hydraulic
motors that can replace human muscle are needed to produce the desired force or pressure.
Moreover, a computing system that functions like a human brain is required for data
processing and decision-making for autonomous driving. Consequently, the vehicle system
is more complicated and nonlinear as a result of the necessity of these various components
that allow it to perform various driving tasks—such as lane changing, automatic parking,
car-following, etc.

For driving tasks, accurate path-tracking performance should be ensured with rea-
sonable path planning. Because vehicle conditions and driving conditions/environments
can change unexpectedly, the path-tracking performance of autonomous vehicles can be
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degraded, causing fatal accidents on the road. To overcome the aforementioned limita-
tion, various control technologies for the path tracking of autonomous vehicles have been
developed, as follows.

1.1. Literature Review

Sun, C. et al. presented a model predictive control (MPC) path-tracking controller with
switched tracking errors that can reduce the lateral tracking deviation and maintain vehicle
stability for both normal and high-speed conditions [1]. They compared the performance
of three MPC controllers with different tracking errors and analyzed their results. Baca,
T. et al. proposed a linear MPC-based novel approach for optimal trajectory tracking for
unmanned aerial vehicles (UAVs) using nonlinear state feedback [2]. They demonstrated
the usability of the proposed approach through statistical and experimental evaluations of
the platform in both simulated and real-world examples. Suh, J. et al. developed motion-
planning algorithms for lane changing with a combination of probabilistic and deterministic
prediction methods for automated driving under complex driving circumstances [3]. A
collision probability and a safe driving envelope were defined by the authors using a
reachable set and behavioral prediction of surrounding vehicles for safe lane changing. The
developed model was evaluated based on simulations and experiments using an actual
test vehicle under a lane change scenario. Xu, S. and Peng, H. presented a preview steering
control algorithm for accurate, smooth, and computationally inexpensive path tracking for
automated vehicles, along with an analysis of the closed-loop system [4]. In the study, the
future road curvature as a dynamic disturbance was considered for the preview controller
design, and its performance was evaluated based on simulations and experimental tests.
Chowdhri, N. et al. developed a nonlinear MPC algorithm to perform evasive maneuvers
and avoid a rear-end collision, with constraints [5] that are needed for ensuring vehicle
stability and accounting for actuator limitations. Li, S. et al. proposed an obstacle avoidance
controller based on nonlinear MPC for autonomous vehicle navigation [6]. It was designed
so that the reference trajectory is adjusted when obstacles suddenly appear and the risk
index is computed online for collision avoidance. Cao, J et al. developed a trajectory-
tracking control algorithm for autonomous vehicles considering cornering characteristics
with simplified vehicle dynamics and tire models [7]. Wang, Y et al. developed an MPC
algorithm to optimize the reference trajectory with consideration of the motion prediction
of other traffic participants using Monte Carlo simulations [8]. Quirynen, R. et al. studied
the real-time feasibility of nonlinear MPC-based steering control on an embedded computer
for autonomous vehicles [9]. In addition, Shen, C and Shi, Y investigated the nonlinear
model predictive control (NMPC) method, looking for possible approaches to alleviate
the heavy computational burden, and developed novel distributed NMPC algorithms
by exploiting the dynamic properties of the autonomous underwater vehicle motion for
trajectory-tracking control [10]. Chu, D. et al. presented a trajectory planning and tracking
framework to obtain target trajectory and MPC with PID feedback to effectively track
planned trajectory [11]. In [12], an improved MPC algorithm with fuzzy adaptive weight
control was proposed for autonomous vehicles to ensure tracking accuracy and dynamic
stability during path tracking. To implement trace planning and tracking for obstacle
avoidance, Zhang, C et al. integrated a trajectory planner and a tracking controller for
autonomous vehicles [13]. The study of [14] proposed a scheme for implementing an MPC
path-following controller that considers feasible road regions, vehicle shapes, and the model
mismatch caused by varying road conditions and small-angle assumptions in measurable
disturbances [14]. To maintain a collision-free path for autonomous vehicles, the authors
of [15] proposed a hierarchical path-planning and trajectory-tracking framework by solving
a constrained finite-time optimal problem. Yue, M et al. developed a time-based quantic
polynomial function for trajectory planning that takes into account the vehicle system’s
safety, comfort, and traffic efficiency [16]. A robust MPC with a finite time horizon was
proposed by Peng, H et al. to achieve coordinated path tracking and direct yaw moment
control for autonomous four-in-wheel-motor independent-drive electric vehicles [17].
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The previous studies mentioned above used mathematical vehicle models to design
path-tracking control algorithms; however, there are model uncertainties that have a neg-
ative impact on the path-tracking control performance. Hence, studies on the adaptive
path-tracking control of autonomous vehicles have been conducted to reduce model uncer-
tainty and improve performance under various driving conditions and environments.

Londhe, P. and Patre, B. designed a robust and adaptive tracking control algorithm
for a complete nonlinear model of an autonomous underwater vehicle based on adaptive
fuzzy sliding mode control (SMC) [18]. The study derived fuzzy control rules using the
Lyapunov energy function to minimize chattering. Taghavifar, H. and Rakheja, S. applied
an exponential-like sliding mode fuzzy type-2 neural network approach to design a robust
adaptive indirect controller that can enhance the path-tracking performance of autonomous
road vehicles [19]. In this study, the authors used the Lyapunov stability theorem to derive
the adaptation laws for a hierarchical controller design and ensure the stability of the
closed-loop system.

Zhou, X. et al. proposed an adaptive inverse controller to offset the dynamics of the
steering system’s backlash, and adaptive control laws were robustified by means of sigma
modification [20]. The authors presented hardware-in-the-loop experimental results to
show the main contribution of the proposed control algorithm. Yuan, X. et al. developed a
course-angle optimal referential model and MPC-based adaptive control system for more
adaptive path tracking at different velocities [21].

To improve tracking accuracy and stability, Lin, F. et al. developed an adaptive MPC
controller by applying a recursive least squares algorithm that can estimate cornering
stiffness and road friction online [22]. Liu, S et al. proposed a novel model-free adaptive
control algorithm based on a dual successive projection method and analyzed it using the
introduced method with a symmetrically similar structure of the controller [23]. Guerrero,
J et al. designed an adaptive high-order sliding mode controller that does not require
knowledge of the upper bound of the disturbance for trajectory tracking with the Lyapunov
concept [24]. Tran, V et al. proposed a new concept of an adaptive strictly negative
imaginary controller that minimizes a certain performance index robustly for 3D tracking
of drones in the face of wind gusts [25]. Tian, Y et al. developed an adaptive path-tracking
control strategy that coordinates active front steering and direct yaw moment based on an
MPC algorithm. The authors used the recursive least squares method with a forgetting
factor to identify the rear tires’ cornering stiffness and update the path-tracking system
prediction model [26]. For robust adaptive path tracking of an underactuated unmanned
surface vehicle, Fan, Y et al. proposed an improved line-of-sight guidance law using a
reduced-order extended state observer to address the large sideslip angle that occurs in
practical navigation. [27]. Pereida, K and Schoellig, A developed a novel adaptive MPC
with an underlying L1 adaptive controller to enhance the trajectory tracking of a system
under unknown and changing disturbances [28]. Kebbati, Y et al. presented an improved
particle-swarm-optimized PID to handle the task of speed tracking based on nonlinear
longitudinal dynamics for the coordinated longitudinal and lateral control in autonomous
driving [29]. By applying dynamic trajectory planning and a robust adaptive nonlinear
fuzzy backstepping controller, a novel nonlinear trajectory-tracking control strategy was
developed for lane-changing maneuvers [30]. A sliding mode control approach with
enhanced state observers was proposed in [31] to control both lane-keeping errors and roll
angles within the prescribed performance boundaries. Liang, Y et al. proposed a novel
scheme that integrates local motion planning and control to determine motion behaviors,
track global paths, and conduct local motion commands based on adaptive MPC and lateral
MPC [32]. For autonomous vehicles with four independent in-wheel motors, an integrated
autonomous driving (AD) control system was developed in [33], consisting of two parts: an
AD controller and a chassis controller. He, H et al. presented a hierarchical path-tracking
control framework for two-axle autonomous buses with two layers that can prevent sideslip
and rollover and can acquire the steering angle with stability constraints [34]. In order to
design adaptive control algorithms for path tracking, mode-based or model-free adaptation
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rules are needed for control input adaptation. However, it is difficult to design adaptation
rules ensuring robust stability of control systems while taking constraints into account.
To tackle this issue, data-driven or learning-based path-tracking control algorithms have
been developed.r

Chen, I. and Chan, C. developed deep reinforcement learning algorithms using proxi-
mal policy optimization that were combined with the conventional pure pursuit method to
structure the controller’s architecture [35]. Zhang, K. et al. proposed an adaptive learning
MPC scheme for the trajectory tracking of perturbed autonomous ground vehicles based on
unknown system parameter estimation [36]. The authors designed a set-membership-based
parameter estimator using the recursive least squares technique. Jiang, Y. et al. investigated
the path tracking control strategy of variable-configuration unmanned ground vehicle and
proposed an improved model free predictive control scheme [37]. Li, X. et al. developed a
novel robust adaptive learning control algorithm that can estimate the system uncertainties
through the iterative learning method [38]. In this design, a two-degree-of-freedom vehi-
cle model was reformulated into a parametric form. Wang, Z and Wang, J incorporated
model-free strategies for control and direct data-driven control into a predictive control
framework for trajectory tracking of automated vehicles [39]. For unmanned surface vehi-
cles, Wang, N et al. developed an innovative self-learning system using only input–output
signals [40]. They developed a data-driven performance-prescribed reinforcement learning
control scheme to pursue control optimality and prescribe tracking accuracy simultane-
ously. Jiang, Y et al. studied the heading tracking problem of six-wheel independent-drive
and four-wheel independent-steering unmanned ground vehicles under the influence
of uncertainties based on the model-free adaptive control method and particle swarm
optimization [41]. Parseh, M et al. proposed a data-driven motion planning method to
minimize injury severity for vehicle occupants in unavoidable collisions by establishing
a metric that models the relationship between impact location and injury severity using
real accident data [42]. Wu, Q et al. developed a fuzzy-inference-based reinforcement
learning approach for autonomous overtaking decision-making that was created using a
multi-objective Markov decision process and a temporal difference learning method based
on dynamic fuzzy inference [43]. By integrating model-free control and extreme-seeking
control, Wang, Z et al. provided a new perspective on tuning model-free control gain
while improving its performance [44]. Spielberg, N et al. designed a neural network MPC
using vehicle operation data to construct a neural network model that could be efficiently
implemented in MPC [45]. Peng, Z et al. proposed reduced- and full-order data-driven
adaptive disturbance observers for estimating unknown input gains, as well as total distur-
bances consisting of unknown internal dynamics and external disturbances [46]. To avoid
collisions efficiently, Wang, H and Liu, B proposed a collision-avoidance framework based
on road friction estimation and dynamic stability control [47]. The study of [48] aimed to
develop a model-based feasibility enhancement technique of constrained reinforcement
learning that can enhance the feasibility of policies using a generalized control barrier
function that is defined based on the distance to the constraint boundary [48]. With an
iterative single-critic learning framework, Zhang, K et al. proposed adaptive resilient
event-triggered control for rear-wheel-drive autonomous vehicles [49]. This control can be
effective in balancing frequency and changes when adjusting the vehicle’s control during
the running process. Combining the event-triggered sampling mechanism and the iterative
single-critic learning framework, the authors developed an event-triggered condition for
adaptive resilient control.

1.2. Summary of the Proposed Control Algorithm and Major Contributions

Suitable path-tracking performance is essential for the driving tasks of autonomous
vehicles, such as lane changing, automatic parking, and vehicle following. However,
path-tracking performance can be degraded by unexpected and abrupt changes in vehicle
conditions and the driving environment. To deal with this issue and ensure robust control
performance, our study designed a new path-tracking control algorithm by integrating
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adaptive feedback control (AFC) inputs with SMC. Specifically, the AFC algorithm was
created using the recursive least squares and gradient descent methods to adjust feedback
gains. It was designed so that the SMC algorithm was able to consider the error terms
regulated by the AFC input with finite stability and Lyapunov stability conditions. Further-
more, the designed SMC algorithm is capable of considering the error terms regulated by
the AFC input with finite stability and Lyapunov stability.

The performance evaluation of the proposed path-tracking control algorithm was
conducted under two scenarios: curved path tracking, and lane change scenarios with
constant velocity conditions.

The following is a summary of the major contributions of this study:

• The proposed control method is an attempt to develop an integrative control algorithm
for path tracking of autonomous vehicles using adaptive feedback and SMC algorithms
that can reject model uncertainties and ensure robust stability.

• The proposed control scheme allows for the design of controllers using a simple
mathematical model that requires low computational costs.

Based on the literature review above, Table 1 summarizes the pros and cons of the
proposed control method in comparison with other related existing approaches, which are
classified into five categories.

Table 1. A comparison of the pros and cons of several control methods.

Control Method
and Representative Studies Main Features Pros Cons

Proposed
Integrative control using AFC

and SMC;
a simple model can be used

Adaptive feedback action and
robust control considering

adaptation are possible

Parameters such as adaptation
rate and weighting factor need

to be properly determined

Model-based
control

Refs. [1–3]

Optimal control using a
system mathematical model

Optimal
control allocation is possible

It is necessary to know the
system parameters and
uncertainty, as well as

their rejection
Model-based

adaptive control
Refs. [20–22]

Optimal control with a
mathematical model and the

adaptation law

Adaptive
optimal control is possible

A proper determination of the
controller’s adaptation rate is

needed for stability
Model-free

adaptive control
Refs. [23,39,44]

Adaptive control without a
system mathematical model

A system mathematical model
is not needed

Optimal control allocation is
difficult for

multi-input systems
Data-driven

control
Refs. [37,42,46]

Adaptive control and
observation using control and

system data

Control and observation are
possible using only data

(without a model)
A stability analysis is required

Learning-based
control

Refs. [40,48,49]

Control using a learning
framework such as

reinforcement learning

Performance can be
enhanced gradually

To maintain stability, a
stability analysis and

adaptation of learning rate
are required

The remainder of this paper is outlined as follows: Section 2 presents a control algo-
rithm for path tracking using SMC with adaptive feedback. Section 3 provides the results
of the performance evaluation. Section 4 concludes with a discussion of the limitations of
the current work and prospects for future research.

2. SMC-Based Path Tracking with Adaptive Feedback Action

This section provides the mathematical formulation of the SMC-based path-tracking
algorithm with adaptive feedback action. In order to design the path-tracking control
algorithm, a kinematic mathematical error model was used. Figure 1 shows defined control
errors such as lateral error and yaw angle error for path tracking.
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Based on the defined path-tracking error, a kinematic-analysis-based mathematical
error model was derived. The following equations represent the mathematical error model
using kinematic parameters and its state-space representation:

.
ey = vxeϕ (1)

.
eϕ =

vx

L
δ− .

ϕd (2)[ .
ey.
eϕ

]
=

[
0 vx
0 0

][
ey
eϕ

]
+

[
0

vx/L

]
δ +

[
0
−1

]
.
ϕd (3)

where ey and eϕ are the lateral error and yaw angle error with respect to the reference
path for tracking of an autonomous vehicle, respectively, while vx,

.
ϕd, δ, and L are the

longitudinal velocity, desired yaw rate, front steering angle, and wheel base (i.e., the
distance between the front-wheel axle and rear-wheel axle) of the vehicle, respectively.
Figure 2 shows an overall block diagram for the model-free adaptive feedback action-based
SMC algorithm.
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The coefficient for feedback gain adaptation (the coefficient estimation block under
the adaptive feedback action in Figure 2) can be estimated using the recursive least squares
method with a forgetting factor. Using the estimated coefficient, a feedback gain is adapted
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based on the gradient descent method with a proper adaptation gain. The adaptive steering
control input is calculated using the adapted feedback gain and the path-tracking control
error. In this study, the SMC input for path tracking was computed with consideration
of the adaptive steering control input to reduce the impact of the SMC input on the path-
tracking control performance. The following equations were used to calculate the total
steering control input using adaptive and sliding control inputs. In addition, mathematical
definitions of the adaptive steering control and SMC inputs are presented below:

δc = δa f + δsmc (4)

δa f = kyey + kϕeϕ (5)

δsmc = −ρsign(σ) (6)

where δc is the total control input for the front steering wheel angle, δa f and δsmc are
the adaptive feedback-based control input and SMC-based control input, respectively,
ky and kϕ are the feedback gains for the lateral and yaw angle errors, respectively, and
ρ and σ are the magnitudes of the SMC input and sliding surface for controller design,
respectively. Equation (3) can be rewritten by using the AFC input described in Equation (5).
The following state-space-formed error mathematical model is the rewritten equation of
Equation (3) using Equation (5):[ .

ey.
eϕ

]
=

[
0 vx

kyvx/L kϕvx/L

][
ey
eϕ

]
+

[
0

vx/L

]
δsmc +

[
0
−1

]
.
ϕd (7)

In this study, the SMC input for path tracking was computed based on Equation (7).
Calculating SMC inputs requires information about adaptive feedback gains, whose adap-
tation algorithms are explained in the next section.

2.1. Adaptive Feedback Action for Feedback Gain Adaptation

To estimate the coefficients for feedback gain adaptation, the two relationship functions
shown in Equation (8) were designed and used for recursive least squares estimation with
forgetting factors. This equation relates control errors to feedback gains for the derivation
of coefficients Cij(i, j = 1, 2) [50].

.
ey = C11

.
ky + C12

.
kϕ

.
eϕ = C21

.
ky + C22

.
kϕ (8)

The coefficients are estimated based on recursive least squares with properly deter-
mined forgetting factors, which are used for the feedback gain adaptation. The feedback
gain is adapted by using the gradient descent method to minimize the control errors. The
following equation is the cost function Ja f defined for the gradient descent method:

Ja f =
1
2

e2
y +

1
2

we2
ϕ (9)

Based on the gradient descent method with the cost function defined above, the
following feedback gain adaptation rules can be derived to reduce the control errors using
the adaptation gain, weighting factor, and partial derivatives of path-tracking control errors
with respect to feedback gains:

.
ky = −γy

∂Ja f

∂ky
= −γy

(
ey + weϕ

)( ∂ey

∂ky
+ w

∂eϕ

∂ky

)
(10)

.
kϕ = −γϕ

∂Ja f

∂kϕ
= −γϕ

(
ey + weϕ

)( ∂ey

∂kϕ
+ w

∂eϕ

∂kϕ

)
(11)



Sensors 2023, 23, 405 8 of 20

In this study, it was assumed that the estimated coefficients in Equation (8) were
approximately equal to the partial derivatives of the path-tracking errors with respect to
the feedback gains. Because this assumption may lead to unexpected control uncertainty, it
was designed so that the SMC algorithm featured AFC inputs to ensure robustness. The
following Equations (12) and (13) are rewritten versions of Equations (10) and (11) with this
assumption; Equation (14) is the detailed AFC input obtained using the adapted feedback
gains and adaptation gains:

.
ky = −γy

∂Ja f

∂ky
= −γy

(
ey + weϕ

)(
Ĉ11 + wĈ21

)
(12)

.
kϕ = −γϕ

∂Ja f

∂kϕ
= −γϕ

(
ey + weϕ

)(
Ĉ12 + wĈ22

)
(13)

δa f = −ey

∫
γy
(
ey + weϕ

)(
Ĉ11 + wĈ21

)
dt− eϕ

∫
γϕ

(
ey + weϕ

)(
Ĉ12 + wĈ22

)
dt (14)

The next subsection explains the SMC algorithm that considers the designed AFC
input for robust path-tracking performance of autonomous vehicles.

2.2. SMC with Adaptive Feedback Action

The AFC algorithm described in the previous subsection can adapt the feedback gain
to reduce the path-tracking control, but it cannot guarantee the stability of the control
algorithm if it is used alone. Therefore, an SMC algorithm that can consider the adaptation
influence on the path-tracking performance is proposed in this study, based on the integra-
tion of two control algorithms (such as adaptive feedback and robust control algorithms).

By integrating the adaptive feedback and robust control algorithms, uncertainties
can be reduced by the feedback gain adaptation, while stability can be ensured by the
robustness of the sliding mode controller. In this study, a sliding surface (σ) was designed
for path tracking using the following equation:

σ = ey + weϕ (15)

where w is the weighting factor for the design of a sliding surface. The following equation
is the cost function for the design of the SMC algorithm; the time derivative of the cost
function is described in Equation (18) for the control input derivation:

Jsmc =
1
2

σ2 (16)

.
Jsmc = σ

.
σ = σ

( .
ey + w

.
eϕ

)
(17)

Equation (17) above can be rewritten as follows by applying Equation (7) to derive the
SMC input considering the adaptive steering control input:

.
Jsmc = σ

(
vxeϕ +

wkyvx

L
ey +

wkϕvx

L
eϕ +

wvx

L
δsmc − w

.
ϕd

)
(18)

All of the terms in the parentheses of Equation (18)—except for the control input term
δsmc—can be considered as disturbances, and an inequality condition using the disturbance
boundary value Lb can be derived as follows:

Lb ≥
∣∣∣∣vxeϕ +

wkyvx

L
ey +

wkϕvx

L
eϕ − w

.
ϕd

∣∣∣∣ (19)
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In order to design an asymptotically stable controller, the discrete injection term of
SMC is defined as follows: wvx

L
δsmc = −ρsign(σ) (20)

where ρ is the magnitude of the injection term, which was designed by considering the
boundary value in Equation (19) for the stability of the controller. Equation (18) can be
rewritten as follows using the boundary value and the definition in Equation (20):

.
Jsmc ≤ σ(Lb − ρsign(σ)) = −|σ|(ρ− Lb) (21)

For the finite stability condition, the following inequality condition was derived based
on the cost function condition, and the magnitude of the injection term can be determined
with Equations (21) and (22):

.
Jsmc ≤ −|σ|α/

√
2 (22)

ρ = Lb + α/
√

2 (23)

where α is a parameter for the finite stability condition. Based on the detailed disturbance
boundary value, the magnitude of the injection term can be rewritten as follows:

ρ =

∣∣∣∣vxeϕ +
wkyvx

L
ey +

wkϕvx

L
eϕ − w

.
ϕd

∣∣∣∣+ α/
√

2 (24)

It is assumed in this study that the AFC input can reduce the control errors reasonably
with the SMC input; therefore, the path-tracking control errors ey and eϕ are taken to be
zero. Equation (24) can be simplified based on this assumption, as shown in Equation (25).

ρ =
∣∣w .

ϕd
∣∣+ α/

√
2 (25)

Using the magnitude of the injection term ρ in Equation (25), the SMC input can be
computed using Equation (20) as follows:

δsmc = −
L

wvx

(∣∣w .
ϕd
∣∣+ α/

√
2
)

sign(σ) (26)

To reduce chattering of the SMC input, a sigmoid function was adopted and used in
Equation (26) instead of a sign function. The following equation is the sigmoid-function-
based SMC input:

δsmc = −
L

wvx

(∣∣w .
ϕd
∣∣+ α/

√
2
)( mσ

1 + m|σ|

)
(27)

where m is a coefficient that is used to adjust the gradient of the sigmoid function near zero.
Using Equations (4), (14) and (27), the total steering control input that requires the

adaptation gain, weighting factor, and other parameters (α, m) can be derived as follows:

δc = −ey

∫
γy
(
ey + weϕ

)(
Ĉ11 + wĈ21

)
dt− eϕ

∫
γϕ
(
ey + weϕ

)(
Ĉ12 + wĈ22

)
dt− L

wvx

(∣∣w .
ϕd
∣∣+ α/

√
2
)( mσ

1 + m|σ|

)
(28)

The next section provides the performance evaluation results under various evaluation
scenarios (i.e., curved path tracking and lane change).

3. Performance Evaluation

The performance evaluation was conducted using a planar vehicle model called the
bicycle model under two path-tracking scenarios: curved path tracking, and lane change.
The longitudinal velocities for the curved path tracking and lane change scenarios were
kept constant at 30 kph and 60 kph, respectively.

For a comparative study, the performance of the different types of designed path-
tracking controllers was evaluated four times for each scenario. The control algorithms
proposed in this study were designed and evaluated using MATLAB/Simulink. Figures 3
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and 4 illustrate the two scenarios and an overall block diagram for the performance
evaluation of the designed control algorithm, respectively.
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Figure 4. Overall block diagram for performance evaluation of the control algorithm.

In the waypoint-based path-tracking error derivation block, path-tracking control
errors are computed using the designed waypoints and vehicle states in the block. The
waypoints consist of x and y points of reference paths for curved and lane-change paths.
Tables 2 and 3 show the vehicle specifications and the designed control parameters used
for the performance evaluation.
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Table 2. Vehicle specification.

Parameter Unit Value

Mass kg 1600
Distance between the front axle

and the center of mass m 1.75

Distance between the rear axle
and the center of mass m 1.20

Wheel tread m 1.65
Cornering stiffness, front N/rad 74,000
Cornering stiffness, rear N/rad 140,000

Table 3. Control parameters.

Parameter Value (Curved Path) Value (Lane Change)

Forgetting factor 0.999 0.999
Weighting factor (w) 5 5

Coefficient for
sigmoid function (m) 1 1

Adaptation gain (γy) 1 0.001
Adaptation gain (γϕ) 1 0.001

Parameter for
stability condition (α) 1 1

Proportional gain (kp) 0.05 0.008
Integral gain (ki) 0.02 0.0001

Derivative gain (kd) 0.001 0.00001

The next two subsections show the performance evaluation results for the curved path
and lane change scenarios.

3.1. Path-Tracking Scenario: Curved Path Tracking (30 kph)

The results were compared between cases using AFC alone, SMC alone, SMC with
AFC, and proportional–integral–derivative (PID) control.

The radius of curvature of the designed curved path was 100 m, and the longitudinal
velocity of the vehicle was 30 kph. Figure 5 shows the steering control inputs for path
tracking of all evaluation cases.
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Figure 5. Results: steering control inputs for the curved path tracking.

For AFC, the steering control input is relatively large, and oscillation occurs between 10
and 15 s. The steering control input with SMC has a relatively large value around 23 s, with
chattering. When using SMC with AFC, the steering control input is relatively stable compared
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to other steering control inputs. In the case of PID, the steering control input is relatively high
after 23 s, with large oscillations. Figures 6 and 7 show the estimated coefficients for feedback
gain adaptation in the cases of AFC and SMC with AFC, respectively.
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Figure 7. Results: estimated coefficients in the case of SMC with AFC for the curved path tracking.

It can be observed that there is no significant difference between AFC and SMC with
AFC; however, the estimated coefficients for SMC with AFC have a relatively small variation
around 13 and 30 s. Figures 8 and 9 show the adapted feedback gains and path-tracking
control errors (i.e., preview lateral error and yaw angle error), respectively.
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Figure 8. Results: adapted feedback gains (AFC—left; SMC with AFC—right) for the curved
path tracking.
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Figure 9. Results: path-tracking control errors (lateral—left; yaw angle—right) for the curved
path tracking.

According to Figure 8, the adapted feedback gains between AFC and SMC with AFC
do not differ significantly, but the feedback gains for SMC with AFC are slightly smaller
than those for AFC. Additionally, SMC with AFC shows smaller preview yaw and lateral
errors than AFC, SMC, and PID. Figures 10–12 show the dynamic behaviors, cost values
for path tracking, and vehicle trajectories, respectively.
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In Figure 11, PID has the highest cost value for path tracking. There is no significant
difference between AFC and SMC with AFC in terms of cost value during the simulation,
except for 13 s; however, SMC with AFC shows the smallest value among the three cases.
Table 4 and Figure 13 compare the maximum and standard deviations of cost values in
each case.

Table 4. Results of cost value comparison for the curved path tracking.

Division Maximum Standard Deviation

Adaptive feedback control (AFC) 0.1568 0.0231
Sliding mode control (SMC) 0.3964 0.1678

SMC with AFC 0.0395 0.0078
Proportional–integral–derivative (PID) 0.5535 0.1058
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We can note that the maximum and standard deviation values for SMC with AFC are
the lowest of all cases. It can also be seen that the SMC-based path-tracking algorithm with
adaptive feedback action shows better performance.

3.2. Path-Tracking Scenario: Lane Change (60 kph)

This section provides performance evaluation results for the lane change scenario
with a constant velocity condition of 60 kph. The lane change scenario was designed by
switching the desired straight paths so that the vehicle could perform the lane change task
reasonably. The time delay function was also used to smooth the path-tracking control
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errors. Figure 14 illustrates the steering control inputs for the lane change scenario for
all cases: AFC, SMC, SMC with AFC, and PID. It can also be observed that the steering
control input in the case of SMC with AFC has relatively large values compared to the
others. Finally, AFC and PID show some oscillations in the steering control input and
slower responses.
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Figures 15 and 16 show the estimated coefficients for feedback gain adaptation in the
cases of AFC and SMC with AFC, respectively.
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There are no significant differences between SMC with AFC and AFC in terms of their
estimated coefficients and their variation patterns. In the case of using only AFC, there
is a relatively larger change in the estimated coefficients because AFC produce steering
control inputs for path tracking exclusively, without further assistance from the SMC
input. Figures 17 and 18 show the adapted feedback gains and path-tracking control errors,
respectively.
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Figure 18. Results: path-tracking control errors (lateral—left; yaw angle—right) for the lane change.

In Figure 17, AFC and PID exhibit relatively larger oscillations than SMC with AFC.
In Figure 18, there are also similar oscillations in path-tracking control error between SMC
and SMC with AFC, but their values are not greatly different. In addition, SMC with AFC
shows a higher convergence rate for the preview lateral error and yaw angle error than
AFC, SMC, or PID.

With AFC and SMC, the preview lateral error and yaw angle error are more likely to
converge than with AFC or SMC alone.

Figures 19–21 show the dynamic behaviors, cost values for path tracking, and vehicle
trajectories, respectively.

As shown in Figure 20, AFC has the highest cost value with oscillations for a lane
change, while SMC and SMC with AFC show similar variations in cost values. Figure 21
shows the vehicle trajectories for the same lane change. The results indicate that path-
tracking control with AFC occurs a little later than the other cases, while showing relatively
large overshoots and oscillations. Furthermore, the stabilization rates of the path-tracking
controllers using SMC and SMC with AFC are higher than those of AFC alone and PID. In
Table 5 and Figure 22, the maximum values and standard deviations of the cost values are
compared for each control method.
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Table 5. Results of cost value comparison for the lane change.

Division Maximum Standard Deviation

AFC 5.6590 0.8657
SMC 4.2110 0.5197

SMC with AFC 4.1395 0.4816
PID 4.2591 0.5635
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The above table shows that the maximum and standard deviation values in the case
of SMC with AFC are the lowest among the four cases, while they differ slightly for SMC,
SMC with AFC, and PID.

Based on the above results, it can be seen that the SMC-based path-tracking algorithm
with adaptive feedback action shows reasonable tracking performance under the lane
change scenario. In the next section, we discuss this study’s conclusions, limitations, and
prospects for future work.

4. Conclusions

This study proposes an SMC-based path-tracking control algorithm with adaptive
feedback action for autonomous vehicles. The adaptive feedback and SMC algorithms
were integrated to enhance the adaptiveness and robustness of the path-tracking control
algorithm. The mathematical error model used for the controller design was based on the
kinematic mathematical error model. The AFC algorithm was designed using recursive
least squares with the forgetting factor and gradient descent methods based on a designed
relationship function that uses a combination of path-tracking control errors and feedback
gains. Based on the modification of the mathematical error model by the AFC input,
the SMC algorithm was designed with finite stability conditions using the Lyapunov
theorem. To avoid chattering phenomena and conflict of the SMC input with the AFC input,
the sigmoid function was used with proper parameters for gradients. The performance
evaluation was conducted under two scenarios (i.e., curved path tracking and lane changes)
with constant velocity conditions. The evaluation results show that the control algorithm
proposed in this study was able to track the designed reference path reasonably. However,
some control parameters should be determined properly for reasonable performance.
Therefore, future work will focus on improving the model-free adaptiveness and robustness
of the control algorithm. Despite these limitations, it is expected that the developed control
algorithm could be widely used for path-tracking algorithms for autonomous vehicles
using a simple mathematical model with low computational costs.
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