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Abstract: The article presents the application of a hyperspectral camera in mobile robot navigation.
Hyperspectral cameras are imaging systems that can capture a wide range of electromagnetic spectra.
This feature allows them to detect a broader range of colors and features than traditional cameras
and to perceive the environment more accurately. Several surface types, such as mud, can be
challenging to detect using an RGB camera. In our system, the hyperspectral camera is used for
ground recognition (e.g., grass, bumpy road, asphalt). Traditional global path planning methods
take the shortest path length as the optimization objective. We propose an improved A* algorithm
to generate the collision-free path. Semantic information makes it possible to plan a feasible and
safe path in a complex off-road environment, taking traveling time as the optimization objective. We
presented the results of the experiments for data collected in a natural environment. An important
novelty of this paper is using a modified nearest neighbor method for hyperspectral data analysis
and then using the data for path planning tasks in the same work. Using the nearest neighbor method
allows us to adjust the robotic system much faster than using neural networks. As our system is
continuously evolving, we intend to examine the performance of the vehicle on various road surfaces,
which is why we sought to create a classification system that does not require a prolonged learning
process. In our paper, we aimed to demonstrate that the incorporation of a hyperspectral camera can
not only enhance route planning but also aid in the determination of parameters such as speed and
acceleration.

Keywords: mapping; data fusion; path planning; hyperspectral camera

1. Introduction

Over the last decades, we have observed that the market for autonomous cars and
transport within industrial plants is developing in many countries.

Research on this type of autonomy system at the Łukasiewicz Research Network–
Industrial Research Institute for Automation and Measurements (PIAP) has been conducted
since the launch of the project in 2018, called ATENA.

Autonomous systems for terrain UGV (unmanned ground vehicle) platforms with
the following leader function were implemented in the field of scientific research and
development work for the defense and security founded by the National Center for Re-
search and Development in Poland under the program Future Technologies for Defense
in the Competition of Young Scientists. The ATENA project was about developing an
autonomous system for unmanned ground vehicles operating in rough, unknown terrains.
The ATENA system builds the model of an environment based on the point cloud. This
system was tested in the field using two offroad cars modified by the Łukasiewicz-PIAP by
adding the Łukasiewicz-PIAP drive-by-wire system, making them UGVs. These cars are
shown in Figure 1.
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Figure 1. Łukasiewicz-PIAP ATENA demonstrator of technology.

The traversability estimation algorithm used in ATENA transforms the point cloud
to a 2.5D grid-based map. A sample of a point cloud from 3D is shown in Figure 2. The
main problems occur when the ATENA system is planning clear paths in the field covered
by vegetation.

Figure 2. Łukasiewicz-PIAP ATENA demonstrator of technology in obtaining 3D data.

An autonomous system based on the geometry rules is vulnerable to the wrong
classification of single vegetation as a stiff obstacle that cannot be passed. This problem is
well-known in the field of autonomous driving in rough terrain and could be one of the
crucial problems to solve in the field of special and combat use of UGVs. An example of
unstructured terrain is shown in Figure 3.
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Figure 3. Łukasiewicz-PIAP ATENA demonstrator of technology in unstructured terrain.

Autonomous systems for a particular use are one of the most innovative and essential
aspects of today’s usage of the UGV in modern warfare because UGVs can keep soldiers
out of the danger zone. Good maneuverability in rough terrain is the key to survivability
on the war field. The autonomous systems must be equipped with the traversability
estimation algorithm to have the ability to move in rough terrain. The scope of the work is
related to hyperspectral imaging for UGV use and is about adding this functionality to the
autonomous systems of Łukasiewicz—PIAP UGVs, which will give a market advantage in
this field. Hyperspectral imaging can increase the abilities of UGVs to better plan a safe
path in rough terrain. Based on this sensor, it is possible to classify the materials of the
terrain ahead of the UGV. This information can be used for modifying the cost of passing
the terrain. This approach can be widened to even classify the obstacles in the field as being
traversable. Humans do this classification automatically, e.g., when a driver drives a car
on the ground road, he automatically decides that lonely high vegetation can be passed.
Usually, the driver keeps driving on the road even if the path over the grass is shorter, and
the autonomous algorithm must reproduce this behavior. This paper describes a method
that covers this behavior in path planning based on traversability estimation with the use
of hyperspectral imaging.

ATENA Navigation System

The ATENA vehicle is equipped with a set of sensors: three LIDAR sensors—Velodyne
VLP-16 (16 layers, 100 m range), 5 Basler acA1920-48gc (50 frames per second at 2.3 MP
resolution) cameras and the Xsens MTi-G-710 IMU sensor and hyperspectral camera Cubert
Q285. The specs of the hyperspectral camera are shown in Figure 4.

Based on Lidar sensor indication, the ATENA system builds a grid-based map of the
environment. This part of our research is described in [1]. In a classic approach, the grids
are divided into groups—occupied and free from obstacles. In our system, a semantic label
is attached to each free-from-obstacles cell. This label represents the type of ground and is
defined based on hyperspectral camera indication.

Then modified A* algorithm is used for collision-free path planning. The algorithm
takes into account the type of surface. That allows us to consider various optimization
criteria in the path-planning process—fuel consumption, route length, and travel time.
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Figure 4. The image and table with properties of the hyperspectral camera Cubert Q285.

This paper is organized as follows: following the introduction is the section discussing
related work. In Section 3, the method of ground recognition is explained; this section con-
tains experimental results illustrating the advantages of our approach. Section 4 presents
the influence of hyperspectral imaging in the collision-free path planning method consid-
ering the cost of driving over different terrain. The article concludes with a summary and
bibliography.

2. Related Work

Multi- and hyperspectral cameras are used in numerous fields such as geology, ecology,
cartography, agriculture, oceanography, medicine, urban planning, monument conserva-
tion, or navigation of mobile robots.

UAV (unmanned aerial vehicle) equipped with LIDAR and a multispectral camera
is used by a team from Southampton [2] to identify areas of bare ground and vegetation.
Although the use of LIDAR alone gives satisfactory results in terms of accuracy, the use
of a multispectral camera also allows for a determination of the normalized difference
vegetation index (NDVI) and increases the accuracy of area measurements. All these factors
can be determined with an accuracy of 0.1 m. A similar example of assessing the quality of
barley vegetation is described in [3]. Researchers in Beijing [4] used data from hyperspectral
cameras mounted on UAVs to determine wheat yields (as tons per hectare). The correctness
of the estimates with this method was determined at 75%. This model can be used in crop
planning and management. The publication [5] describes a method of estimating damage
to a tree caused by a beetle using data obtained from a hyperspectral camera attached to a
UAV. The use of spectral data and appropriate statistical fit models allowed to obtain the
accordance of the proposed model with the empirical one at 80%.

Spectral images of the coral reef are used as a non-invasive method to assess the
human impact on climate change. Researchers from the UK [6] have developed a system to
combine data from different cameras taking pictures of coral reefs (by divers, robots, or
airborne UAVs) and obtaining spectral and photogrammetric models to assess the condition
of the coral reef using a single shot.

Environmental sciences use hyperspectral cameras mounted on a drone to detect
plastic waste floating on the water surface [7]. Researchers present a system for the
automatic detection of floating plastic waste based on a random forest classifier. The results
strongly depend on the flight altitude of the UAV, and while they are satisfactory in terms
of accuracy, due to the detection of many samples as false positives, the issue requires
further work.

Multispectral cameras are used to examine the degree of damage to city streets and
sidewalks [8]. The UGV is equipped with a set of sensors and cameras. The collected
data are then processed to determine whether the pavement requires just maintenance,
refurbishment, or reconstruction. This helps city planners to plan road repairs more
efficiently. Another example from the field of urban planning is a method of classifying
urban materials based on spectral data and textures [9]. This makes it possible to distinguish
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between similar materials, e.g., concrete, asphalt, or sandstone. Researchers use random
forest and support vector machines for classification.

In the field of defense, multispectral images taken by UAVs are used to find landmines
and unexploded ordnance [10]. This increases the safety of sappers since standard techniques
for finding buried explosives are based on techniques from the mid-twentieth century.

In localization tasks, hyperspectral cameras are used, i.e., for simultaneous quick
mapping of terrain and location [11]. The described system consists of multi- and hyper-
spectral cameras, inertial navigation, and GPS. It can be mounted on an airplane or UAV.
The system takes spectral photographs while tracking its position, which significantly
facilitates locating the areas of the created map. The application of this system is assessing
the condition of forests, damage to green areas after fires, damage caused by insects, and
many others. The publication focuses mainly on the presentation of the system, which
is supposed to be fast, cheap, and easy to build. A similar system, but described more
in terms of algorithms, can be found in [12]. Another example from the localization area
is [13]. Researchers addressed the problem of visual odometry in relation to the stereoscopy
of multispectral images. A significant problem is the difference in the modalities of the two
images. It is proposed to track the features in each image separately and simultaneously
and then estimate the motion using the feature parallax. The Kalman filter also makes the
system immune to noise resulting from insufficient image quality.

The quality and accuracy of navigation of autonomous vehicles must be ensured
regardless of weather conditions. Therefore, the system described in this publication must
consider interference from changing lighting (time of day, shadows, etc.) and humidity
(e.g., whether wet grass will be as easy to distinguish from the asphalt as dry grass).

In the above-cited publication [3], the researchers set themselves the goal of determin-
ing the quality of plant vegetation. They determined that the optics of the hyperspectral
camera has an enormous impact on the quality of the measurement, as has the pixel’s
location in the image. However, this problem can be ruled out by calibration. In terms of
the influence of the environment on the obtained spectra, they distinguished sources of in-
terference: variable insolation, noise from the soil background, plant structure, or shadows.

When using neural networks or graphs to classify materials used in urban environ-
ments, much attention must be paid to the quality of the datasets. The authors from [9]
did so, pointing out that many of the available databases contain images taken in stable
laboratory environments. For better classification, it would be desirable to have data with
different levels of exposure or insolation.

In the case of using hyperspectral measurements in the aquatic environment, the
authors [6] only mention that for examining a coral reef from the air, the influence of the
atmosphere must be considered, unlike for underwater camera shots. However, nothing is
mentioned about the impact on the spectra of water alone.

The other works cited above were carried out in stable, favorable conditions, none
mentioning the influence of water and moisture on measurements from hyperspectral cameras.

Interesting observations are presented in the work of Andreou et al. [14]. They studied
the condition of the asphalt using a multispectral camera. They divided the condition of
the asphalt into five categories, ranging from good conditions to poor conditions. They
observed that wet asphalt has a spectral response similar to the asphalt under good con-
ditions. Similarly, asphalt with soil on the surface has a spectral response similar to the
asphalt under poor conditions.

Knaeps et al. [15] created a database of photos and spectrograms of plastic garbage to
train algorithms for detecting pollutants in aquatic environments. The base contains items
such as bottles, cups, and plastic packaging that can be wet, dry, full of water, or empty.
Spectral responses for selected items are also presented. However, the usefulness of this
base in the case of the work described in this publication is insufficient because plastic is
not a natural driving surface for an autonomous vehicle.
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2.1. Spectra Matching and Processing

According to Pozo et al. [16], using a hyperspectral camera requires a few adjustments
before the actual radiometric calibration. Those adjustments are background errors and
vignetting removal (reducing differences in brightness between the edges and the center
of the image). The background can be removed by measuring the dark current, i.e., the
camera’s response in the absence of light. The vignetting effect can be reduced by finding
tangential and radial distortion corrections. Radiometric calibration can be performed in
a laboratory using electromagnetic wave sources of a selected frequency. However, this
method is time-consuming and of little use for the cameras currently used on the market.
Therefore, in situ radiometric calibration can be performed using canvases of specific colors
(shades of grey, red, blue, etc.). The canvases are photographed with a hyperspectral camera
to acquire new correction factors for the camera model obtained through laboratory tests.
A similar procedure for radiometric calibration is provided in [17].

The processing of spectra from hyperspectral cameras can be carried out in several
ways: image spectroscopy (matching pixel spectra with reference spectra), image analysis
(with a reduction in multidimensionality to reduce the computational cost, such images
are subjected to typical machine learning algorithms in image analysis, such as SVM or
CNN) [18]. Researchers at [19] strongly emphasize dealing with multidimensional data.
They describe the problem of classifying non-linearly separable data using SVM. The main
conclusions from this work are the problem of the low applicability of hyperspectral data
to supervised classifiers and the necessity and difficulty of combining data in the spatial
domain with the spectral domain.

In order to reduce the computational cost of spectra analysis, the selection of the most
informative spectra channels can be used. A proposal for such a method is presented
in [20].

In the works cited in the subsection above, many statistical or AI classifiers are
also used. For instance, in [14], thresholding, unsupervised classification iterative self-
organizing data analysis technique (IsoData), supervised classification spectral angle map-
per (SAM), mixture-tuned matched filtering and Fisher linear discriminant are used for
the asphalt classification. Spectral angle mapping was used in [10] as well. Torti et al.
Cortesi et al. [7] use a random-forest classifier to detect whether a given object floating
on a river surface is plastic. Random forest, support vector machine classifiers, and a
histogram-based gradient boosting classification tree are used to detect urban material such
as asphalt, conglomerate, or sandstone [9].

2.2. Traversabilty Estimation

In rough terrain, the environment can rarely be divided into obstacles and free
space [21,22]. In the case of UGV, the terrain will have varying degrees of traversabil-
ity depending on the terrain’s characteristics and the ability of the UGV to traverse the
terrain. Driving over rough terrain autonomously is challenging because it is difficult to
correctly classify the terrain and quantify its traversability [23].

Traditional path-planning algorithms rely on a model of the world consisting of
obstacles and accessible space. The goal of planning is usually to find paths that minimize
the distance to travel [24]. Therefore, using classical algorithms for path planning in rough
terrain is challenging. For this reason, off-road path planning is typically performed using
world models. The world model captures more information than just obstacles/clearance,
such as 3D elevation maps, maps with pre-calculated traversability results, segmented
maps with terrain types or similar information, or combinations of these. Traversability
mapping methods fall into two main categories, geometry-based and appearance-based.
More information about traversability, in general, can be found in [25].

For instance, the modified Hybrid A* [26] algorithm has been enhanced with route
planning, optimizing the distance to the endpoint and minimizing the cost of travel in the
form of road traversability. In experiments, the proposed method was successfully applied
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to autonomous driving for a distance of up to 270 min in rough terrain. The proposed
method provides more traversal paths than the existing Hybrid A* method.

Typically, the traversability estimation is computed using only non-empty cells in the
environment, while empty cells (e.g., due to occlusion) are just ignored. As a result, these
approaches can only provide traversability maps where terrain data are available. The
authors of [27] tackled this problem by proposing, given incomplete terrain data, to make
an initial prediction assuming that the terrain is rigid, using a learned kernel function. This
initial estimation is then refined to account for the effects of potential land deformation
using a near-to-far learning method based on the Gaussian process of multi-regression.

The work [28] presents a standard local and global methodology for planning the
construction of continuous cost maps using LIDAR based on the representation of the
environment’s traversability. Two approaches are being explored. The first statistical
approach calculates the land cost directly from the point cloud. The second approach,
based on learning, predicts the IMU response solely from geometric point cloud data using
a 2D-Convolutional-LSTM neural network. This allows estimating the cost of the route
without directly driving over it.

The analysis of images from cameras using deep learning [29] is also used to study
traversability. Pre-trained networks are used that quickly adapt to new conditions.

2.3. HSI for Path Planning Tasks

Specifically, in wheeled mobile robots, HSI extends the robot’s ability to acquire
information about its surroundings. For example, the authors of [30] show the use of HSI in
labeling training data for convolutional neural networks analyzing RGB data, and “shallow”
neural networks perform the matching of the spectra from the HS camera. However, in this
work, the authors do not mention anything about the specific use of HSI other than better
recognition of the area around the robot. The problem they solve is the difficulty of labeling
training data for AI algorithms. Similarly, references [31–35] are about environmental
classification, not navigation.

The above review shows that there are no works in which the authors would focus on
improving the traversability estimation in a wheeled mobile robot using HSI and would
demonstrate the effectiveness of this method.

3. The Methodology

Our approach uses the supervised learning method to classify the ground based on
hyperspectral camera images.

The algorithm consists of the following steps:

• Data assembling,
• Data reduction,
• Normalization and choosing the metric,
• Creating models of the classes (learning phase).

3.1. Data Assembling

The hyperspectral images can be represented as a set of triples:

{(xij, yij, λij)} (1)

where x and y represent 2D spatial dimensions of the scene, and λ represents the 2D spectral
dimension. The parameter λij can be used during the segmentation process.

Figure 5 presents the result of potted plant image segmentation based on spectral
responses. The image is represented as a grid of cells, and each area’s average value of λ is
computed. It is assumed that two cells belong to the same class if the corresponding values
of parameters λ are near each other.
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(a) (b)

Figure 5. The image taken by a Cubert Q285 camera (a), and the result of segmentation (b).

Data for traversability estimation were collected as the robot traveled in different light
and weather conditions. The vehicle moved on asphalt, a bumpy road, a forest road, and
grass. Figure 6 shows images of each type of road.

The photos are divided into the square cells shown in Figure 6 (red grid). A spectral
distribution is created for each cell, and a label (class) is assigned.

(a)

Figure 6. Cont.
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(b)

(c)

Figure 6. Different types of roads and corresponding spectral response: (a) dirt road, (b) forest road
(land), (c) bumpy/mixed road (with ruts).

3.2. Data Reduction

The distributions of the spectral response of areas belonging to the same class and
similar values are averaged using the kernel density estimation (KDE) technique [36].

Figure 6 presents the idea behind the method. On the left are images obtained from
the hyperspectral camera. The squares indicate selected road parts for which wavelength
distributions were created. The figures on the right show the spectral distributions. The
solid line marks the result of averaging. In our approach, spectral distribution (λ) is treated
as a feature vector and is used during classification.

To avoid the influence of lighting conditions, the values of λ have been normalized
according to the formula:
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rN
i =

ri
rmax − rmin

(2)

where ri—intensity of ith wavelength.
During the experiments, it turned out that the same type of area (grass) has different

values of λ for different seasons (Figure 7). Therefore, some classes are represented by
several vectors of features.

(a)

(b)

Figure 7. Grass at a different time of year: (a) grass in May, (b) grass in October.

To classify an unknown area, we need to find the nearest area with a known class
membership [37]. For this purpose, we have to define a metric to compare the distance
between spectral distributions. In our algorithm, we adopted methods of comparing
histograms [38].
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3.3. Choosing the Proper Distance Function

The choice of the appropriate distance function significantly affects the classification
result. We adopted the methods that are used to compare histograms: the correlation
between histograms (Equation (3)), the product of histograms (Equation (5)), and evaluating
distances using the chi-square method (Equation (6)). xi and yi are the corresponding values
of the histogram pair (X, Y). It is assumed that xi and yi are the corresponding values of
the histogram pair (X, Y).

dc(X, Y) = ∑n
i=1(xi − x̂)(yi − ŷ)√

∑n
i=1(xi − x̂)2(yi − ŷ)2

(3)

where:
x̂ = ∑n

i=1 xi
n ,

ŷ = ∑n
i=1 yi
n

(4)

dc(X, Y))—correlation between histograms.

d(X, Y) =
n

∑
i=1

min(xi, yi) (5)

d(X, Y)—product of histograms

dc2(X, Y) =
n

∑
i=1

(xi − yi)
2

(xi + yi)
(6)

dc2(X, Y)—chi-square methods.
The distance between two different classes should be as large as possible. The metric

values for elements belonging to the same class should be close to zero. The experiments
show that the best results were obtained for the chi-square function.

3.4. Classification Phase

In our approach, the nearest-neighbor supervised learning algorithm is used. The ex-
amples in the dataset have labels assigned to them, and their classes are known (Section 3.2).
Figure 8 shows the idea behind the method. The algorithm consists of the following steps:
(1) calculating the distance between a test example and dataset examples, and (2) finding the
minimum distance and corresponding class label. The label is the result of the classification.

3.5. Experimental Results

Classification accuracy was determined by adopting a chi-square metric. Figure 9
shows the confusion matrix (in percent). The matrix compares the actual class values with
those predicted by the learning model. Vegetated terrain is not confused with other terrains.

After classifying cells of the area, semantic information should be taken into account.
For example, if a cell of an image is classified as grass and is surrounded by cells classified as
a road, the classification result is changed. This method resembles the method of n-nearest
neighbors [37].
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Figure 8. Classification diagram.

Figure 9. Confusion matrix for terrain classification matrix (%).
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Figure 10 shows the result of the classification. The gray color shows parts of the
asphalt road, and the green one shows the grass. Context is taken into account in the
classification process, i.e., if a single piece is surrounded by fragments belonging to another
class, the value is changed.

(a) (b)

Figure 10. The segmentation results, (a) original image, (b) image after segmentation.

4. Application of Surface Recognition in Collision-Free Path Planning

In this article, we suggest using the diffusion method for path planning [1,39]. The
main advantage of the approach is that we can easily consider the cost of driving over
different terrains.

The map of the environment is represented as a grid of cells (array map). Obstacle-free
cells represent the possible robot positions (states). Two states are distinguished: the initial
robot position(cR) and the goal position (cG). In classical path planning systems, we divide
cells into two classes: free from obstacles and occupied. For 2.5D maps, class membership is
determined by thresholding. A cell is classified as occupied if the observed height exceeds
a certain threshold and is free of obstacles otherwise. Figure 11 presents the map built by
the ATENA navigation system [1]. Red fragments represent areas occupied by obstacles,
green—free of obstacles, white—unexplored. The algorithm consists of the following steps:

• A diffusion map (array v) is initialized in the path planning algorithm’s first step. The
big value is assigned to the cell, representing the goal position (cG), and the values 0.0
are attached to other cells.

• For each unoccupied cell(mapij), the value (vij) is calculated according to the formula:

vij = maxvekl∈Nij(vekl − dist(ckl , cij)) (7)

where Nij—neighborhood of the cell ij, dist—distance between cells. This process
continues until stability is established.

• The path (list of cells) is generated during the next step. The first cell represents
the initial robot’s position. The next one is indicated by the neighbor of (cR) with a
maximum value of vkl . The process continues until the cell with the maximum function
value is reached. Figure 11b represents the path generated by the algorithm. A black
line indicates the planned path. R—the robot’s initial position, G—the target’s location.
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(a) (b)

Figure 11. The map of the environment: (a) the map, (b) the path.

In the case of outdoor robots, we look for the path with the shortest travel time. The
travel time (robot speed) can be related to the type of ground, distance to obstacles, etc.
To solve this problem, we have to modify the map of the environment and the diffusion
method. The map of the environment represents the cost function. The value depends on
the type of ground detected, thanks to hyperspectral imaging. In the case of a perfectly
smooth terrain (asphalt), the value of this parameter equals 0.0. In the case of uneven
terrain, the value is increased proportionally to the increase in movement cost (time).

Figure 12 presents the map if the type of ground is considered. Red fragments represent
areas occupied by obstacles, green—grass, gray—asphalt, white—unexplored.

(a) (b)

Figure 12. The map of the environment if the type of ground is recognized: (a) the map, (b) the path.
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Equation (7) is modified as follows:

vij = maxvekl∈Nij(vekl − dist(cekl , caij)−mapkl) (8)

Figure 12b represents the path generated by the algorithm. A black line indicates the
planned path. R—the robot’s initial position, G—the target’s location.

The path’s start and end are exactly the same as in Figure 11, but because the cost of
travel for different terrains is taken into account, the paths differ significantly. Most of the
second path runs on asphalt.

Discussion

We want to show the advantages of our system by comparing it with the algorithm
presented in [40]. The paper proposes a hierarchical path-planning method for a wheeled
robot. It is assumed that the vehicle moves in a partially known uneven terrain, and the
3D map stores elevation data, such as the terrain’s slope, step, and unevenness. The A*
algorithm is used for global path planning. The Q-learning method is employed to avoid
locally detected obstacles.

In our opinion, geometric information about the surface is insufficient when the robot
moves on difficult, rugged, uneven terrain. An area defined as impassable based on the
elevation map (for example, high tufts of grass) may be accessible to the robot. Without
knowledge of the ground structure, it is difficult to determine whether the robot can drive
up a given hill. A hill covered by asphalt is more accessible than a hill covered by mud;
both hills could have the same geometry, but the cost of passing them through is different.
Additionally, hyperspectral imaging can give information that will change the permissible
speed of the robot on a given surface. Similarly, in the case of the Q-learning algorithm, it
is worth taking into account semantic information about obstacles.

5. Conclusions and Future Works

In the paper, we presented the use of a hyperspectral camera in the navigation of a
mobile robot. An effective surface classification method has been developed. An important
novelty of this paper is the use of a modified method of the nearest neighbor. Thanks to
this solution, we can quickly teach the system to add and remove surface classes. This
feature is essential when the system is being developed and modified. Unlike neural
networks, the algorithm is transparent and non-parametric. Transparency of classification
is vital in security systems. In the case of CNN, if an image’s context is misleading or
confusing, it can cause the model to make incorrect predictions. Experiments carried out in
the natural environment have shown the effectiveness of the proposed solution. It has been
shown that information about the surface type can be easily included in path planning and
determining the permissible speeds of the vehicle. In the future, we plan to expand the
system by adding new classes of surface types. We want to use the surface type information
in global path planning and in controlling the robot, e.g., determining the allowable values
of linear or angular acceleration. Recognition of surfaces with the help of a camera has been
described in the literature, but we have not found an article in which information from a
hyperspectral camera was used to determine the cost of driving on a given surface and the
permissible speeds. Our experience shows that the current price of hyperspectral cameras
for a robot moving in a structured environment is not profitable. Using a hyperspectral
camera on a robot moving in difficult, uneven terrain can significantly improve the system’s
efficiency. It can also increase the safety of the mission. In the current version of the system,
the vehicle’s dynamic is taken into account to a minimal extent. The mass of a vehicle,
coefficient of friction, and/or torque limitations can make a particular surface impassable
for the robot. The corresponding grid-based map cells are marked as occupied by obstacles.
The cost of travel depends on the distance from obstacles. In the future, we will adopt the
methods described in [41,42] to our path planning algorithm to allow the robot to move
with higher velocities and consider the dynamic to a broader extent.
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We plan to expand the system by adding a robot self-location module, in which
semantic information will be used in addition to metric information.

In the articles discussed in Section 2, the robots used the hyperspectral cameras to
carry out specific tasks, such as plant irrigation tests, not in path planning, so the system
proposed in this work can be successfully used in the robots mentioned above that already
have an HS camera installed for other purposes. Nevertheless, the price of hyperspectral
cameras is high, but it is constantly falling. Ten years ago, the price of 3D laser rangefinders
was also high, and now they are standard equipment for mobile robots. In the case of a
natural, unstructured environment, the use of information obtained from a hyperspectral
camera can improve not only the efficiency but also the security of the system.
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23. Belter, D.; Skrzypczyński, P. Rough Terrain Mapping and Classification for Foothold Selection in a Walking Robot. J. Field Robot.

2011, 28, 497–528. [CrossRef]
24. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots, 2nd ed.; Intelligent Robotics and

Autonomous Agents Series; MIT Press: Cambridge, MA, USA, 2011.
25. Sevastopoulos, C.; Konstantopoulos, S. A Survey of Traversability Estimation for Mobile Robots. IEEE Access 2022, 10, 1.

[CrossRef]
26. Thoresen, M.; Nielsen, N.H.; Mathiassen, K.; Pettersen, K.Y. Path Planning for UGVs Based on Traversability Hybrid A. IEEE

Robot. Autom. Lett. 2021, 6, 1216–1223. [CrossRef]
27. Ho, K.; Peynot, T.; Sukkarieh, S. Nonparametric Traversability Estimation in Partially Occluded and Deformable Terrain. J. Field

Robot. 2016, 33, 1131–1158. [CrossRef]
28. Waibel, G.G.; Low, T.; Nass, M.; Howard, D.; Bandyopadhyay, T.; Borges, P.V.K. How Rough Is the Path? Terrain Traversability

Estimation for Local and Global Path Planning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16462–16473. [CrossRef]
29. Sevastopoulos, C.; Oikonomou, K.M.; Konstantopoulos, S. Improving Traversability Estimation Through Autonomous Robot

Experimentation. Comput. Vis. Syst. 2019, 11754, 175–184.
30. Liyanage, D.C.; Hudjakov, R.; Tamre, M. Hyperspectral Imaging Methods Improve RGB Image Semantic Segmentation of

Unstructured Terrains. In Proceedings of the 2020 International Conference Mechatronic Systems and Materials (MSM), Bialystok,
Poland, 1–3 July, 2020; pp. 1–5. [CrossRef]

31. Winkens, C.; Sattler, F.; Paulus, D. Hyperspectral terrain classification for ground vehicles. In Proceedings of the 12th International
Conference on Computer Vision Theory and Applications (VISAPP), Porto, Portugal, 27 February–1 March, 2017.

32. Winkens, C.; Kobelt, V.; Paulus, D. Robust Features for Snapshot Hyperspectral Terrain-Classification. Comput. Anal. Images
Patterns 2017, 10424, 16–27.

33. Basterretxea, K.; Martínez, V.; Echanobe, J.; Gutiérrez-Zaballa, J.; Campo, I.D. HSI-Drive: A Dataset for the Research of
Hyperspectral Image Processing Applied to Autonomous Driving Systems. In Proceedings of the 2021 IEEE Intelligent Vehicles
Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 866–873. [CrossRef]

34. Xu, R.; Li, C. A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots. Plant Phenomics 2022, 2022,
1–20. [CrossRef]

35. Ravankar, A.; Ravankar, A.A.; Rawankar, A.; Hoshino, Y. Autonomous and Safe Navigation of Mobile Robots in Vineyard with
Smooth Collision Avoidance. Agriculture 2021, 11, 954. [CrossRef]

36. Agarwal, N.; Aluru, N.R. A Data-driven Stochastic Collocation Approach for Uncertainty Quantification in MEMS. Int. J. Numer.
Methods Eng. 2010, 83, 575–597. [CrossRef]

37. Russell, S.J.; Norvig, P.; Davis, E.; Hall, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall Series in Artificial
Intelligence; Prentice Hall: Hoboken, NJ, USA, 2010.

38. Cha, S.-H.; Srihari, S.N. On Measuring the Distance between Histograms. Pattern Recognit. 2002, 35, 1355–1370. [CrossRef]
39. Marcin, C.; Barbara, S.; Wojciech, S.; Sławomir, S. Energy Efficient UAV Flight Control Method in an Environment with Obstacles

and Gusts of Wind. Energies 2022, 15, 3730.
40. Zhang, B.; Li, G.; Zheng, Q.; Bai, X.; Ding, Y.; Khan, A. Path Planning for Wheeled Mobile Robot in Partially Known Uneven

Terrain. Sensors 2022, 22, 5217. [CrossRef]
41. Hua, C.; Niu, R.; Yu, B.; Zheng, X.; Bai, R.; Zhang, S. A Global Path Planning Method for Unmanned Ground Vehicles in Off-Road

Environments Based on Mobility Prediction. Machines 2022, 10, 375. [CrossRef]
42. Guo, D.; Wang, J.; Zhao, J.B.; Sun, F.; Gao, S.; Li, C.D.; Li, M.H.; Li, C.C. A vehicle path planning method based on a dynamic

traffic network that considers fuel consumption and emissions. Sci. Total. Environ. 2019, 663, 935–943. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/su11040978
http://dx.doi.org/10.1016/j.rse.2007.07.028
http://dx.doi.org/10.1134/S0030400X16120158
http://dx.doi.org/10.1109/2.30720
http://dx.doi.org/10.3390/app10041317
http://dx.doi.org/10.1002/rob.20397
http://dx.doi.org/10.1109/ACCESS.2022.3202545
http://dx.doi.org/10.1109/LRA.2021.3056028
http://dx.doi.org/10.1002/rob.21646
http://dx.doi.org/10.1109/TITS.2022.3150328
http://dx.doi.org/10.1109/MSM49833.2020.9201738
http://dx.doi.org/10.1109/IV48863.2021.9575298
http://dx.doi.org/10.34133/2022/9760269
http://dx.doi.org/10.3390/agriculture11100954
http://dx.doi.org/10.1002/nme.2844
http://dx.doi.org/10.1016/S0031-3203(01)00118-2
http://dx.doi.org/10.3390/s22145217
http://dx.doi.org/10.3390/machines10050375
http://dx.doi.org/10.1016/j.scitotenv.2019.01.222

	Introduction
	Related Work
	Spectra Matching and Processing
	Traversabilty Estimation
	HSI for Path Planning Tasks

	The Methodology
	Data Assembling
	Data Reduction
	Choosing the Proper Distance Function
	Classification Phase
	Experimental Results

	Application of Surface Recognition in Collision-Free Path Planning
	Conclusions and Future Works
	References

