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Abstract: Vision is the main component of current robotics systems that is used for manipulating
objects. However, solely relying on vision for hand−object pose tracking faces challenges such as
occlusions and objects moving out of view during robotic manipulation. In this work, we show
that object kinematics can be inferred from local haptic feedback at the robot−object contact points,
combined with robot kinematics information given an initial vision estimate of the object pose. A
planar, dual-arm, teleoperated robotic setup was built to manipulate an object with hands shaped like
circular discs. The robot hands were built with rubber cladding to allow for rolling contact without
slipping. During stable grasping by the dual arm robot, under quasi-static conditions, the surface of
the robot hand and object at the contact interface is defined by local geometric constraints. This allows
one to define a relation between object orientation and robot hand orientation. With rolling contact,
the displacement of the contact point on the object surface and the hand surface must be equal and
opposite. This information, coupled with robot kinematics, allows one to compute the displacement
of the object from its initial location. The mathematical formulation of the geometric constraints
between robot hand and object is detailed. This is followed by the methodology in acquiring data
from experiments to compute object kinematics. The sensors used in the experiments, along with
calibration procedures, are presented before computing the object kinematics from recorded haptic
feedback. Results comparing object kinematics obtained purely from vision and from haptics are
presented to validate our method, along with the future ideas for perception via haptic manipulation.

Keywords: object pose tracking; haptic; active manipulation; dual-arm manipulation; object localiza-
tion; object manipulation; haptic manipulation

1. Approaches to Dexterous Robotic Manipulation

Dexterous manipulation of an object is the ability to change the object’s position and
orientation [1] while grasping it in the hand—an ability that has let humans use tools and
arguably develop a superior brain even [2]. Robotics manipulation research has attempted
to mimic this human ability by building robot hands with the aim of achieving similar
dexterity artificially for both industrial [3] and home [4–6] applications.

Despite impressive results in robotic manipulation showcased for warehouse oper-
ations [7], robots still fall short of human-like levels of speed and reliability. Most robot
solutions use only one robotic hand with limited gripper orientation [8]. This greatly limits
speed, manipulative payload and dexterity, as humans can use two arms.

With dual-arm manipulation, state estimation and control are determined by the
contact type between the robot hands and object, i.e., (i) point contact (with and without
friction), (ii) sliding contact and (iii) rolling contact [9,10]. With most practical situations
having friction between hand and object, point contacts are problematic if the objective is to
move the object dexterously without break of contact. For this reason, rolling manipulation
increases the dexterity with the hand boundary, allowing for dexterous motion of the
object [2,11].

The forward kinematics of rolling-contact dual-arm manipulation was rigorously
investigated in the late 1980s [12,13] using geometry. The rolling constraints were used
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to derive the relation between robot velocities and object velocities, and a joint torque
controller was developed to simulate the contact forces due to rolling contact. Going a
step further to kinematic constraints, a dynamical closed loop controller was developed
in [14–16]—where the only knowledge needed was sensing of finger−robot states and
kinematic parameters in a finger model. This approach was called blind grasping and
has spawned more research in recent years [17], even with tackling challenges such as
unknown object mass, shape, Coriolis terms and hand/object kinematics [18]. Although
it is desirable to perform manipulation with as little information as possible as reasoned
in [15], it is advantageous in practical situations to choose to use the information which is
readily available—robot hand geometry, robot parameters, etc. For instance, contact-point
sensing using hand geometry is useful in determining object pose during manipulation
in real time, as we will show in this work. Discarding this haptic information could be
disadvantageous and would need alternative approaches to manipulation control. In fact,
much of the robotic manipulation literature focuses on using vision to determine object
pose information, as we discuss next.

Much work regarding vision-based robotic grasping and manipulation for parallel
jaw grippers mounted on a single robot arm has been reported in the surveys by [8,19,20].
Such vision-based approaches present fundamental limitations when it comes to dexterous
manipulation tasks requiring more accurate and controlled contact interactions, such as
object reorientation, object insertion or almost any kind of object use [21]. Many practical
applications, especially in home settings, would require robots to have semi-precise or gentle
placement of components, which would require contact information about the object pose
and haptic feedback during manipulation. This further motivates the case for using haptic
feedback during robot manipulation for perception and control.

Contributions and Organization of Paper

In this work, we propose a simple approach using the concept of the wrench axis,
which allows for contact sensing. Tactile sensors [22] are usually placed on the robot’s end-
effector tips, which enable sensing the point of contact effectively. In this work, we chose to
place the force sensors on the robot wrists instead. This choice allows for a measurement
of a wrench, which indirectly contains contact point information when viewed with robot
hand geometry (which is information that should be available to every robotics engineer).
We present a method to estimate online the object pose using (i) an initial kinematic estimate
obtained from vision and (ii) real-time haptic feedback from the hands in a dual-arm robotic
manipulation setting. We also show that we can reconstruct the normal and tangential
forces at contact using the geometry at the contact frame.

The rest of the paper is organized as follows. In Section 2, we present a haptic method
to determine contact frame using the wrench axis (estimated using force/torque measure-
ments alone) for a circular robot hand. This haptic method is one of the main contributions
of this work. To validate the contact frame information obtained, we demonstrate the
computation of object orientation under rolling contact (without slippage) by tracking the
contact point on the robot hand. With promising results for estimating kinematics from
haptic feedback for a single hand, we present the forward kinematics for dual-arm robotic
manipulation in Section 3. The second contribution of our work is the algorithm to compute
object position and orientation at any time using (i) information about initial hand−object
kinematics and (ii) hand kinematics and haptic feedback at any time. This is presented
in Section 4 along with the method to fuse kinematic estimates from two hands. The
experimental validation of the proposed algorithm is presented in Section 5, which reports
on a human operator performing a haptic demonstration of dual-arm manipulation using
a teleoperated robot setup. The object position and orientation were tracked using vision
(with a high accuracy motion capture system) and also computed using our proposed
algorithm, and the results are compared to validate our method. Finally, the conclusions are
presented along with sensor calibration reported in Appendix A.1 and numerical details of
the noise present in sensed wrenches in Appendix A.2.
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2. Haptic Estimation of Point of Contact in Circular Hands

The basic idea behind our work is to use haptic information from the robot to infer
(at least in part) environmental kinematics, such as object position and the orientation of
the object being manipulated. In the event that this information is already available, e.g.,
intermittently from cameras, it is beneficial to fusing such data streams. Although this could
be seen as merely algebraic changing of variables, we found the geometric approaches such
as those based on wrench axis [23,24] especially insightful for manipulation purposes.

Many contact tasks of interest involve only forces (not moments) at the point of
contact. A moment at the point of contact might arise, for example, from twisting the
robotic finger/hand about the normal axis of contact, in the presence of dry friction, but we
shall exclude this type of manipulation. Moreover, this eventually can only appear in 3D
manipulation while this paper focuses on 2D, planar scenarios. However, moments will be
generated at frames located away from the contact point. Typically, force/torque sensing
units (loadcells) are located at the wrist of the robot, i.e., away from the end-tip where
the contact with the environment occurs. Given a force f at the finger-tip, the moment is
determined as:

τ = d× f (1)

where d denotes the displacement vector between the point of contact and the origin of the
loadcell frame. Therefore, while the force reading from the loadcell provides directly the
components of the applied force, the torque readings provide additional information on
where the force is applied. Specifically, given force and torque readings f and τ, the point
of application lies on the axis (denoted ‘wrench-axis’) characterized, in 3D space, by the
linear equations in (1). In 2D space, the cross product has no meaning, and the wrench axis
equation simply becomes:

τ = det([d f ]) (2)

where [d f ] is the 2× 2 matrix with columns d = [dx dy]T and f = [ fx fy]T (see Figure 1a).

𝛼∗

𝒕"∗ {𝒓#, 𝜃#}

𝒇
Wrench axis

𝒄"∗
𝒅

{1}

2𝑟$

𝒏"∗

{0}

(a) Wrench axis and hand−object geometry

{0}

{1}

{2}

Camera

Force/
Torque 
Sensor

Hand
Object

(b) Experimental setup concept

Figure 1. (a) Any point on the wrench axis has the same displacement vector d from frame 1. Using
Equation (4), we determine cα∗ , the point of pushing. (b) This experimental setup was designed to
test the proposed method of estimating the point of contact for circular hands.

Given the geometry of the object on which a force is being applied, the geometric
intersection with the wrench axis ultimately defines the point of contact. In summary,
haptic measurements from the robot hand/fingers can be used to infer the point of contact.
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Additional information such as the geometry of the robotic hand will allow one to determine
further variables, such as the normal and tangent vectors at contact, as shown next.

2.1. Contact Frame Estimation from Wrench Axis

In the 2D case, the boundary of a solid object is simply a 2D curve. The boundary of a
circular hand can be conveniently parameterized by contact parameter α. Any point on the
boundary, cα is defined as a function of α and hand radius r0. With reference to Figure 1a,
when a force is acting at a point cα, the wrench axis equation, Equation (2), can also be
expressed as:

τ = det([cα f ]) = r0(cos(α) fy − sin(α) fx) (3)

Expanding this, we next estimate the parameter α∗ obtained from haptic feedback in
circular hands as:

α∗( f , τ) := −acos

 τ

r0

√
f 2
x + f 2

y

+ atan2(− fx, fy) (4)

After the estimation of α∗, the contact point and frame may be computed as:

cα∗ = r0nα∗ , nα =

[
cos(α)
sin(α)

]
tα =

[
− sin(α)
cos(α)

]
(5)

where nα∗ and tα∗ represent the normal and tangent at the contact point cα∗ .

2.2. Experimental Validation of Estimated Point of Contact

With reference to Figure 1a, given the point of contact at cα∗ obtained using α∗ defined
above, in our simplified case, we observe that the tangent tα∗ is aligned with the frame {2},
tα∗ || n(θ2), i.e.,

θ2 = atan2(tx, ty) (6)

To validate that the computation of α∗( f , τ) is accurate, we conducted an experimental
trial where a rectangular object was rolled along the circular hand’s boundary without
slipping manually, as shown in Figure 2. The object orientation θ2 was obtained from two
sources:

• Vision: using Apriltags, as shown in Figure 2.
• Haptics: using the proposed haptic method α∗( f , τ) in Equation (4).

Note that in Figure 2, during the initial and final phases where there is no contact,
the object orientation, as estimated from haptic feedback, is not well defined. Once rolling
without slipping is ensured, the haptic-estimated object orientation follows the visual
estimate very closely.

With these initial results, we proceed to define the larger problem of using a dual-arm
robotic system with circular hands to determine the object pose, i.e., both position and
orientation during dexterous manipulation of a planar object in the next section.
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(a) t = 15 (sec) (b) t = 35 (sec) (c) t = 55 (sec)
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(d) The object orientation, as estimated by haptic feedback, closely matches the vision estimate, when
the object and hand are in contact.

Figure 2. (a−c) Hand−object configurations during the experiments along with annotated Apriltags
for computing the visual estimate of hand−object relative orientation. (d) Rolling contact without
slipping was ensured by rubber cladding of the hand. Hand−object configurations were varied
manually. Object orientation θ2 estimated from Apriltags, i.e., vision, plotted against the orientation
computed by haptic feedback using Equations (4) and (6).

3. Kinematics of Planar Dual-Arm Manipulator

The planar kinematics (see Figure 3) of the object and the dual-arm robot can be
described in terms of rigid planar transformations to and from the following frames:

• Common frame {0}, a fixed frame attached to the work-space (e.g., the table on which
the robot is operating);

• Left-hand frame {1}, a moving frame attached to the end-effector of robot arm 1;
• Right-hand frame {2}, a moving frame attached to the end-effector of robot arm 2;
• Object frame {3}, a moving frame attached to the object to be manipulated.

For each frame, we define its location r ∈ R2 and its orientation θ w.r.t the common
frame {0}, to be composed as a 3-tuple {r, θ}. To compose the transformation of the local
coordinates for, say, robot arm 1 at time t, the associated SE(2) transformation denoted by
Φ1t = [r1, θ1]SE2|t is defined as:

Φ1t =

[
R(θ1(t)) r1(t)

0 1

]
R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(7)

Similar definitions may be made for the other frames at different times.
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Figure 3. Dual−arm robot kinematic variables.

The task space coordinates of the end-effector frames defined above are related to the
joint variables by the robot’s forward kinematics as:

r1 =

[
l1 cos(qsh1) + l2 cos(qsh1 + qel1)
l1 sin(qsh1) + l2 sin(qsh1 + qel1)

]
θ1 = qsh1 + qel1 (8)

Similar computations were made for the second robot arm.

Hand−Object Surface Parameterization

As defined before in Section 2.1, any point on the robot hand h = {1, 2}with parameter
αh and radius r0 (see Figure 4) can be expressed in local-coordinates as:

c(αh) = r0nαh (9)

𝛼!

{𝒓!, 𝜃!}

{𝒓", 𝜃"}

𝒂!

𝒂#

𝒂$

𝒂"

{𝒓#, 𝜃#}

𝑠!

𝒏%!
𝒕%!

2𝑟&
𝒄%!

𝒄'!

𝑠#

𝒄'"

𝛼#

Figure 4. Parameterized surface proxies [25] are virtual points defined as being constrained to be
on the surface of objects. By introducing attractive dynamics between these proxies, they can be
made to act as the closest points (to the robot hand) on their respective surfaces. In the context of
physically interacting objects, the kinematics of such proxies on both surfaces would capture the
contact constraints. For instance, with rolling contact between side a1a2 and hand 1, the proxies cα1

and cs1 on two rolling bodies would be coincident with no relative velocity. Similarly, the proxies for
hand 2 would follow. We define the notation such that, for each point cαh on hand h, the closest point
on the object is defined as csh .
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Note that nαh and tαh represent the normal and tangent at the point parameterized by
αh expressed in local coordinates. We next define the parameter s1 for any point on the side
a1a2 of the object expressible as:

c(s1) = a1 + s1â12, a12 = a2 − a1 â =
a
||a|| (10)

Similar definitions can be made for robot hand 2 interacting with side a3a4. These
definitions will become important when we discuss the rolling contact constraints between
the robot hands and their respective object sides being contacted during manipulation, in
the next section.

4. Haptic-Based Tracking of Object Pose

Under the assumptions of rolling with no slipping defined in the previous subsection,
we studied two hand−object configurations obtained via rolling contact, as shown in
Figure 5a,b. The initial hand−object configuration is defined by the local geometry at the
point of contact, which is parameterized by αh0 = α∗(t0) with the normal and tangent
in local coordinates also defined as per Equation (5). Similarly, the final configuration
was parameterized by αht. The decomposition of relative motion from the initial to final
configuration is shown in Figure 5a,b. The following algorithm summarizes these steps to
calculate final object pose given the initial pose and wrench information at any time t.

𝛼!"

𝒓#, 𝜃# %
$!

𝑠!"

𝒄%"!

(a) Initial configuration

𝒕!!"

𝛼"#

{𝒓$, 𝜃$} (#

𝒄%!#𝒄!!"
𝒄!!#

(b) Final configuration

Figure 5. (a) Definition of initial hand−object configuration parameterized by αh0 = α∗(t0). (b) At
time t, the object position and orientation can be obtained from ∆αh = αht − αh0. This follows from
the rolling without slipping constraint that the distance traversed between cαh0 and cαht (along the
hand boundary) should be equal and opposite to that traversed on the object boundary, i.e., from csh0

to csht .

It follows that the displacement of the point of contact on the robot hand is parame-
terized by ∆αh = (αht − αh0) and is given by r0∆αh, for this case of circular hands. We can
also infer that the displacement of point of contact on the object is equal and opposite—i.e.,
a positive value of ∆αh will imply a negative value of ∆sh. In other words, since the object
has straight sides, we have ||csht − csh0 || = ||r0∆αh|| (see Figure 5b). In summary, with
the hand and object always in rolling contact without slipping or break of contact, at any
instantaneous point in time, the relative movement of the object w.r.t. the hand is composed
of (i) a pure rotation about the robot hand and (ii) a pure translation about the tangent at
the contact point.
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Sensor Fusion of Object Pose from Multiple Robot Arms

Assuming that Gaussian white noise is present in the force sensors, we can compute
the propagation of uncertainty through Algorithm 1 to obtain r̃3, Σr3 , i.e., the object position
estimate and associated uncertainty, respectively, and θ̃3, σ2

θ3
, i.e., the object orientation

estimate and associated uncertainty, respectively. We define the covariance matrix for the
2D wrenches ΣWh (see Appendix A.2 for details) sensed on hand h (in local coordinates) as:

ΣWh =

[
Σ f σ2

f ,τh
σ2

f ,τh
σ2

τh

]
, Wh =

[
f ′h
τ′h

]
(11)

Note that ΣWh is a symmetric matrix obtained from sensor data and denotes the
sensitivity of the force/torque sensor’s strain gauges; i.e., the more sensitive or accurate
they are, the lower the determinant of ΣWh .

Algorithm 1 Computing final configuration from (i) knowledge of initial configuration and
(ii) wrench in final configuration using information from hand h.

Require: αh0, [r3, θ3]|t0 , [rh, θh]|t0,t and [ f ′h, τ′h]|t . (’) denotes local frame measurements
αht ← α∗([ f ′h, τ′h]|t)
∆αh ← αht − αh0

Rot←
[

R(∆αh) 0
0 1

]
. Rotation about hand

Trn←
[
I2 −r0∆αh t′(αht)

0 1

]
. Back-shifting along tangent

Φ30 ← [r3, θ3]SE2|t0 , Φh0 ← [rh, θh]SE2|t0 . Initial state
Φ′30 ← Φ−1

h0 ·Φ30

Φ′3t ← Trn · Rot ·Φ′30 . Final state
Φht ← [rh, θh]SE2|t
Φ3t ← Φht ·Φ′3t

return [r3, θ3]|t

Recall that the object position and orientation [r3, θ3]|t at time t are the outputs of
Algorithm 1 with the input parameters αh0, [r3, θ3]|t0 , [rh, θh]|t0,t and [ f ′h, τ′h]|t. To distinguish
the noisy object pose information coming from each hand h, we re-define the outputs of the
algorithm at time t as [r3,h, θ3,h]|t. To obtain these estimates, we define the Jacobian of our
algorithm as:

JWh
= ∇Wh

[
r3,h
θ3,h

]
(12)

We decompose the Jacobian JWh
to determine the covariances Σr3 and σ2

θ3
estimated

by one hand h, defined as follows:

Σr3,h = Jr3
ΣWh JT

r3
σ2

θ3,h
= Jθ3

ΣWh JT
θ3

JWh
=

[
Jr3
Jθ3

]
3×3

(13)

Given multiple hands, one can fuse these probability distributions from each hand h
assuming independence, by the product of Gaussians [26]:

Σr3 =
(

Σ−1
r3,1

+ Σ−1
r3,2

)−1
r̃3 = Σr3

(
Σ−1

r3,1
r3,1 + Σ−1

r3,2
r3,2

)
(14)



Sensors 2023, 23, 376 9 of 16

Similar equations follow to estimate the object orientation as well. We now have all
the tools required to compute the estimate for object position and orientation from two
hands and their kinematic and haptic feedback. In the next section, we validate our method
with ou experimentation.

5. Object-Pose Estimation Results

To test the proposed approach of estimating object pose in planar dual-arm manip-
ulation, a robotic test-bed was built, as shown in Figure 6a. Since the scope of this work
does not include grasp synthesis and planning, we used human haptic demonstrations of
dexterous manipulation performed using a teleoperated dual-arm robot. This choice was
in pursuit of a larger goal to understand human haptic strategies in dual-arm manipulation,
although it is beyond the scope of this work. A key advantage of our approach to estimating
the contact frame is the possibility of reconstructing the normal and tangential forces at
contact (see Figure 6b). This adds on to previous research [12] that heuristically set normal
forces to control the object pose in simulation. With our approach, we provide an experi-
mental way to generate data from human haptic demonstrations of these internal forces
of grasping. Note that although we show results for circular hands, our approach may be
extended to any parametric 2D curve that the hand may be shaped as. The teleoperation
scheme was designed with consideration for haptic transparency [27] (see Figure 6c), which
allows for the impedance control of the robots.

Follower robot 
manipulating object

Human operating  
leader robot

Force/Torque 
sensors

Motion Capture 
LEDs

(a) Experimental setup
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(b) Hand−object configurations.
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𝒒
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𝒒
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𝝉
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Impedance control

(c) Teleoperation scheme.

Figure 6. (a) Experimental setup with motion-capture LEDs mounted for kinematic tracking and
the robot hands equipped with force/torque sensors to sense haptic feedback during manipulation.
(b) Hand−object configurations and equilibrium forces during the experiment. The decomposition
of the equilibrium force into normal and tangential components at the contact point is also shown.
(c) Impedance−control−based bilateral teleoperation scheme for dual-arm manipulation human
haptic demonstrations.

Object kinematics [r3, θ3]|t were determined using a motion capture system that tracks
the LEDs mounted on the object (see Figure 6a). The motion capture system was also cali-
brated with the robot joint feedback to obtain robot-hand kinematics [rh, θh]|t for h = {1, 2}.
We utilized an oracle to guide the calibration procedure and ensure the object kinematics
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were consistent with the robot kinematics obtained using on-board sensors. The detailed
approach is presented in [28], which was also used in this work with the oracle replaced
by a highly accurate motion tracking system, i.e., PTI Phoenix Visualeyez. Furthermore,
calibrated wrenches W cal (sensed by the force/torque sensors) are used as Wh = W cal
(computing W cal from sensed wrenches is discussed in Appendix A.1). These form the
inputs to the Algorithm 1.

We selected an initial configuration where the slave robot established a firm grasp on
the object at t0 = 36 s, which also set αh0. Algorithm 1 was evaluated for all time instances
in the experiment given this initial condition. To evaluate our estimates, we propagated
the wrench uncertainty through Algorithm 1. First, the force/torque sensors were kept
static under no load conditions, and readings were taken to compute ΣWh = cov(Wh),
as detailed in Appendix A.2. Using Equations (11)−(14), we then estimated the position
and orientation, i.e., r̃3 and θ̃3 estimated at each time instant. The haptic estimated object
position and orientation closely follow the motion tracking results, as shown in Figure 7.
This validates the proposed method.
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(a) Object position - x direction
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Figure 7. (a) Object position in x direction. (b) Object position in y direction. (c) Object orientation.
All measurements are reported in frame {0}.

Discussion

Among recent works investigating in-hand/dual-arm manipulation for object han-
dling and object-pose estimation, there is a mix of approaches dealing with known and
unknown objects. Broadly, these may be classified into global and local methods; each
work focused on a different aspect of dexterous manipulation. Among promising recent
works in global sensor fusion of tactile information with vision for in-hand localization to
estimate the object pose was [29], and subsequent impedance control of object pose in [30].
Their approach evaluates (for known objects) the robot kinematics, possible collisions with
the object, contact points and forces, along with visual tracking of object features to refine
the in-hand object pose. Among the local methods, the field of blind tactile grasping con-
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trols the relative object pose (to the initial grasp) using incremental shifts after estimating
contact points via control of the relative orientation object axis to the contact normals [31].
The original idea was derived from an earlier work on the dexterous control of a circular
object [32]. Blind grasping methods use the definition of a virtual frame, which is a polygon
created by the points of contact on multi-fingered hands. These works [17,18,33,34] present
the control of the virtual frame using the standard definitions of object−hand kinematics
and dynamics in multi-fingered manipulation. However, blind grasping methods typically
rely on addition sensing modalities such as vision or tactile sensing to estimate the actual
object pose. Our work directly contributes to this requirement by providing an additional
method to sense object pose using haptic feedback during rolling contact.

Despite the example presented in this work being a polyhedral object, the key point
to note is to use parameterized curves/surfaces to represent robot and object geometries.
This is because robots interact with the world through curves and surfaces. Different
representations of geometries have different advantages. The same polyhedral object may
be approximated by a differential geometric curve that allows one to define a continuous
parameter for every point, which makes it suitable to work with continuous motions that
robots make. Our motivation in choosing this approach of utilizing moving-frame method
(originally developed in the field of differential geometry) to robots interacting with objects
through rolling contact was extensively studied in [35]. In future work, we will study the
extension of our method to objects of arbitrary geometry along these lines.

Another consideration when implementing the proposed method is the stability of
the teleoperation scheme. In this work, to avoid instability, the robot was moved slowly
enough, allowing the human to have a chance to respond to any communication delays. In
the event of communication delays, the reader is referred to a recent survey on telerobotic
time delay mitigation [36] to take note of the various predictive methods involved in
addressing such communication delays.

6. Conclusions

In this work, a haptic method for estimating the contact frame on a circular hand was
detailed. Experimental validation of the proposed haptic method was first done for one
hand by tracking the object orientation of an object under rolling contact. With this proof of
concept for one hand, an algorithm to track the object position and orientation with two
robot hands was presented. The kinematics of the dual-arm robot were detailed, along
with the mathematical formulation of rolling contact constraints in terms of (i) rotation
about robot hand and (ii) translation about the contact tangent. The final object pose
was computed as a composition of these two transformations. This algorithm can also be
extended to multiple hands, along with the possibility of a probabilistic estimate of the
object state. An experimental robotic test-bed was built which allows a human to perform
the dual-arm manipulation by teleoperation to test our proposed haptic method. The object
pose was tracked using a motion capture system with high accuracy and compared to the
pose computed using our method, which validated our approach.
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Appendix A

Appendix A.1. Calibration of Force/Torque Sensors

Before using the force/torque sensors, it is important to determine their error in
measurements. This means to compare the (i) measured forces and torques from the sensor
given a set of (ii) expected forces and torques. To generate the expected forces, a known
calibration mass is mounted on the sensor at a pre-defined location. With knowledge of
the kinematics of this calibration mass in the gravity field, one can compute the expected
forces. The calibration can then be a least-squares regression between these expected values
and the measured ones along with an estimate of the error in the prediction offered by the
regression model.

To this end, a calibration setup was built, as shown in Figure A1a, with an IMU and a
loadcell in frames {IMU} and {L}, respectively. This setup was held static against gravity
using a robot, as shown in Figure A1b, through several poses to obtain a set of expected
forces and measured forces. The IMU acceleration measurements ai ∈ R3 allow one to
compute the expected forces f̃ i = mai, where the m is the calibration mass which was
measured on a weighing scale.

{IMU}

{L}

{R}

(a) Calibration setup (b) Calibration poses

0 200 400 600 800 1000 1200 1400 1600 1800
-1

0

1
IMU data

0 200 400 600 800 1000 1200 1400 1600 1800

-5

0

5

Force/Torque sensor data

0 200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

-0.5

0

0.5
x
y
z

(c) Raw data from IMU and loadcell

Figure A1. (a) The calibration setup consisted of the loadcell. (b) The calibration setup was held by a
robot at several static poses, as shown, to obtain synchronous data from both sensors (c) The IMU
data show the true effect of gravity on the calibration rig and was used to compute the expected
forces to calibrate the forces recorded by the loadcell, also shown.

Force/torque sensors are typically built as strain gauges [37], with a (i) linear gain term
amplifying the deflection of the gauge from (ii) an equilibrium point. Thus, we modeled
our force/torque sensor similarly and aimed to regress the gain and the equilibrium bias.
To this end, the model we chose to calibrate the forces yielded the following equation for
each measurement f i:(

fxi − f0x

cx

)2
+

( fyi − f0y

cy

)2

+

(
fzi − f0z

cz

)2
= || f i|| (A1)

Here, the c = [cx cy cz]T is the gain term in the calibration of forces, and the bias
term is given by f 0 = [ f0x f0y f0z]

T , both of which are regressed from calibration data by
minimizing the following cost function [38]:

min
c, f 0

√
( fxi − f0x)2 + ( fyi − f0y)2 + ( fzi − f0z)2 ·

1− || f̃ i||(
fxi− f0x

cx

)2
+
(

fyi− f0y
cy

)2
+
(

fzi− f0z
cz

)2

 (A2)
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After these terms were determined using non-linear least squares regression (imple-
mented in MATALB using lsqnonlin), the recalibrated forces per each measurement may
be computed as:

f CAL,i = diag−1(c) · ( f i − f 0), where, diag−1(c) =

1/cx 0 0
0 1/cy 0
0 0 1/cz

 (A3)

Similarly, expected torques may be computed by τ̃i = rCOM × f̃ i. For each i-th
measurement, we have

τ̃i = τ0 + diag(g)τi, where, diag(g) =

gx 0 0
0 gy 0
0 0 gz

 (A4)

Here, τ0 is the bias term and g is the gain term. We rewrote Equation (A4) in matrix
form to stack up all measurements and regress the bias and gain:

τ̃i = Ai

[
g

τ0

]
, where, Ai = [diag(τi) I3] (A5)

A least-squares regression estimates both g and τ0, which are used to calculate the
re-calibrated torques τCAL,i. Together with f CAL,i, the re-calibrated wrench is composed as:

WCAL,i =

[
f CAL,i
τCAL,i

]
where, τCAL,i = τ0 + diag(g)τi (A6)

Appendix A.2. Noise in Wrenches Sensed on Both Hands

In this work, we used the ATI Mini40 sensor with SI-80-4 calibration specification.
According to the datasheet [37], the resolutions offered by the sensor on channels fx, fy and
τz (the sensors used in our experiment) are shown in Table A1:

Table A1. Comparison of experimentally obtained standard deviation (SD) with sensor resolution
reported in the data-sheet.

Quantity Name Symbol Value and Units

Resolution of fx res fx 0.02 N
Resolution of fy res fy 0.02 N
Resolution of τz resτz 0.0005 Nm

SD of fx for hand 1 σfx,1
0.0034393 N

SD of fy for hand 1 σfy,1
0.0057792 N

SD of τz for hand 1 στz,1 4.3925 × 10−5 Nm

SD of fx for hand 2 σfx,2 0.019268 N
SD of fy for hand 2 σfy,2 0.01733 N
SD of τz for hand 2 στz,2 0.00026706 Nm

To validate the sensor accuracy, we placed the Mini40 loadcells used on both hands
for the dual-arm manipulation under no-load conditions and recorded data from them for
10 s at 1000 Hz. These data are shown in Figure A2 for both sensors. The covariance matrix
Wh was computed from this. They are reported next to detail the noise levels in individual
wrench channels, i.e., fx, fy, τz.
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Figure A2. The force/torque sensor on both robot hands was kept static under no-load conditions,
and data were collected for 10 s at 1000 Hz. The signals are portrayed here, along with the associated
standard deviation per signal computed from the covariance matrix ΣW h .

The covariance of the force/torque sensor on the left hand is:

ΣW1 =

1.1829× 10−5 1.9456× 10−6 4.261× 10−9

1.9456× 10−6 3.3399× 10−5 6.4659× 10−8

4.261× 10−9 6.4659× 10−8 1.9294× 10−9

 (A7)

The covariance of the force/torque sensor on the right hand is:

ΣW2 =

 0.00037124 4.1716× 10−5 −1.7737× 10−6

4.1716× 10−5 0.00030033 3.4014× 10−7

−1.7737× 10−6 3.4014× 10−7 7.1323× 10−8

 (A8)

The square roots of the diagonal elements of these covariance matrices represent the
standard deviation of the sensors, reported in Table A1 and also in Figure A2 (in red). The
reported standard deviations in wrench sensing (especially for the right hand) correspond
closely to the sensor resolution reported in Table A1. It may also be noted that the left-hand
sensor is five times less noisy than the right-hand one, both for forces and torques. We
identify the study of uncertainty in kinematics of object pose estimated from the wrench
uncertainties as future work.
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