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Abstract: Teams of mobile robots can be employed in many outdoor applications, such as precision
agriculture, search and rescue, and industrial inspection, allowing an efficient and robust exploration
of large areas and enhancing the operators’ situational awareness. In this context, this paper describes
an active and decentralized framework for the collaborative 3D mapping of large outdoor areas
using a team of mobile ground robots under limited communication range and bandwidth. A
real-time method is proposed that allows the sharing and registration of individual local maps,
obtained from 3D LiDAR measurements, to build a global representation of the environment. A
conditional peer-to-peer communication strategy is used to share information over long-range and
short-range distances while considering the bandwidth constraints. Results from both real-world and
simulated experiments, executed in an actual solar power plant and in its digital twin representation,
demonstrate the reliability and efficiency of the proposed decentralized framework for such large
outdoor operations.

Keywords: scene reconstruction; cooperative mapping; point cloud registration; multi-robot system;
3D mapping; communication constraint

1. Introduction

The use of outdoor mobile robots for real-world applications, such as search and
rescue [1,2], logistics [3], agriculture [4], industrial inspection [5], surveillance and mainte-
nance [6,7], have increased rapidly over the past several years. This is due to the capabilities
of mobile robots to assist humans in dangerous, repetitive or time-consuming tasks. A
successful robot navigation for such applications relies primarily on three aspects: mapping,
localization, and trajectory planning. Robotic mapping generates a map by deciphering the
spatial information of the environment acquired through the robot’s sensors. Commonly,
mapping is carried out first to understand the environment and enhance the subsequent
localization and motion planning tasks. However, for many applications, mapping must
be executed frequently to continuously acquire a complete situational awareness and to
support reasoning and decision making in dynamic environments.

Many outdoor robotic automation applications, such as solar farm inspection and
maintenance [8–10], disaster response [11–13], agriculture [14] and city re-planning [15,16]
need to cover very large areas of 1–40 acres. Traversing such expansive environments with
a single mobile robot is very time-consuming or even impractical. In addition, conventional
localization methods based only on GPS, odometry and IMU are not always reliable for such
long-range operations. The uneven, rough, and unstructured nature of rural environments,
such as in solar farms and disaster-struck regions, introduce additional localization errors.
In such scenarios, a multi-robot system can be a suitable alternative to obtain full coverage
of the area and execute tasks in a collaborative manner, resulting in a more complete and
time-efficient solution. In regards to mapping, a multi-robot system can rapidly explore the
environment in parallel and from different angles, to generate more accurate maps in less
time [17] and to enhance the localization accuracy in challenging environments.

In general, a multi-robot mapping framework will require three main elements:
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1. A mission-planning unit to coordinate robots to explore the environment.
2. A communication policy to share the map generated by each robot.
3. A matching and merging method to integrate individual maps into a global map.

In practice, mapping large outdoor 3D environments with a team of mobile robots is
challenging due to the communication limitations and the high volume of sensor data that
need to be shared and processed. High-capacity wireless communication routers commonly
available to robots, such as Wi-Fi modules, typically have a limited range of about 90 m or
less in open outdoor environments. On the other hand, long-range wireless devices, such as
the Xbee-Pro RF module, can provide a large coverage of up to several kilometers but have a
very limited bandwidth of about 200 kbs, which is not suitable for sharing high volumes of
sensor data. Furthermore, the employment of 4G mobile technologies is not always possible
due to the lack of coverage in many rural areas or in disaster-response scenarios. Hence, it
is essential to consider such communication constraints while developing a multi-agent
mapping algorithm.

In this work, we present an online, fully distributed and active framework for a team
of mobile ground robots, equipped with 3D LiDAR sensors, for mapping and situational
awareness in large outdoor environments. We develop our solution specifically for the
application of inspection and surveillance of large multi megawatt solar plants, while
considering the strict communication constraints that exist in terms of range and bandwidth
in the commonly available wireless technologies. However, the proposed framework can
be applied to many other outdoor exploration problems, such as search and rescue or
precision agriculture. The outline of the paper is as follows: Section 2 provides the literature
review on 3D mapping and localization methods and discusses the various techniques and
limitations of multi-agent cooperative mapping and point cloud registration. The proposed
distributed multi-agent framework is discussed in Section 3. The experiments and results
are presented in Section 4. Finally, Section 5 concludes the findings and pitches possible
improvements to the proposed method.

2. Literature Review

Over the past decade, 3D sensors have emerged as revolutionary data acquisition devices.
In robotics, 3D sensory information has been used for mapping, localization, obstacle avoid-
ance, and scene recognition. Omnidirectional LiDARs [18–21], RGBD cameras [22–25], and
uni-directional LiDARs [26–28] have found applications in the field. Three-dimensional sensor-
based algorithms, such as LOAM [18,19,21], have become the norm for an out-of-the-box
simultaneous localization and mapping algorithm. However, the computational complexity
of 3D algorithms and the size of 3D sensor data make it challenging to achieve scalability.
Due to these reasons, SLAM (simultaneous localization and mapping) algorithms [29–31] are
not commonly preferred with 3D sensors, especially in large areas [32,33]. Methods of point
cloud compression [34] and low-cost registration [35,36] are promising endeavors but require
prior training. The considerable size of 3D data further imposes constraints on a decentral-
ized multi-agent mapping system, making it challenging to share observations continuously.
Hence, it is essential to transfer only the required features.

Point clouds represent rigid body data structures, typically generated from LiDAR
sensors. The process of aligning two point clouds is called point cloud registration. The
process results in a rigid body transformation matrix that aligns one point cloud in the
frame of another. The registration techniques [37] are categorized into local and global
registration. Global registration [38–41] is ideal when the initial transformation estimate
has yet to be discovered, and is perfect when the point clouds are acquired from spa-
tially distant frames of references. When the initial transformation is known, a quick
refinement can be acquired from a local registration technique. Local registration tech-
niques, such as iterative closest point (ICP) [42,43], normal distribution transform [44],
point-to-plane [45–47], color-based [48,49] or class-based methods [50,51], can be compu-
tationally expensive if the initial transformation is inaccurate. For multi-agent systems,
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where each agent has a different frame of reference, global point cloud alignment is refined
by a local point cloud registration technique.

A multi-robot system relies on a consistent network for the exchange of observations
and data. If the system is not centralized, the agents rely on peer-to-peer networking.
However, these networks can be classified into two subcategories: long-range and short-
range networks. Long-range networks, such as low power wide area (LPWA) [52,53]
and long-term evolution machine type communication (LTE-M) [54] provide networking
solutions for large areas. The rural area coverage analysis [55] for sigfox (30 km at 12 kbps),
lora (15 km at 290 bps–50 kbps), LTE-M (10 km at 200 kbps–1 Mbps) showcases the
constraints imposed on the data size. The Xbee-PRO RF modules [56] are commonly used
for outdoor robot applications allowing a long-range radio-frequency (RF) transmission
that can go up to several kilometers, with a limited bandwidth of (200 kbps). Short-range
communication, such as Wi-Fi (100 m at 15 Mbps), are ideal for the transfer of large size data.
Thus, for a distributed multi-agent mapping system, relying on peer-to-peer 3D sensory
information transfer, covering a wide area (≥1 km2) requires both short- and long-range
communication systems.

Multi-agent SLAM poses many different challenges, such as inter-agent cooperation
and communication [57], distributed sensor fusion [58] and collaborative planning [59].
These challenges are further enhanced when the sensors share large information packets,
such as 3D data [58]. These challenges can be relaxed in a centralized system, assisted
with short-range communication devices with high bandwidth [60,61]; however, this is
not a realistic solution for large outdoor applications. In a communication-constrained
environment [57,62–65], prior planning [66] to meet and share information can relieve stress
on communication channels. However, these periodic communications can be challenging
to realize when the area to be covered exceeds 1 km2, especially considering the overall
energy expended.

The major contribution of this article is an end-to-end active distributed homogeneous
framework for the large-scale 3D mapping of environments. We incorporate a global
peer-to-peer small bandwidth long-range network along with a short-range peer-to-peer
network to allow a framework that can go beyond the range limits of a Wi-Fi network.
The proposed approach generates a global map in each agent’s frame and helps to localize
agents within this map. Conditionally, the framework heavily filters point clouds to enable
long-range transmission, which is then used for localization and mapping. This conditional
approach ensures that only the necessary communication bandwidth and computation are
used. This relative localization can also be used for improving path planning, exploration,
and mapping. The framework is developed, to tackle the communication constraints,
imposed in large-area mapping.

3. Methodology

A set of Na agents, R, is tasked to explore and map the environment. Each agent, Ri
(∀Ri ∈ R), is equipped with a 3D LiDAR sensor, a GPS receiver, an IMU, and an odometer
sensor. The LiDAR sensor has a maximum range of Lmax. Considering possible GPS drifts,
odometer slippage, and electromagnetic interference, each agent has an instance of an
extended Kalman filter (EKF) to fuse the sensory information from GPS, IMU and odometer
and obtain a more reliable estimate of the global localization Gi in the geographic coordinate
system. An instance of the LiDAR odometry and mapping (LOAM) [18] is used on each
agent to locally map the surrounding environment from the Ri perspective and to locate
the agent within the map. This egocentric LOAM localization is represented in the form of
an odometry message Oi, in the sub-map Mi, of agent Ri. Each agent is equipped with a
short-range and a long-range wireless transceiver. The short-range transceiver is a Wi-Fi
module that allows the peer-to-peer transfer of large map data, which is only activated
when two agents are within distance Cmax of each other. The long-range transceiver is an
RF module that can ensure long-range transfer of very small quantities of data, which is
used only to share odometry, GPS or heavily down-sampled 3D data.
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Figure 1 portrays an instance of the proposed fast decentralized multi-agent active
mapping framework, executed on agent Ri. A separate instance of the framework is
executed on each agent of R. This ensures an active decentralized framework for multi-
agent 3D mapping. The framework has two modules: a continuous update module and
a conditional update module. The continuous update module is executed with every
new sensory update. In this module, an instance of LOAM generates the egocentric
odometry Oi and the map Mi. Added to this, an instance of extended Kalman filter fuses
the sensory data from GPS, IMU and odometry to output the global localization estimate,
Gi. A ball tree generator, as explained in Section 3.1, generates a global ball tree Bi that
keeps track of Oi and Gi throughout time and at specified distance intervals. Whenever
a new tree node is added, it is also shared with all other agents using the long-range
transmitter. Minimal proximity search, detailed in Section 3.2, is used to compute the
proximity of an incoming tree node from an agent Rj with all nodes of the ball tree Bi.
The conditional update module is executed when the result of the minimal proximity
search is true.
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Figure 1. Proposed framework deployed in agent Ri.

Conditional update module consists of several computationally intensive processes.
Spherized point cloud registration, in Section 3.3, describes down-sampling, segmentation
and nearest-neighbor sampling of the Mi, to generate a spherized map Ms

i. Ms
i, which

is considerably reduced in size but abundant in features, is then transmitted using the
long-range transmitter to the respective agent Rj, for point cloud registration. The resultant
transformation is then used for merging the complete maps once the agents are close
enough to transfer the complete maps via the short-range transceiver.

3.1. Global Ball Tree Generator

A ball tree is a binary tree data structure, that is used for data partitioning to ensure
fast data query [67]. When an agent, Ri, is initialized, a ball-tree, Bi, is instantiated with
Gi(t = 0) as the root node. The node n of Bi is represented as Bi(n) and the latest node
added is Bi(end). The pair-wise distance used for constructing Bi is the Haversine distance.
The Haversine distance represents the angular distance between two points on the surface
of a sphere. Ball trees with Haversine distance are shown to result in fast nearest-neighbor
look-up for GPS datasets [68,69]. A node Bi(n), inserted at time instant T, consists of the
Gi(t = T) and is tagged with the corresponding LOAM-odometry message Oi(t = T). The
framework continuously monitors the LOAM-odometry Oi and iteratively calculates the
distance between the current odometry Oi(t = T) with that of the last node Bi(end). If
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this distance is greater than a predefined value, Dthresh, a new node is added to Bi, with
Gi(t = T) and Oi(t = T).

The process, called global ball-tree generator, is described in Algorithm 1, which is
continuously run by each agent in R. Each node of the ball-tree has a global localization
estimate Gi, which is mapped with the corresponding LOAM-odometry message stored
at that time instant. These pair-wise data are essential to link the egocentric localization
of Ri with the global frame. Alternatively, we could georeference the point cloud, for
each iteration of LOAM, which requires an accurate initial global localization estimate [70]
and would be computationally costly [71,72]. The intermittent method proposed in this
work eases the computational complexity. It also alleviates the dependence on a single
initial estimate.

Algorithm 1 Global ball-tree generator for agent Ri.

Input: Gi(t), Oi(t), Dthresh, Bi

Initialize Bi = ADD-NODE(Gi(t = 0), Oi(t = 0))

while mapping do
Odom(Current) = Oi(t = T)
Odom(Last− Node) = Bi(end)→ O
if ‖Odom(Current)−Odom(Last− Node)‖2 ≤ Dthresh then

Bi = ADD-NODE(Gi(t = T), Oi(t = T), Bi)
end if

end while

procedure ADD-NODE(G, O, B=Balltree())
B.push(G)
B(end)→ O
return B

end procedure

3.2. Minimal Proximity Search

In a communication-constrained environment, it is essential to ensure that the band-
width is used for the most vital transmissions. The process explained in this section queries
for possible spatial overlaps in the global frame. Minimal proximity search transmits every
new node added to the ball tree Bi(end) and compares it with the ball trees of other agents
in R for proximity within the global frame.

Every new node added to Bi of agent Ri is shared over the long-range transmitter,
with the remaining agents. The minimal bandwidth required to transfer the node
Bi(end) makes it ideal for a communication-constrained environment. With no loss of
generality, an agent Rj(∈ R, ∀i 6= j) has its own instance of LOAM, EKF and global
ball-tree generator, resulting in its own sub-map Mj, egocentric odometry Oj, global
localization estimate Gj, and global ball-tree Bj. Agent Rj processes the incoming node
information from Ri by carrying out a nearest-neighbor search in Bj. If the global
localization estimate Gj entry of the resultant nearest-neighbor node, Bj(Neighbour), is
within a certain threshold(ri), of Bi(end), the node Bj(Neighbour) is shared with Ri. This
is depicted in Algorithm 2.
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Algorithm 2 Minimal proximity search by Rj.

Input: Bi(end), Bj, rij

while mapping do
Neighbor=Bj.NearestNeighborSearch(Bi(end).G)
if Neighbor.distance ≤ rij then

return Bj(Neighbor)
end if

end while

In an effort to minimize the effect of GPS drifts, the distance threshold, ri, is a bounded
dynamic distance threshold. Equation (1) ensures that ri is bounded within predefined
values (rmin,rmax) and proportional to the uncertainty Ci

ek f of the agent Ri EKF estimate.

ri =


rmax if Ci

ek f · ri ≥ rmax

rmin if Ci
ek f · ri ≤ rmin

Ci
ek f · ri else

(1)

3.3. Spherized Point Cloud Registration

There exists a transformation, Tij, that aligns Mj with Mi of agents Rj and Ri. This
transformation can be achieved by registering the map Mj with the map Mi. However,
the sizes of Mi and Mj are rapidly increasing as the Ri and Rj individually explore and
map the environment, from their perspective. Sharing such large data over a long-range
bandwidth-limited communication channel will lead to a high network latency and data
loss. Hence, this section describes a strategy to only share small sampled subsets of the
maps, and only for the regions that are expected to have sufficient overlapping features
for registration.

With no loss in generality, let us assume that for two agents, Ri and Rj, the minimal
proximity search was successful. A successful minimal proximity search (Section 3.2) gives
an assurance that, at two different time instances, the Ri and Rj are spatially close, in
the global frame. The minimal proxy search results in two nodes, nodei and nodej, of Bi
and Bj, that are globally close: Bi(nodei).O and Bj(nodej).O gives the egocentric odometry
measurement of Ri and Rj. For lucidity, we will refer to Bi(nodei).O and Bj(nodej).O as Li
and Lj, respectively.

A Euclidean ball, of radius ro, is generated in both Mi and Mj, centered at Li and Lj,
respectively. This method of filtering is hereby referred to as spherization. The points
within the sphere are sampled and used for point cloud registration. Since they represent a
fraction of the overall map, the size is considerably reduced. Added to this, the sampled
map, Ms

i and Ms
j , have features that are bound to overlap. This is because the sampled

map was generated when the agents were spatially close in the global frame. Since point
clouds can be considered a rigid body of particles [73], we can conclude that the Tij that
successfully aligns Ms

i with Ms
j also aligns Mi with Mj.

Spherized maps are transmitted over the long-range transmitter to the respective
agents. For a seamless transmission on the constrained bandwidth channel, the spherized
maps have to be less than 25 kilobytes. Thus, spherization is preceded by downsampling,
ground-plane removal and outlier removal to bring down the overall size of the point
cloud to the prerequisite limit. Each agent generates the spherized maps in its own frame
of reference. These frames of reference will be separated by several meters, which is
not ideal for a local point cloud registration algorithm. We use a global registration
algorithm to align these two spherized point clouds roughly. The transformation matrix
acquired from the global registration technique is then used to initialize the local point cloud
registration. Local point cloud registration helps in refining the initial rough alignment.
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The local point cloud registration results in the transformation, Tij, and the RMSE, Eij, of
all inlier correspondences.

The RMSE [45], in the context of point cloud registration, refers to the root mean square
value between the corresponding points of the two point clouds. For Nc correspondences,
between Ms

i and Ms
j , the RMSE for transformation, Tij, can be calculated by Equation (2). ci

and cj refer to all the correspondences in Ms
i and Ms

j , respectively. The transformation, Tij,
that minimizes Eij, across all executions of Algorithm 3 is chosen for the full map alignment.

RMSE =

√
∑Nc

n=1 ‖Ms
j (c

n
g)− Tij ∗Ms

j (c
n
m)‖2

Nc
(2)

In the proposed implementation, the global registration is carried out using RANSAC
(random sample consensus) [74]. The FPFH (fast point feature histograms) feature [75],
a 33-dimensional vector that encapsulates the local geometric property, for each point, is
calculated. RANSAC searches for these features to make a fast and approximate alignment.
For local registration, we are aware that the process can be further enhanced by sharing
only the features [76,77] rather than the entire point clouds and subsequently using feature-
based registration methods [45,50,51]. We could also implement a semantic mapping
technique [20,21] for acquiring a segmented map before spherization. However, we
use point-to-plane ICP [46] to keep the overall complexity and tunable parameters to
a minimum.

Algorithm 3 Spherized point cloud registration in agent Ri.

Input: Mi, Ms
j, Bi, rs

ij

if Minimal-Proximity-Search(Bi(end), Bj, rs
ij) is True then

Ms
i = Spherization(Mi,Bi(end).O,rs

ij)
Long-range-transmission(Ms

i) -> Rj
Tij = Global-Point-Cloud-Registration(Ms

i,Ms
j)

Tij,Eij,Cij = Local-Point-Cloud-Registration(Ms
i,Ms

j)
if Eij<Eu

ij then
Eu

ij=Eij
Tu

ij=Tij
return Tu

ij
end if

end if

procedure SPHERIZATION(M, O, r)
M = Outlier-Removal(Ground-Plane-Removal(Downsample(M)))
Neighbors = M.NearestNeighborSearch(centre = O,radius = r)
Ms = M(Neighbors)
return Ms

end procedure

4. Experiments and Results
4.1. Real World Experiments

We carried out our experiments with two Jackal robots (shown in Figure 2a) (named J1
and J2), from Clearpath Robotics, on an actual solar farm (total area approximately 1 km2,
depicted in Figure 3a). The two robots were equipped with a Velodyne Puck (VLP-16)
sensor that has 16 layers of infra-red (IR) lasers, a horizontal field of view of 360◦, a vertical
field of view of 30◦ and a speed of up to 300,000 data points per second. A Pixhawk 2.1 cube
IMU and a Here+ GPS receiver were also added to each robot.
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(a) (b)
Figure 2. Real-world experimental setup. (a) Clearpath Jackal. (b) Path taken.

(a) (b) (c)
Figure 3. Experimental setup: Solar farm, corresponding 3D map of solar farm obtained from
LOAM [18] and digital twin. (a) Aerial view. (b) 3D point cloud. (c) Digital Twin.

The global path of the robots are planned beforehand to explore the regions of interest,
through visiting a set of predefined GPS waypoints. The plans also include some time
instances where the robots are within communication range for the sharing of map infor-
mation between agents. The global paths taken by the robots are presented in Figure 2b,
along with the area in which the agents were within short-range communication distance
and the region that had a successful minimal proximity search outcome. The values of
(rmax, rmin) were set to (20 m, 30 m). Figure 4 represents the various stages of the framework
during the experiment. Each agent’s LOAM initialization (shown in Figure 4a,d) creates an
ego-centric frame of reference. Once the successful minimal proximity search is achieved,
the down-sampled point cloud spheres are shared between both agents. These are then
registered in the respective frames of reference, as portrayed in Figure 4b,e. Finally, when
the agents are close enough for short-range communication, the latest maps generated by
J1 and J2 are shared and aligned, as depicted in Figure 4c,f.

4.2. Simulated Experiments

The simulations were carried out on a digital twin world (a 3D Gazebo model) of
the actual solar farm used in the real-world experiments, as shown in Figure 3a. The
simulated environment had a total area of about 1 km2. The digital twin was purely used
for simulation purposes, to further test the collaborative 3D scene reconstruction framework
with multiple agents, and was not linked to real-time sensory data from the actual solar
farm. The complete ground truth point cloud was acquired by converting the 3D Gazebo
mesh model (depicted in Figure 5b) to a 3D point cloud model (depicted in Figure 5c).
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(a) (b) (c)

(d) (e) (f)
Figure 4. Real-world experiment—the various phases of the proposed method for agent J1 (above)
and J2 (below). The blue and red points correspond to the point clouds generated by J1 and J2,
respectively. (a,d) LOAM initialization; (b,e) minimal proximity search was successful, an agent
receives a spherized down-sampled map from the other agent and registers this in its own map;
(c,f) each agent receives the full map from the other agent, as they are within short communication
range. The agent aligns the incoming map with its own map using the transformation acquired from
the spherized registration.

(a) (b) (c)
Figure 5. (a) Way points utilized for navigation, (b) 3D mesh of the digital twin, (c) 3D point cloud
generated from the 3D mesh.

We initially performed a brief parameter analysis to select the values for maximum
LiDAR ranges, Lmax. Figure 6 details three maps, generated with three different Lmax
values, by an agent following the same path in between the solar panels of the digital twin
world (Figure 3c). We can note that for Lmax = 20 m (in Figure 6a), LOAM is unable to
properly find the correspondences that are further away. Due to this, the reconstructed
panels are incorrectly curved. This issue is not seen for Lmax = 40 m (in Figure 6b) and
Lmax = 80 m (in Figure 6c). In an effort to keep the computational load to a minimum, Lmax
was selected as 40 m for the experiments.
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(a) (b) (c)
Figure 6. Maps, from the same viewpoint, generated with varying maximum LiDAR ranges, Lmax.
(a) Lmax = 20 m. (b) Lmax = 40 m. (c) Lmax = 80 m.

To validate the robustness of the proposed algorithm to 3D-laser errors, we induced
a Gaussian error in the simulated VLP-16 sensor. The red circles in Figure 7 map the
correspondences between the ground truth and the 3D map generated by a single agent.
It can be noted that, owing to LiDAR errors, there is a clear mismatch in the generated
map. The resultant incorrect 3D reconstruction is evident in the encircled areas. Such
reconstruction errors, across each mapping agent, is bound to make the eventual point
cloud registration prone to errors. However, the cooperative framework was shown to be
robust against such individual reconstruction errors and could still merge multiple maps
with a good accuracy.

Figure 7. The effect of erroneous LiDAR measurements. The red circles represent the expected
correspondences between the generated map and the ground truth. (Left): The LOAM-mapping
result of an agent. (Right): The ground-truth 3D model.

We averaged the results over 15 simulations of varying number of UGVs (Na = 2
to 5 agents). For comparing the robustness of the proposed method to the noise in the
LiDAR data and resultant LOAM mapping, we executed the experiments with different
LiDAR rates, f of 10 hz and 5 hz. Mapping at a lower laser frequency, for the same agent
speed, is relatively more error prone. Similar to the real-world experiment, navigation
is carried out in between predefined waypoints, shown in Figure 5a. These waypoints
are grouped as rows and divided uniformly amongst Na. The selected path covered all
possible communication conditions and allowed validation of the end-to-end functionality
of the proposed framework. For Na = 3, the distribution of agents and the path taken by
each agent can be seen in Figure 8b. Each color in the point cloud, shown in Figure 8a,
represents the sub-map obtained by a single agent. Note that, the ground plane was
removed for ease of visualization. The errors in individual LOAM-maps can be evidently
seen as artifacts in Figure 8a. The framework is robust to these errors and is able to merge
the maps irrespectively.
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(a) (b)
Figure 8. The results of an isolated iteration of simulated experiments with Na = 3. (a) Merged map.
(b) Path taken.

For performance analysis of the 3D scene reconstructions, we register the resultant
merged map (Mm) from the simulated UGVs against the ground truth 3D model (Mg). This
point cloud registration results in a transformation matrix, Tmg, and a set of corresponding
points, cg and cm, in Mg and Mm, respectively.

4.2.1. RMSE Analysis

Figure 9a plots the minimum–maximum–mean RMSE values for various number of
agents. We can note that there is a decline in the overall RMSE values with the increase in
the number of agents, Na. The mapping error, infused by the LiDAR noise, accumulates
over time. This is spread across the number of agents involved and thus the overall decline
in RMSE is expected, provided the map merging is accurate. This decline in RMSE implies
a successful fusion of each agent’s map.
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(a)
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F vs Na for varying f

f = 10hz

f = 5hz

(b)
Figure 9. RMSE and fitness plots for varying number of agents Na across different rates. (a) RMSE.
(b) Fitness.

4.2.2. Fitness Analysis

Fitness( F ) property of a point cloud registration gives us the overlapping area of the
two point clouds. For our scenario, where the target point cloud, Mg has Ng points, F is
given by Equation (3).

F =
Nc

Ng
(3)
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Since Mg is constant throughout the analysis, a high fitness score implies an increase in
the number of correspondences. In Figure 9b, we can note that with the increase in Na, there
is a steady increase in F , (and thereby Nc), implying that the merged point clouds have
more point-to-point correspondences with the Mg. This can be attributed to the successful
blending of the map of each agent.

4.2.3. Covariance Analysis

The Fischer information matrix, I , that is acquired as a result of the point cloud registra-
tion of Mg on Mm, characterizes the confidence in the registration process. The inverse [78]
of I gives the covariance matrix, C, of the point cloud registration
process [74,79,80]. C gives us the uncertainties involved in the 6 degrees of freedom.
We utilize the determinant of C for our analysis of the overall uncertainty. Figure 10a
showcases the healthy decline in the value of the determinant of C. This implies that the
point cloud registration is more confident in its result, with the increase in Na. The reduced
covariance or the increased confidence is the result of successful map merges.

The results depicted in Figures 9 and 10 further showcase the robustness of the
proposed algorithm. The behavior exhibited by the agents at f = 10 hz is the similar to
that of f = 5 hz. In other words, the agents showcase a decline in RMSE and det(C) and
an increase in F with the increase in Na. Though there is a performance degradation in
f = 5 hz with respect to f = 10 hz, this is expected, owing to the increased mapping error
from LOAM.
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(b)
Figure 10. Uncertainty and time plots for varying number of agents Na. (a) det(C). (b) Time taken.

4.2.4. Time Analysis

Trivially, the time taken to map the whole map should decline linearly with Na. For all
runs of the simulation, the homogeneous agents have the same set of waypoints to visit.
Figure 10b showcases the time taken to complete the whole map. Mapping is deemed to
be complete when all agents have completed Algorithm 3, with Eu ≤ 0.4. This threshold
gives us a reliable transformation in between maps of different agents. As is evident in
Figure 10b, there is an expected decline in time taken; however, this is not linear. This is
because of the time taken to achieve a successful spherized registration with low Eu.

4.2.5. Density

The density, at a point(p) in a point cloud, is the number of points around p, within a
sphere of radius, rd. The density at point p, D(p), is given by Equation (4). Density can be
roughly considered analogous to the resolution of an image. Thus, a denser point cloud is
a more detailed point cloud.

D(p) =
Number of points within sphere(centre=p,radius=rd)

4
3 π · (rd)3

(4)
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For analysis, we average the density of every point in the merged point cloud [81].
The spherical radius rd is chosen as 1 m. The results are shown in Figure 11a. We can
see a healthy increase in the average density with Na. This is attributed to the increased
overlapping areas. The overlapping areas have unique points from different agents during
the merging of individual point clouds. This in-turn increases the number of points per
unit area. Added to this, though trivial, it is evident that the density is higher at f = 10 hz
than f = 5 hz. This is due to the increase rate of the LiDAR data acquisition. Figure 11b
depicts the surface density distribution across each point in the point cloud, generated with
3 agents (represented in Figure 8a). Figure 11c depicts the histogram of surface density
of Figure 11b. We can note that higher surface density is rare and achievable primarily in
areas of overlap.

2 3 4 5

Na

1.8

2.0

2.2

2.4

2.6

D

D vs Na for varying f

f = 10hz

f = 5hz

(a) (b) (c)
Figure 11. (a) The variation of mean density of merged map over Na across different rates, (b) the
surface density distribution across the point cloud in Figure 8a, (c) The histogram of surface density
distribution for the point cloud in Figure 8a.

5. Conclusions and Future Work

This article proposes an active, distributed, homogeneous multi-agent mapping and
localization framework. The distributed framework enables conditional long-range and
short-range peer-to-peer communication for small and large data. The proposed method
is tested on a real-world solar farm with two UGVs and its digital twin with multiple
agents. The results showcase the robustness of the proposed algorithm to independent
mapping errors. However, we acknowledge that using direct point cloud registration in
the framework can be error-prone, with increased LiDAR errors. Additionally, a spherized
registration is robust to global localization errors up to a few meters. Thus, noisy EKF
estimates, due to large GPS or magnetic interference, might lead to incorrect map merges.
For future work, we aim to extend the framework to a heterogeneous team of agents
with a heterogeneous set of sensors. We also plan to incorporate an optimal waypoint
planning module, considering the constraints in communication and each agent’s battery
life. Currently, we are conducting an in-depth parameter study to understand and optimize
the framework.

Author Contributions: Conceptualization, J.L., M.B. and P.U.L.; methodology, J.L., M.B. and P.U.L.;
software, J.L.; validation, J.L.; formal analysis, J.L., M.B. and P.U.L.; investigation, J.L., M.B. and
P.U.L.; resources, J.L., M.B. and P.U.L.; data curation, J.L., M.B. and P.U.L.; writing—original draft
preparation, J.L., M.B. and P.U.L.; writing—review and editing, J.L., M.B. and P.U.L.; visualization,
J.L.; supervision, M.B. and P.U.L.; project administration, M.B. and P.U.L.; funding acquisition, J.L.,
M.B. and P.U.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a doctoral grant from Fundação para a Ciência e a Tec-
nologia (FCT) UI/BD/153758/2022 and ISR/LARSyS Strategic Funding through the FCT project
UIDB/50009/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2023, 23, 375 14 of 17

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EKF Extended Kalman Filter
EMI Electromagnetic Interference
LOAM Lidar Odometry and Mapping in Real Time
IMU Inertial Measurement Unit

References
1. Basiri, M.; Gonçalves, J.; Rosa, J.; Bettencourt, R.; Vale, A.; Lima, P. A multipurpose mobile manipulator for autonomous

firefighting and construction of outdoor structures. Field Robot 2021, 1, 102–126. [CrossRef]
2. Karma, S.; Zorba, E.; Pallis, G.; Statheropoulos, G.; Balta, I.; Mikedi, K.; Vamvakari, J.; Pappa, A.; Chalaris, M.; Xanthopoulos, G.;

et al. Use of unmanned vehicles in search and rescue operations in forest fires: Advantages and limitations observed in a field
trial. Int. J. Disaster Risk Reduct. 2015, 13, 307–312. [CrossRef]

3. Limosani, R.; Esposito, R.; Manzi, A.; Teti, G.; Cavallo, F.; Dario, P. Robotic delivery service in combined outdoor–indoor
environments: technical analysis and user evaluation. Robot. Auton. Syst. 2018, 103, 56–67. [CrossRef]

4. Åstrand, B.; Baerveldt, A.J. An agricultural mobile robot with vision-based perception for mechanical weed control. Auton. Robot.
2002, 13, 21–35. [CrossRef]

5. Lu, S.; Zhang, Y.; Su, J. Mobile robot for power substation inspection: A survey. IEEE/CAA J. Autom. Sin. 2017, 4, 830–847.
[CrossRef]

6. Capezio, F.; Sgorbissa, A.; Zaccaria, R. GPS-based localization for a surveillance UGV in outdoor areas. In Proceedings of the
Fifth International Workshop on Robot Motion and Control, Dymaczewo, Poland, 23–25 June 2005; pp. 157–162.

7. Montambault, S.; Pouliot, N. Design and validation of a mobile robot for power line inspection and maintenance. In Proceedings
of the 6th International Conference on Field and Service Robotics-FSR 2007, Chamonix Mont-Blanc, France, 6–12 July 2007;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 495–504.
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