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Abstract: This paper investigates the problem of elliptic localization in the absence of transmitter
position. An efficient iterative method is developed to jointly evaluate the target and transmitter
positions. Using the measurement information from the indirect paths reflected from the target
and the direct paths between the transmitter and receivers, a non-convex maximum likelihood
estimation (MLE) problem is formulated. Owing to the non-convex nature of the issue, we apply the
majorization–minimization (MM) principle to address the MLE problem, which iteratively minimizes
a convex surrogate function instead of the original objective function. Moreover, the proposed MM
method is further extended to tackle a general scenario where both multiple unknown transmitters
and receiver position errors are considered. Finally, numerical simulations demonstrate that the
proposed MM method outperforms the state-of-the-art methods.
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1. Introduction

Target localization has been a prevalent research topic with numerous applications
in wireless sensor network (WSN) [1–3], communications [4], radars [5–7], and many
others. A straightforward method to locate a target is direct localization [8], in which
the position is determined directly from the received signals. The direct approach bears
expensive computational complexity due to the multidimensional grid search. Hence,
various types of indirect approaches have been presented based on different types of
measurement information. The typical measurement information includes time of arrival
(TOA) [9,10] , time-difference of arrival (TDOA) [11–13], received signal strength (RSS) [14],
arrival of angle (AOA) [15], and their joint methods [16–18]. Among them, localization
based on time information holds great research significance owing to its high-positioning
accuracy. Elliptic localization is a time-based positioning model that is superior to some
typical localization models, such as TOA-based and TDOA-based models [19]. In this
model, the transmitter sends out a radar wave and several synchronous receivers collect
the signal reflected from the interest target to determine its position. In addition, when the
transmitter position is unknown, the signal received directly from the transmitter is also
used to improve the positioning performance. Such a multistatic positioning approach [20]
can offer more flexibility and better performance than the monostatic counterpart [21].
Hence, elliptic localization has been widely applied in multiple-input-multiple-output
(MIMO) radars [22]. The flight time of the radar wave multiplied by its propagation speed
produces the sum of the distances from the transmitter to the target and then to the receiver,
which is referred to as the bistatic range [23,24]. The track of constant bistatic range in
two-dimensional space is an ellipse with the transmitter and receiver positions as its foci,
and the target position is on the ellipse. Thus, we can evaluate the target position by the
intersection point of some ellipses produced by the bistatic ranges.

In reality, the transmitter position is potentially completely unavailable [20]. For
instance, if the transmitter is set in some special inaccessible place or moves with time,
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its position cannot be accurately obtained. This also occurs in certain system designs
such as the passive coherent location system [25–27], in which the transmitter position
is purposely left unknown to simplify its structure and alleviate hardware requirements.
Therefore, this situation bears important research significance. In [20], Zhang et al. first
researched the elliptic localization problem in the absence of transmitter position. Using
the measurements of the indirect and direct paths, a two-step weighted least squares
(TSWLS) method was proposed for jointly estimating the target and transmitter positions.
However, since the constrained relationships among those variables are difficult to directly
and completely utilize, the TSWLS method has the threshold effect [28–30]. Zheng et al. [19]
presented a semidefinite program (SDP) method to tackle the same problem, in which the
semidefinite relaxation (SDR) technique is applied to convert this non-convex problem
to a convex SDP problem. While the SDP method can approach the Cramér–Rao lower
bound (CRLB) accuracy at a moderate noise level, this method requires a large number
of complicated calculations arising from the CVX toolbox. Furthermore, there are several
recursive methods that can be applied to solve the problem, such as the Gauss–Newton
method [31] and the Quasi–Newton method [32,33].

This paper advances the topic by developing new solutions to the joint estimation
problem. A maximum likelihood estimation (MLE) problem is formulated using the
measurements of the indirect and direct paths. Since the problem is non-convex, its
optimal solution cannot be solved directly. To tackle the difficulty, we propose an efficient
iterative algorithm based on the majorization–minimization (MM) principle to address the
formulated MLE problem. It requires constructing a convex surrogate function at each
iteration that tightly upper bounds the original objective function, then minimizes the
surrogate function to conduct the next iteration. Through the proposed algorithm, any
given initial value will constantly approach the stationary point of the object function.

MM principle has been widely applied in signal processing, communications, and
machine learning [34]. However, there is limited research about the MM principle for target
localization. In fact, to the best of our knowledge, only Panwar et al. [35] has applied the
MM principle to the multistatic target localization problem in terms of the precise known
transmitter position. Furthermore, currently, no relevant works based on the MM principle
have been discovered regarding the unknown transmitter position.

The main contributions of the current work are as follows:

• We formulate an MLE problem that jointly estimates the target and transmitter posi-
tions, and propose an effective iterative algorithm based on the MM principle to solve
the optimization problem.

• We extend the proposed algorithm to a general scenario where both multiple transmit-
ters at unknown positions and receiver position errors are considered.

• We theoretically analyze the computational complexity and convergence of the pro-
posed algorithm.

The rest of this paper is organized as follows. Section 2 provides the measurement
model for elliptic localization. In Section 3, we present a brief overview of the MM technique
followed by the derivation of the proposed approach. It is also utilized to solve the scenario
where both multiple transmitters and receiver position errors are considered. We then
conclude the section with a discussion on the complexity and convergence of the proposed
algorithm. In Section 4, numerical simulations are presented and conclusions are given in
Section 5.

Notations: Bold upper-case and bold lower-case letters denote matrices and vectors,
respectively. The notations AT and A−1 represent the transpose and inverse of the matrix
A, respectively. ai, a(i:j), Aij and A(i:j,k:l) are the i-th element of a, the subvector containing
the i-th to the j-th elements of a, the (i, j)-th element of A and the submatrix containing
the elements from the i-th to the j-th row and the k-th to the l-th column of A, respectively.
Ip×p is the p× p identity matrix. Ok×l is the k× l zero matrix. ⊗ and ‖·‖ represent the
Kronecker product and the Euclidean norm, respectively.
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2. Measurement Model

Let us consider an elliptic localization system for locating an unknown target, in which
one transmitter and M receivers are deployed in p-dimensional space. As can be seen from
Figure 1, the unknown transmitter represented by to ∈ Rp×1 sends out the radar signal.
Several known receivers sj ∈ Rp×1 for j = 1, · · · , M not only collect the indirect path signal
reflected from the interest target denoted by uo ∈ Rp×1, but receive the direct path signal
from the transmitter.

ri = ‖uo − si‖+ ni, i = 1, · · · , M (1)

and
ri = ‖uo − t‖+ ‖uo − si‖+ nr,i, i = 1, · · · , M (2)

di = ‖to − si‖+ nd,i, i = 1, · · · , M (3)

Multiplying by the signal propagation speed, the range measurements of the indirect
and direct paths can be expressed by

rj = ‖uo − to‖+
∥∥uo − sj

∥∥+ nr,j, j = 1, · · · , M, (4)

and
dj =

∥∥to − sj
∥∥+ nd,j, j = 1, · · · , M, (5)

respectively, where nr,j and nd,j are assumed to be independent zero-mean Gaussian vari-
ables with known variance σ2

j and β2
j , respectively.

target

receiver

transmitter

2s

1s

3s

ou
ot

Figure 1. Illustration of elliptic localization.

3. Majorization–Minimization for Elliptic Localization

In this section, we present the proposed iterative algorithm based on the MM principle
to tackle the elliptic location problem with an unknown transmitter position. Before we
depict the proposed algorithm, we briefly introduce the MM principle.

3.1. Majorization–Minimization (MM)

The MM procedure is an efficient iterative method for addressing the non-convex
problem. As shown in Figure 2, the MM procedure requires constructing a surrogate
function (g(x|xk)) that tightly upper bounds the original objective function ( f (x)) at a given
point (xk), and then minimizes the surrogate function to obtain the next iteration.
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Figure 2. Illustration of MM principle.

As the tight upper bound of the f (x), the g(x|xk) need satisfy

g(x|xk) ≥ f (x), ∀x,

g(xk|xk) = f (xk). (6)

Then in the minimization step, we update x as

xk+1 = arg min
x

g(x|xk). (7)

According to (3) and (4), we can simply obtain

f (xk+1) ≤ g(xk+1|xk) ≤ g(xk|xk) = f (xk). (8)

It can be readily proved from the inequality in (8) that the original objective function
decreases monotonously during the updating process. The construction of the surrogate
function is the key problem of the MM algorithm, which will determine the accuracy and
complexity of the optimization approach. Interested readers can refer to [34] to acquire
more details.

3.2. Elliptic Localization Using Single Transmitter

In this subsection, we consider the scenario with one transmitter and apply the MM
framework to tackle the problem. From the measurement equations in (4) and (5), an MLE
problem for evaluating the target position can be formulated as

min
uo ,to

M

∑
j=1

( 1
σ2

j

(
rj − ‖uo − to‖ −

∥∥uo − sj
∥∥)2

+
1
β2

j

(
dj −

∥∥to − sj
∥∥)2
)

. (9)

Combining uo and to with θ, the cost function can be further rewritten as

min
θ

M

∑
j=1

( 1
σ2

j

(
rj − ‖D1θ‖ −

∥∥D2θ− sj
∥∥)2

+
1
β2

j

(
dj −

∥∥D3θ− sj
∥∥)2
)

, (10)

where

θ =
[
uoT , toT]T , D1 =

[
Ip×p, −Ip×p

]
,

D2 =
[
Ip×p, Op×p

]
, D3 =

[
Op×p, Ip×p

]
. (11)
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Then, expanding the square of (10) and ignoring the constant terms, i.e.,
M
∑

j=1

1
σ2

j
r2

j and

M
∑

j=1

1
β2

j
d2

j , we can obtain

min
θ

M

∑
j=1

( 1
σ2

j

(
(‖D1θ‖+

∥∥D2θ− sj
∥∥)2 − 2rj‖D1θ‖ − 2rj

∥∥D2θ− sj
∥∥)

+
1
β2

j

(∥∥D3θ− sj
∥∥2 − 2dj

∥∥D3θ− sj
∥∥)). (12)

As can be observed, the problem is non-convex. Therefore, we can exploit the MM principle
to develop an iterative method to solve it. As mentioned before, constructing a tight
surrogate function is the key problem for the MM method [35]. Next, we shall derive the
surrogate function by inequality scaling.

According to the inequality of arithmetic and geometric means, we known

√
ab ≤ a + b

2
, a ≥ 0, b ≥ 0. (13)

Plugging a = ( x
x̃ )

2 and b = ( y
ỹ )

2 (x, x̃, y, ỹ are all positive numbers) into the above inequality,
we can get

2xy ≤ x̃ỹ

(( x
x̃

)2
+

(
y
ỹ

)2
)

=
ỹx2

x̃
+

x̃y2

ỹ
. (14)

Then we can easily obtain

(x + y)2 ≤ (1 +
ỹ
x̃
)x2 + (1 +

x̃
ỹ
)y2. (15)

Using the above inequality, for any given θk, the function (‖D1θ‖+
∥∥D2θ− sj

∥∥)2 can be
upper bounded as

M

∑
j=1

1
σ2

j
(‖D1θ‖+

∥∥D2θ− sj
∥∥)2 ≤

M

∑
j=1

1
σ2

j

(
vj‖D1θ‖2 + wj

∥∥D2θ− sj
∥∥2
)

, (16)

where

vj = 1 +

∥∥∥D2θk − sj

∥∥∥∥∥∥D1θk
∥∥∥ , wj = 1 +

∥∥∥D1θk
∥∥∥∥∥∥D2θk − sj

∥∥∥ . (17)

According to the Cauchy–Schwartz inequality, for any given θk, these functions ‖D1θ‖,∥∥D2θ− sj
∥∥ and

∥∥D3θ− sj
∥∥ can be upper bounded as

−
M

∑
j=1

1
σ2

j
rj‖D1θ‖ ≤ −

M

∑
j=1

1
σ2

j
rjxTθ, (18)

−
M

∑
j=1

1
σ2

j
rj
∥∥D2θ− sj

∥∥ ≤ − M

∑
j=1

1
σ2

j
rjyT

j (D2θ− sj), (19)
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and

−
M

∑
j=1

1
β2

j
dj
∥∥D3θ− sj

∥∥ ≤ − M

∑
j=1

1
β2

j
djzT

j (D3θ− sj), (20)

respectively, where

x =
DT

1 D1θk∥∥∥D1θk
∥∥∥ , yj =

D2θk − sj∥∥∥D2θk − sj

∥∥∥ , zj =
D3θk − sj∥∥∥D3θk − sj

∥∥∥ . (21)

Note that the denominators of these functions are not zero, and this situation can be avoided
in practical scenario.

Using these inequalities in (16) and (18)–(20), we get the following surrogate function
for the cost function in (12) at (k + 1)th iteration:

g
(
θ|θk) = M

∑
j=1

( 1
σ2

j

(
vj‖D1θ‖2 + wj

∥∥D2θ− sj
∥∥2 − 2rjxTθ− 2rjyT

j (D2θ− sj)
)

+
1
β2

j

(∥∥D3θ− sj
∥∥2 − 2djzT

j (D3θ− sj)
))

. (22)

We can find that the surrogate function satisfies the conditions in (6), i.e., g(θ|θk) ≥
f (θ), ∀θ, g(θk|θk) = f (θk). Therefore, it is one of the tight upper bounds of the original
cost function ( f (θ)) at the point (θk). Then, minimizing the surrogate function, the updating
process is expressed as

θk+1 = min
θ

M

∑
j=1

g
(
θ|θk). (23)

It can be simply seen that the surrogate function is convex. By taking the derivative of (22)
and letting it equal zero, we can get

θk+1 = Q−1
M

∑
j=1

( 1
σ2

j

(
rj(xT + DT

2 yj) + wjDT
2 sj
)
+

1
β2

j

(
DT

3 sj − djDT
3 zj
))

, (24)

where

Q =
M

∑
j=1

( 1
σ2

j

(
vjDT

1 D1 + wjDT
2 D2

)
+

1
β2

j
DT

3 D3
)
. (25)

A limit on the number of iterations, Kmax, should be applied for practical scenarios. The
criterion to stop the iteration is when∥∥∥θk+1 − θk

∥∥∥ ≤ ε, k = 0, 1, · · · , Kmax, (26)

or when the time of iteration attains Kmax, where ε is a preset threshold. Then, the estimated
results of the target and transmitter positions are expressed as

u∗ = θ∗(1:p), t∗ = θ∗(p+1:2p), (27)

respectively, where θ∗ is the final result of iterations. In Algorithm 1, we give the relevant
pseudo code.
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Algorithm 1: Elliptic Localization using single transmitter

Data: rj, dj sj, σ2
j , β2

j , θ0, Kmax and ε;
Result: u∗ and t∗

1 k← 0;

2 while
∥∥∥θk+1 − θk

∥∥∥ ≥ ε or k ≤ Kmax do

3 θk+1 ← compute (24);
4 k← k + 1;
5 end
6 u∗ and t∗ ← compute (27).

3.3. Elliptic Localization Using Multiple Transmitters with Receiver Position Errors

It is common in practical applications, especially in sonar/radar, to deploy multiple
transmitters for improving performance. Moreover, due to imperfections in GPS precision,
the available receiver positions may present errors. Ignoring these errors can generate
significant performance degradation [20]. In the subsection, we further apply the MM
method to tackle the general scenario where both multiple unknown transmitters and
receiver position errors are considered.

The unknown position of the i-th transmitter is represented by to
i ∈ Rp×1, i = 1, · · · , N.

Then, the range measurements of the indirect and direct paths are expressed by

rij = ‖uo − to
i ‖+

∥∥∥uo − so
j

∥∥∥+ nr,ij, i = 1, · · · , N, j = 1, · · · , M, (28)

and
dij =

∥∥∥to
i − so

j

∥∥∥+ nd,ij, i = 1, · · · , N, j = 1, · · · , M, (29)

respectively. Furthermore, let s̃j ∈ Rp×1, j = 1, · · · , M be the available position of the j-th
receiver. The true position so

j is not known and always modeled as

s̃j = so
j + ∆sj, j = 1, 2, · · · , M, (30)

where ∆sj is the position error of sj that obeys the zero-mean Gaussian distribution with
known covariance γ2

j Ip×p.
From the measurement equations in (28)–(30), an MLE problem for evaluating the

target position can be formulated as

min
uo ,to

1,··· ,to
N ,so

1,··· ,so
M

N

∑
i=1

M

∑
j=1

( 1
σ2

ij

(
rij − ‖uo − to

i ‖ −
∥∥∥uo − so

j

∥∥∥)2
+

1
β2

ij

(
dij −

∥∥∥to
i − so

j

∥∥∥)2
)
+

M

∑
j=1

1
γ2

j

∥∥∥s̃j − so
j

∥∥∥2
(31)

Using a vector θ to combine these unknown variables, we can obtain

min
θ

N

∑
i=1

M

∑
j=1

( 1
σ2

ij

(
rij − ‖H iθ‖ −

∥∥Pjθ
∥∥)2

+
1

β2
ij

(
dij −

∥∥∥Qijθ
∥∥∥)2
)
+

M

∑
j=1

1
γ2

j

∥∥s̃j − F jθ
∥∥2, (32)

where,
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θ =
[
uT toT

1 · · · toT
N soT

1 · · · soT
M
]T ,

F j =
[
Op×(N+j)p Ip×p Op×(M−j)p

]
, j = 1, · · · , M,

H i =
[

Ip×p Op×(i−1)p −Ip×p Op×(N+M−i)p

]
, i = 1, · · · , N,

Pj =
[

Ip×p Op×(N+j−1)p −Ip×p Op×(M−j)p

]
, j = 1, · · · , M,

Qij =
[
Op×ip Ip×p Op×(N+i−j−1)p −Ip×p Op×(M−j)p

]
, i = 1, · · · , N, j = 1, · · · , M. (33)

Then, expanding the square of (32) and ignoring the constant terms, i.e.,
N
∑

i=1

M
∑

j=1

1
σ2

ij
r2

ij and

N
∑

i=1

M
∑

j=1

1
β2

ij
d2

ij, we can obtain

min
θ

N

∑
i=1

M

∑
j=1

( 1
σ2

ij

(
(‖H iθ‖+

∥∥Pjθ
∥∥)2 − 2rij‖H iθ‖ − 2rij

∥∥Pjθ
∥∥)+ 1

β2
ij

(∥∥∥Qijθ
∥∥∥2
− 2dij

∥∥∥Qijθ
∥∥∥))+

M

∑
j=1

1
γ2

j

∥∥s̃j − F jθ
∥∥2. (34)

Similarly, we shall utilize the MM principle to account for the non-convex problem as
well. As already mentioned, we shall utilize these inequalities mentioned in the previous
subsection to construct the surrogate function.

Using the inequality in (15), for any given θk, the function (‖H iθ‖+
∥∥Pjθ

∥∥)2 can be
upper bounded as

N

∑
i=1

M

∑
j=1

1
σ2

ij
(‖H iθ‖+

∥∥Pjθ
∥∥)2 ≤

N

∑
i=1

M

∑
j=1

1
σ2

ij
(ṽij‖H iθ‖2 + w̃ij

∥∥Pjθ
∥∥2
), (35)

where

ṽij = 1 +

∥∥∥Pjθ
k
∥∥∥∥∥∥H iθ

k
∥∥∥ , w̃ij = 1 +

∥∥∥H iθ
k
∥∥∥∥∥∥Pjθ

k
∥∥∥ . (36)

According to the Cauchy–Schwartz inequality, for any given θk, these functions ‖H iθ‖,∥∥Pjθ
∥∥ and

∥∥∥Qijθ
∥∥∥ can be upper bounded as

−
N

∑
i=1

M

∑
j=1

1
σ2

ij
rij‖H iθ‖ ≤ −

N

∑
i=1

M

∑
j=1

1
σ2

ij
rijx̃T

i θ, (37)

−
N

∑
i=1

M

∑
j=1

1
σ2

ij
rij
∥∥Pjθ

∥∥ ≤ − N

∑
i=1

M

∑
j=1

1
σ2

ij
rijỹT

j θ, (38)

and

−
N

∑
i=1

M

∑
j=1

1
β2

ij
dij

∥∥∥Qijθ
∥∥∥ ≤ − N

∑
i=1

M

∑
j=1

1
β2

ij
dijz̃T

ijθ, (39)
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respectively, where

x̃i =
HT

i H iθ
k∥∥∥H iθ

k
∥∥∥ , ỹj =

PT
j Pjθ

k∥∥∥Pjθ
k
∥∥∥ , z̃ij =

QT
ijQijθ

k∥∥∥Qijθ
k
∥∥∥ . (40)

Note that the denominators of these functions are not zero as well.
Using these inequalities in (35) and (37)–(39), we get the following surrogate function

for the cost function in (34) at (k + 1)th iteration:

g
(
θ|θk) = N

∑
i=1

M

∑
j=1

( 1
σ2

ij

(
ṽij‖H iθ‖2 + w̃ij

∥∥Pjθ
∥∥2 − 2rij(x̃T

i θ− ỹT
j θ)
)
+

1
β2

ij

(∥∥∥Qijθ
∥∥∥2
− 2dijz̃T

ijθ
))

+

M

∑
j=1

1
γ2

j

∥∥s̃j − F jθ
∥∥2. (41)

Minimizing the surrogate function, the updating process can be expressed as

θk+1 = W−1
( N

∑
i=1

M

∑
j=1

( 1
σ2

ij
rij(x̃i + ỹj) +

1
β2

ij
dijz̃ij

)
+

M

∑
j=1

1
γ2

j
FT

i s̃i

)
, (42)

where

W =
N

∑
i=1

M

∑
j=1

( 1
σ2

ij
(ṽijHT

i H i + w̃ijPT
j Pj) +

1
β2

ij
QT

ijQij
)
+

M

∑
j=1

1
γ2

j
FT

j F j. (43)

The criterion to stop the iteration is same to the previous subsection. Then, the
estimated results of the target, transmitter, and receiver positions are expressed as

u∗ = θ∗(1:p), t∗i = θ∗(pi+1:p(i+1)), s∗j = θ∗(p(N+j)+1:p(N+j+1)), i = 1, · · · , N, j = 1, · · · , M, (44)

respectively, where θ∗ is the final result of iterations. As we can see from (44), different
from the existing approaches in [19,20], the proposed method can not only estimate the
positions of target and transmitters, but also calibrate the erroneous receiver positions.

3.4. Computational Complexity and Convergence of the Proposed Algorithm

We first analyze the computational complexity of the proposed methods. In each
iteration, the complexity is mainly dominated by computing (24) for the single transmitter
case and (42) for the multiple transmitters case. Hence, their complexities are on the order
of O(M2) and O((N + M)4), respectively. Moreover, the average computation time will
be shown in the next section.

Next, we shall discuss the convergence of the proposed algorithm. Since the algorithm
is based on the MM framework, it is seen from (8) that the objective function monotonically
decreases with the iteration. Moreover, the surrogate function at each iteration is convex,
so we can easily get its solution θk+1 in (k + 1)th iteration that makes

∂g(θ|θk)

∂θ

∣∣∣∣∣
θ=θk+1

= 0 (45)

and

g(θk+1|θk) ≤ g(θ|θk). (46)
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Since ∂ f (θ)
∂θ

∣∣∣
θ=θk

= ∂g(θ|θk)
∂θ

∣∣∣∣
θ=θk

, taking k→ ∞ gives

∂ f (θ)
∂θ

∣∣∣∣
θ=θ∞

=
∂g(θ|θ∞)

∂θ

∣∣∣∣
θ=θ∞

= 0 (47)

Hence, through the proposed algorithm, any given initial value will constantly approach
the stationary point of the object function.

4. Simulation Results

In this section, numerical simulations are conducted to evaluate the performance of
the proposed method in 2-D for ease of illustration. The proposed method is compared
with the SDP method [19] (labeled as “SDP”), the two-stage WLS method [20] (labeled as
“TSWLS”) and the Gauss–Newton method (labeled as “Gauss–Newton”, the derivation is
shown in Appendix A). Moreover, the CRLB is also included as a benchmark. Owing to
many unknown variables in the objective function, we choose to initialize θ by successive
estimation. The successive estimation can be regarded as a TOA localization problem
(based on direct paths) and an elliptic localization problem (based on indirect paths). The
TOA localization problem is solved to evaluate the transmitter position by the LS method
in [36]. Then, using the evaluated transmitter position, the elliptic localization problem is
solved to evaluate the target position by the LS method in [28]. Meanwhile, the receiver
position errors are not considered. The noise variances of the indirect and direct paths are
set to the same value (represented by σ2). The maximum number of iterations is set to
Kmax = 4000 and the predetermined threshold is set as ε = 10−3.

The root mean square error (RMSE) is utilized to evaluate the accuracy of these
algorithms, which is expressed as

RMSE(η∗) =

√√√√ 1
GL

G

∑
g=1

L

∑
l=1

∥∥∥η∗gl − ηo
∥∥∥, (48)

where G are the number of geometry configurations and L is the times of Monte Carlo (MC)
runs for each geometry configuration. η∗gl is the estimated result in the l-th MC run for the
g-th configuration. G and L are adopted as 10 and 500 in the simulations.

Next, we shall test those algorithms in the single transmitter and multiple transmitters
cases, respectively.

4.1. Single Transmitter Case

Scenario 1: One transmitter and four receivers are uniformly deployed in the region
(−4, 4)× (−4, 4) km2 to locate a target at uo = [2, 1]T km. The estimated results of the
target position are displayed in Figure 3. We find that the RMSE of the TSWLS method
attains the CRLB accuracy when 10log10(σ

2) ≤ 5 dBm2, whereas deviates from the CRLB
when 10log10(σ

2) ≥ 10 dBm2. This may be due to the threshold effect of the TSWLS method.
By contrast, the proposed method, SDP method and Gauss–Newton method show better
threshold behavior, and the first has a higher performance because its algorithm is based
on a more accurate problem formulation. Figure 4 displays the estimated results of the
transmitter position. It is observed that the RMSEs of the proposed method, SDP method
and Gauss–Newton method attain the optimal performance when 10log10(σ

2) ≤ 35 dBm2,
and slightly deviates from the CRLB at 10log10(σ

2) = 40 dBm2.
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Figure 3. RMSE comparison for estimating target position.
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Figure 4. RMSE comparison for estimating target position.

Scenario 2: In this scenario, receiver position errors are considered to be present.
Assuming the covariance matrix of the receiver position errors Qs = σ2

s J, where σ2
s relates

to the sensor position error power and J = diag[5, 20, 15, 10]⊗ I2×2. The deployment of
the target, transmitter, and receiver is the same as that in Scenario 1. Keeping σ2

s at 1 m2,
Figure 5 confirms that the RMSE of the TSWLS method attains the CRLB accuracy when
10log10(σ

2) ≤ 5 dBm2 and deviates from the CRLB when 10log10(σ
2) ≥ 10 dBm2 much

earlier than the other methods. When 10log10(σ
2) = 40 dBm2, the proposed methods still

performs better than the SDP method and Gauss–Newton method.
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Figure 5. RMSE comparison for estimating target position at σ2
s = 1 m2.

Scenario 3: In this scenario, the number of receiver M increases from 3 to 8. We let
σ2 = 10 m2 and Qs = σ2

s JM, where σ2
s = 1 m2, JM = J(1:2M,1:2M) for M = 4, 5, · · · , 8 and

J = diag[5, 20, 35, 10, 25, 30, 15, 40]⊗ I2×2. The deployment of the actual coordinates of the
target, transmitter, and receiver is the same as that in Scenario 1. As can be seen in Figure 6,
the performance of these methods improves as the number of receivers increases. The
RMSE of the TSWLS method deviates from the CRLB accuracy when M ≤ 4. The proposed
method, SDP method and Gauss–Newton method attain the CRLB accuracy at the entire
tested range except for M = 3. For M = 3, the SDP method obviously deviates from



Sensors 2023, 23, 373 12 of 17

CRLB; however, the proposed method and Gauss–Newton method just slightly deviate
from CRLB, and the former has better performance.
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Figure 6. RMSE comparison for estimating target position at σ2 = 10 m2 and σ2
s = 1 m2.

4.2. Multiple Transmitters Case

Scenario 4: Multiple transmitters and receiver position errors are simultaneously
considered in this Scenario. Three transmitters and four receivers are used, and the other
parameter settings are the same as that in Scenario 2. As can be seen in Figure 7, the
observations are similar to those in Figure 5, whereas the RMSEs are lower at the same σ2.
This is caused by using multiple transmitters.
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Figure 7. RMSE comparison for estimating target position at σ2
s = 1 m2 using three transmitters.

Scenario 5: Fixing three transmitters, the number of receiver M increases from 3 to 8.
We let σ2 = 100 m2 and Qs = σ2

s JM with σ2
s = 1 m2, and the other parameter settings are

the same as that in Scenario 3. As we can see in Figure 8, the performance of these methods
improves with the rise of the receiver number. Moreover, the TSWLS method deviates from
the CRLB accuracy when M ≤ 4 and the SDP method and Gauss–Newton method deviate
from the CRLB accuracy at M = 3. By contrast, the proposed method can approach the
CRLB accuracy at the whole tested noise level.
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Figure 8. RMSE comparison for estimating target position at σ2 = 100 m2 and σ2
s = 1 m2 using

three transmitters.
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Finally, the average CPU time of the methods in Scenario 1 and Scenario 4 is shown in
Table 1. The simulation data is obtained by utilizing a PC with Intel Core i7 3.2 GHz proces-
sor. As reported in Table 1, the computational complexity of these methods increases as the
measurement model becomes more complex. Furthermore, the computational complexity
of the proposed method is higher than that of the TSWLS method and Gauss–Newton
method, and lower than that of the SDP method.

Table 1. Avg. CPU time [ms] for methods.

Algorithms
Scenarios 1 4

TSWLS 0.38 0.84
SDP 551.6 695.4

Gauss–Newton 0.23 1.6
Proposed 10.1 157.7

5. Conclusions

In this paper, we investigate an elliptic localization problem when the transmitter
position is unavailable. An MM method is developed to jointly estimate the target and
transmitter positions. Subsequently, the MM method is further extended to account for
scenarios where both multiple unknown transmitters and receiver position errors are
considered. Simulation results demonstrate that the proposed method outperforms state-
of-the-art methods and the erroneous receiver positions can also be calibrated.
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RSS Received signal strength
AOA Angle-of-arrival
MIMO Multiple-input-multiple-output
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SDP Semidefinite programming
SDR Semidefinite relaxation
MLE Maximum likelihood
MM Majorization–minimization
GTRS Generalized trust region sub-problems
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RMSE Root mean-square error
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Appendix A. Gauss–Newton Method for Elliptic Localization in Absence of
Transmitter Position

Appendix A.1. Elliptic Localization Using Single Transmitter

In this appendix, the Gauss–Newton method for elliptic localization using single
transmitter is derived, and the derivation process is similar to [37]. Rewriting the MLE
problem in (10)

min
θ

M

∑
j=1

( 1
σ2

j

(
rj − ‖D1θ‖ −

∥∥D2θ− sj
∥∥)2

+
1
β2

j

(
dj −

∥∥D3θ− sj
∥∥)2
)

(A1)

The first-order Taylor series expansions of ‖D1θ‖,
∥∥D2θ− sj

∥∥ and
∥∥D3θ− sj

∥∥ are

‖D1θ‖ ≈
∥∥∥D1θ0

∥∥∥+ (DT
1 D1θ0)T(θ− θ0)∥∥∥D1θ0

∥∥∥ , (A2a)

∥∥D2θ− sj
∥∥ ≈ ∥∥∥D2θ0 − sj

∥∥∥+ (DT
2 (D2θ0 − sj))

T(θ− θ0)∥∥∥D2θ0 − sj

∥∥∥ , (A2b)

∥∥D3θ− sj
∥∥ ≈ ∥∥∥D3θ0 − sj

∥∥∥+ (DT
3 (D3θ0 − sj))

T(θ− θ0)∥∥∥D3θ0 − sj

∥∥∥ , (A2c)

respectively. Then, taking (A2) into (A1) results

min
θ

M

∑
j=1

( 1
σ2

j

(
rj −

∥∥∥D1θ0
∥∥∥− ∥∥∥D2θ0 − sj

∥∥∥− (
(DT

1 D1θ0)T∥∥∥D1θ0
∥∥∥ +

(DT
2 (D2θ0 − sj))

T∥∥∥D2θ0 − sj

∥∥∥ )(θ− θ0)
)2
+

1
β2

j

(
dj −

∥∥∥D3θ0 − sj

∥∥∥− (DT
3 (D3θ0 − sj))

T(θ− θ0)∥∥∥D3θ0 − sj

∥∥∥
)2
)

. (A3)

Let the gradient of cost function in (A3) with θ to zero

M

∑
j=1
− 2
( 1

σ2
j

(
rj −

∥∥∥D1θ0
∥∥∥− ∥∥∥D2θ0 − sj

∥∥∥− (
(DT

1 D1θ0)T∥∥∥D1θ0
∥∥∥ +

(DT
2 (D2θ0 − sj))

T∥∥∥D2θ0 − sj

∥∥∥ )(θ− θ0)
)
(

DT
1 D1θ0∥∥∥D1θ0

∥∥∥
+

DT
2 (D2θ0 − sj)∥∥∥D2θ0 − sj

∥∥∥ ) +
1
β2

j

(
dj −

∥∥∥D3θ0 − sj

∥∥∥− (DT
3 (D3θ0 − sj))

T(θ− θ0)∥∥∥D3θ0 − sj

∥∥∥
)DT

3 (D3θ0 − sj)∥∥∥D3θ0 − sj

∥∥∥
)
= 0 (A4)

Set

Qr = diag[
1
σ2

1
, . . . ,

1
σ2

M
], Qd = diag[

1
β2

1
, . . . ,

1
β2

M
], (A5a)

h1 = [r1 −
∥∥∥D1θ0

∥∥∥− ∥∥∥D2θ0 − s1

∥∥∥, . . . , rM −
∥∥∥D1θ0

∥∥∥− ∥∥∥D2θ0 − sM

∥∥∥]T , (A5b)

h2 = [d1 −
∥∥∥D3θ0 − s1

∥∥∥, . . . , dM −
∥∥∥D3θ0 − sM

∥∥∥]T , (A5c)

H1 = [
DT

1 D1θ0∥∥∥D1θ0
∥∥∥ +

DT
2 (D2θ0 − s1)∥∥∥D2θ0 − s1

∥∥∥ , . . . ,
DT

1 D1θ0∥∥∥D1θ0
∥∥∥ +

DT
2 (D2θ0 − sM)∥∥∥D2θ0 − sM

∥∥∥ ], (A5d)

H2 = [
DT

3 (D3θ0 − s1)∥∥∥D3θ0 − s1

∥∥∥ , . . . ,
DT

3 (D3θ0 − sM)∥∥∥D3θ0 − sM

∥∥∥ ] (A5e)
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Then (A4) can be recast as

H1Qrh1 + H2Qdh2 = (H1QrHT
1 + H2QdHT

2 )(θ− θ0) (A6)

Finally, the updating of θ is

θ = θ0 + (H1QrHT
1 + H2QdHT

2 )
−1(H1Qrh1 + H2Qdh2) (A7)

Appendix A.2. Elliptic Localization Using Multiple Transmitters with Receiver Position Errors

In this appendix, the Gauss–Newton method for elliptic localization using multiple
transmitters with receiver position errors is derived. Rewriting the MLE problem in (32)

min
θ

N

∑
i=1

M

∑
j=1

( 1
σ2

ij

(
rij − ‖H iθ‖ −

∥∥Pjθ
∥∥)2

+
1

β2
ij

(
dij −

∥∥∥Qijθ
∥∥∥)2
)
+

M

∑
j=1

1
γ2

j

∥∥s̃j − F jθ
∥∥2. (A8)

Similarly, thought the first-order Taylor series expansion, we can get

min
θ

N

∑
i=1

M

∑
j=1

( 1
σ2

ij

(
rij −

∥∥∥H iθ
0
∥∥∥− ∥∥∥Pjθ

0
∥∥∥− (

(HT
i H iθ

0)T∥∥∥H iθ
0
∥∥∥ +

(PT
j Pjθ)

T∥∥∥Pjθ
0
∥∥∥ )(θ− θ0)

)2
+

1
β2

ij

(
dij −

∥∥∥Qijθ
0
∥∥∥− (QT

ijQijθ
0)T(θ− θ0)∥∥∥Qijθ

0
∥∥∥

)2
)
+

M

∑
j=1

1
γ2

j

∥∥s̃j − F jθ
∥∥2. (A9)

Let the gradient of objective function in (A9) with θ to zero

N

∑
i=1

M

∑
j=1
− 2
( 1

σ2
ij

(
rij −

∥∥∥H iθ
0
∥∥∥− ∥∥∥Pjθ

0
∥∥∥− (

(HT
i H iθ

0)T∥∥∥H iθ
k
∥∥∥ +

(PT
j Pjθ

0)T∥∥∥Pjθ
0
∥∥∥ )(θ− θ0)

)
(

HT
i H iθ

0∥∥∥H iθ
0
∥∥∥ +

PT
j Pjθ

0∥∥∥Pjθ
0
∥∥∥ )

+
1

β2
ij

(
dij −

∥∥∥Qijθ
0
∥∥∥− (QT

ijQijθ
0)T(θ− θ0)∥∥∥Qijθ

0
∥∥∥

)QT
ijQijθ

0∥∥∥Qijθ
0
∥∥∥
)
−

M

∑
j=1

2
1

γ2
j

FT
j (s̃j − F jθ) = 0. (A10)

Set

Qr = diag[
1

σ2
1,1

,
1

σ2
1,2

, . . . ,
1

σ2
N,M

], Qd = diag[
1

β2
1,1

,
1

β2
1,2

, . . . ,
1

β2
N,M

], (A11a)

Qs = diag[
1

γ2
1

,
1

γ2
2

, . . . ,
1

γ2
M
]⊗ Ip×p, s̃ = [s̃T

1 , s̃T
2 , . . . , s̃T

M]T , F = [FT
1 , FT

2 , FT
M]T , (A11b)

h3 = [r11 −
∥∥∥H1θ0

∥∥∥− ∥∥∥P1θ0
∥∥∥, r12 −

∥∥∥H1θ0
∥∥∥− ∥∥∥P2θ0

∥∥∥, . . . , rNM −
∥∥∥HNθ0

∥∥∥− ∥∥∥PMθ0
∥∥∥]T , (A11c)

h4 = [d11 −
∥∥∥Q11θ0

∥∥∥, d12 −
∥∥Q12θ0∥∥, . . . , dNM −

∥∥∥QNMθ0
∥∥∥]T , (A11d)

H3 = [
HT

1 H1θ0∥∥∥H1θ0
∥∥∥ +

PT
1 P1θ0∥∥∥P1θ0

∥∥∥ ,
HT

1 H1θ0∥∥∥H1θ0
∥∥∥ +

PT
2 P2θ0∥∥∥P2θ0

∥∥∥ , . . . ,
HT

N HNθ0∥∥∥HNθ0
∥∥∥ +

PT
MPMθ0∥∥∥PMθ0

∥∥∥ ], (A11e)

H4 = [
QT

11Q11θ0∥∥∥Q11θ0
∥∥∥ ,

QT
12Q12θ0∥∥∥Q12θ0

∥∥∥ , . . . ,
QT

NMQNMθ0∥∥∥QNMθ0
∥∥∥ ]. (A11f)
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Then (A10) can be recast as

H3Qr(h3 −HT
3 (θ− θ0)) + H4Qd(h4 −HT

4 (θ− θ0)) + FTQs(s̃− Fθ) = 0. (A12)

Finally, the updating of θ is

θ = (H3QrHT
3 + H4QdHT

4 + FTQsF)−1(H3Qr(h3 + HT
3 θ0) + H4Qd(h4 + HT

4 θ0) + FTQs s̃
)
. (A13)
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