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Abstract: This paper presents research concerning dewatered areas in the littoral zones of the Kaunas
hydropower plant (HPP) reservoir in Lithuania. It is a multipurpose reservoir that is primarily used
by two large hydropower plants for power generation. As a result of the peaking operation regime of
the Kaunas HPP, the large quantity of water that is subtracted and released into the reservoir by the
Kruonis pumped storage hydropower plant (PSP), and the reservoir morphology, i.e., the shallow,
gently sloping littoral zone, significant dewatered areas can appear during drawdown operations.
This is especially dangerous during the fish spawning period. Therefore, reservoir operation rules
are in force that limit the operation of HPPs and secure other reservoir stakeholder needs. There
is a lack of knowledge concerning fish spawning locations, how they change, and what areas are
dewatered at different stages of HPP operation. This knowledge is crucial for decision-making and
efficient reservoir storage management in order to simultaneously increase power generation and
protect the environment. Current assessments of the spawning sites are mostly based on studies that
were carried out in the 1990s. Surveying fish spawning sites is typically a difficult task that is usually
carried out by performing manual bathymetric measurements due to the limitations of sonar in
such conditions. A detailed survey of a small (approximately 5 ha) area containing several potential
spawning sites was carried out using Unmanned Aerial Vehicles (UAV) equipped with multispectral
and conventional RGB cameras. The captured images were processed using photogrammetry and
analyzed using various techniques, including machine learning. In order to highlight water and
track changes, various indices were calculated and assessed, such as the Normalized Difference
Water Index (NDWI), Normalized Difference Vegetation Index (NDVI), Visible Atmospherically
Resistant Index (VARI), and Normalized Green-Red Difference Index (NGRDI). High-resolution
multispectral images were used to analyze the spectral footprint of aquatic macrophytes, and the
possibility of using the results of this study to identify and map potential spawning sites over the
entire reservoir (approximately 63.5 km2) was evaluated. The aim of the study was to investigate and
implement modern surveying techniques to improve usage of reservoir storage during hydropower
plant drawdown operations. The experimental results show that thresholding of the NGRDI and
supervised classification of the NDWI were the best-performing methods for the shoreline detection
in the fish spawning sites.

Keywords: remote sensing; hydropower; fish spawning sites; large reservoir; dewatered areas;
drawdown operations

1. Introduction

In a previous study, water level (WL) fluctuations in the Kaunas hydropower plant
(HPP) reservoir were analyzed [1]. It was found that the operations of the two large
HPPs cause frequent short-term water level fluctuations. Daily drawdowns (the difference
between min and max WL) range up to 0.4 m/day. These water level fluctuations frequently
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result in dewatered areas in the littoral zone of the reservoir. To observe and analyze these
dewatered areas, a bathymetric survey was carried out.

The Kaunas HPP reservoir is situated on the East European Plain. The littoral zone (the
nearshore area) of the reservoir is generally shallow with gentle slopes. It is a multipurpose
reservoir, which is mainly used for power generation by the Kaunas hydropower plant
and Kruonis pumped storage hydropower plant (PSP); however, it is also used for recre-
ation, navigation, irrigation, industrial water supply, flood management, and recreational
fishing [2]. Frequent water level drawdowns have a negative impact on the environment,
which is discussed in many studies. Aquatic ecosystems in the reservoirs are sensitive even
to small water level changes. Scientists claim that when water levels fluctuate in reservoirs
with shallow and gently sloping littoral slopes, they experience a greater magnitude of
water quality change than those with steep slopes [3]. In a review of the ecological impacts
of winter water level drawdowns on lake littoral zones, many different ecological issues
were discussed [4]. Water level fluctuations can have adverse effects on the environment,
most notably on hydrologic and biotic processes, ranging in magnitude from the microscale
to landscape level. Dewatered areas that are exposed during drawdown operations are
susceptible to sediment desiccation and erosion from precipitation, and wind/wave action
consolidating the exposed sediment layer [5,6], which increases the sediment bulk density.
A study of Newnans Lake, a eutrophic lake in Florida, showed that short-term drawdowns
can greatly accelerate erosion of the fine littoral substrate [7]. A relatively low rate of water
drawdown and refill may enhance erosion by increasing the exposure time to wind/wave
energy [8]. In reservoirs, these processes typically create barren shorelines with low habitat
diversity and low species richness. Furthermore, they are likely to accelerate eutrophication
processes and increase the risk of cyanobacteria blooms [9].

The littoral zone provides a spawning habitat for fish and water birds [10]. It is
a physically complex system containing macrophytes, coarse woody debris, and other
refuge for fish, which mediates competition and predation [11,12]. Although natural water
level fluctuations are necessary for the aquatic ecosystem structure and function, water
level regulation that exceeds natural variability may be very harmful to ecosystems in
reservoirs [10,13]. Water level regulation and related habitat losses due to dewatering
threaten ecosystem functioning and biodiversity in reservoirs [14]. Water level drawdowns
tend to reduce benthic invertebrate density in the dewatered zones [15] as invertebrates are
not particularly mobile, and they often become stranded and die from asphyxiation and
desiccation [16]. All these factors tend to influence the abundance, density, and diversity of
fish. Decreased fish growth rate, biomass, and abundance correlate with the losses of littoral
physical habitat complexity [17]. Water level drawdown is a threat to fish species that use
the littoral zone for all or part of their lives, especially in the spawning season [13,18]

The most abundant fish species in the Kaunas HPP reservoir belong to the phytophilic
ecological group of fishes. It was determined that the main fish species whose spawning
conditions may be affected by the fluctuating water level in the Kaunas HPP reservoir are
pike, common roach, perch, and bream [19]. They usually spawn in the shallow areas of
the reservoir, which contain aquatic macrophytes (where the water depth ranges from 0.2
to 2 m). Regulated water level fluctuations (e.g., rises and recessions) during spawning
can negatively affect juvenile fish densities [20]. The Kaunas HPP reservoir operation
rules are in force to mitigate the impact on the ecosystems and secure other reservoir
stakeholders’ needs [2]. One of the most important issues is the assessment of dewater
areas in fish spawning sites during the spawning period. Despite the wide scope of this
issue, very few studies provide quantitative evaluations of the dewatering areas during
short-term WL drawdown operations, which occur in hydropower plant reservoirs with
shallow nearshore zones. Knowledge of potential fish spawning site locations, how they
change in space and time, and how water level fluctuations affect the area is crucial for the
optimal usage of reservoirs in terms of simultaneously increasing power generation and
protecting the environment where it is most vulnerable. In previous research, a detailed
traditional bathymetric survey of an area containing several potential spawning grounds
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(about 5 ha) was carried out. The water depth was measured with a water measuring pole
with markings every centimeter and a plate on the bottom to prevent it from sinking into
the sediment. A special iron weight attached to a graduated lead-line was also used to
verify the results. The exact position of each measurement was collected with the Trimble
R6 GNSS receiver. The point positioning accuracy using LitPOS RTK was 3–5 cm in the
horizontal axis and 5–8 cm in the vertical axis. In total, over 1000 measurements were
taken, elevation profiles were drawn, and a digital elevation model (DEM) was generated
using the Kriging interpolation method, which was determined as the most suiting after
statistical analysis of the accuracy of different interpolation methods. DEM was used for
shoreline derivation and evaluation of the dewatering area in the selected fish spawning
sites during different stages of HPP operation [1]. Traditional bathymetric surveys can
provide reliable data concerning the selected area, but their application is limited as this
kind of survey is challenging in difficult conditions.

The main focus of this study was to implement remote sensing (RS) techniques to track
changes in drawdown areas in potential fish spawning sites. With the fast development
of RS technologies, software, and the popularity of drones, surveying difficult areas has
become easier and more accessible. Surveying with drones is a cost-effective and time-
efficient method to collect data from the air, providing imagery or point cloud data from
which a variety of deliverables can be extracted. According to various sources, data
can generally be captured five times faster with drones than with traditional land-based
methods [21,22]. For these reasons, several missions were carried out using Unmanned
Aerial Vehicles (UAVs) to collect data from the aforementioned selected potential fish
spawning sites at various water levels in the reservoir. After data collection, processing,
and the analysis steps, the results were compared with the data gathered in the traditional
field survey from the previous study.

Studying reservoir drawdown areas is a complex task, and several different approaches
can be implemented. Different drone surveying methods for high-resolution river land-
scape mapping of the Belá River in the northern part of Slovakia were discussed in [23].
Three imaging methods for 3D model creation of the study area were used: (i) nadir, (ii)
oblique, and (iii) horizontal. This minimized geometric error and captured topography
under the treetop cover and overhanging banks. The article by [24] assesses the accuracy
of UAV data processing using different software applications (Microsoft Photosynth, Ag-
isoft PhotoScan and ARC3d) and discusses different processing schemes and validation
strategies.

After data acquisition, processing, and validation, the resulting orthomosaic images
can be used to detect the reservoir shorelines. A comparison of the shorelines detected
at different stages of the HPP operation indicate the dewatered areas. There are many
studies using various remote sensing techniques for shoreline detection. Moreover, various
techniques have been used for different RS data sources. Satellite images (Sentinel, Landsat,
etc.), data collected by Light Detection and Ranging (LiDAR), and aerial photography
from the planes or UAVs were used in previous studies, some of which are discussed in
Section 4. In a review of shoreline detection using optical RS carried out by [25], different
water segmentation techniques were discussed and some were implemented in this study.

Spectral reflections from different surfaces are the key to the techniques used in this
study. In 1996, McFeeters introduced the Normalized Difference Water Index (NDWI),
which makes use of reflected near-infrared (NIR) and visible green light radiation for assess-
ing quantity (e.g., the surface area) and quality (e.g., the turbidity) of water resources [26].
Hanqiu Xu modified the NDWI by substituting middle-infrared for near-infrared radiation
in the NDWI in order to enhance open water features while efficiently suppressing and
even removing built-up land noise and soil noise [27]. Indices can be used to obtain a
simplified data representation by separating and highlighting different surfaces from one
another. Another commonly used index is the Normalized Difference Vegetation Index
(NDVI). The NDVI is calculated by measuring the difference between near-infrared (which
vegetation strongly reflects) and red light (which vegetation absorbs). It is able to quickly
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delineate vegetation and vegetative stress, which has many uses in commercial agriculture
and land-use studies [28]. In our case, this was also useful for indexing water, because
infrared radiation is strongly absorbed by water and thus it can easily be identified by the
low (close to zero or negative) NDVI values. Moreover, this index helps to separate aquatic
and land vegetation.

Part of the study was carried out with a drone equipped with a simple RGB camera.
Data of NIR were unavailable for these datasets; the NDVI and NDWI could not be
calculated. Different combinations of red, green, and blue bands were used to separate
water, aquatic, and land vegetation. The purpose was to establish the best-performing
technique as compared to methods that rely on NIR. In this way, the technique could be
adopted for datasets that only contain red, green, and blue bands, which correspond to
the visible part of the electromagnetic spectrum and can be captured with a simple camera
sensor. The Visible Atmospherically Resistant Index (VARI) and the Normalized Green–
Red Difference Index (NGRDI) indices using only the visible range of the spectrum were
calculated. The VARI was proposed by [29] for remote vegetation fraction estimation. The
index was found to be minimally sensitive to atmospheric effects, allowing for vegetation
fraction estimation with an error of <10% in a wide range of atmospheric optical thicknesses.
In addition, the NGRDI was used in comparison with the NDVI for highlighting water.
The NGRDI is similar to the NDVI, but uses green instead of NIR bands [30].

This research differs from others in the following ways: We are interested in changes
in the submerged area in potential fish spawning sites, which means that the shoreline
must be detected in areas containing aquatic macrophytes. In areas that are clear of aquatic
vegetation, many known techniques, as discussed above, can be implemented; however,
in the areas with thick water vegetation, it is very difficult to detect and segment water.
Therefore, the best methods and indices to achieve this were evaluated.

A spectral signature analysis was carried out for aquatic and land vegetation in order
to separate one from the other. This means that potential fish spawning sites could be
detected over the entire reservoir and their area could be calculated. This knowledge
would allow us to locate the most vulnerable areas and estimate how much water level
fluctuations affect them. A similar study of spectral signatures was conducted for automatic
blackgrass weed mapping using a supervised classification technique [31]. A number of
advanced techniques were used: feature generation to enhance the feature discrimination
ability, feature selection for dimension reduction, Random Forest (RF) for classification,
and guided filter for spatial information enhancement.

The aim of the study was to implement modern remote sensing techniques to investi-
gate dewatering areas in the fish spawning sites. Current assessments of spawning sites
in the reservoir are mostly based on studies that were carried out in the 1990s. Surveying
fish spawning sites is typically a difficult task that is usually carried out by performing
manual bathymetric measurements due to the limitations of sonar. Majority of the devices
based on echo-sounding (sonar) cannot operate in the shallow waters containing aquatic
macrophytes—the typical spawning sites for many species of fish. Our hypothesis is that
RS can be used to assist in surveying difficult and vulnerable areas, where the current and
accurate data are needed. This knowledge could assist in making decisions for better use
of reservoir storage while increasing power generation.

Various tasks were set for this study:

• To review current practice related to reservoir drawdown/hydropower operating
rules and policies;

• To conduct surveys of the study area using remote sensing methods;
• To detect shorelines during different stages of reservoir operation;
• To evaluate the effectiveness of different methods of shoreline detection in various

nearshore conditions;
• To analyze the spectral signatures of aquatic macrophytes and to evaluate the possi-

bility of implementing the results for automatic classification over the entire Kaunas
HPP reservoir;
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• To summarize the findings in order to provide insights for deriving the optimal
operating rules for the reservoir.

2. Materials and Methods
2.1. Object of Study

The Kaunas HPP reservoir is the largest artificial water body in Lithuania. The
reservoir was created by damming the Nemunas River in 1959. The reservoir is used by two
large hydropower plants—the Kaunas Hydropower plant, which has an installed capacity
of 101 MW and a rated head of 20.1 m, and the Kruonis Pumped Storage Hydropower
Plant (PSP), which currently has an installed capacity of 900 MW from four turbines and
a rated head of 93.6–111.5 m (depending on the water level in the upper reservoir). The
Kaunas HPP reservoir is mainly used for power generation but is also used for recreation,
navigation, irrigation, industrial water supply, flood management, and recreational fishing.
Water level fluctuations in the Kaunas HPP reservoir are mostly dependent on power
plant operation and the upstream inflow from the Nemunas River. The impounded area
of the Kaunas HPP reservoir at a normal water level (NWL) is 63.5 km2 and the volume
is 0.46 km3. The effective capacity of the reservoir available for hydropower is 0.22 km3.
The average depth of the Kaunas HPP reservoir is 7.3 m, and the depth of the reservoir is
10–12 m in the lower part and about 4–5 m in the upper part [32].

Operating two large HPPs causes water level fluctuations in the reservoir. The reser-
voir operation rules were established to protect the environment and ensure other stake-
holders’ needs. There are two main operation regimes. During normal operation, the
permitted water levels in the reservoir are between 43.5 and 44.4 m a.s.l. A daily water
level drawdown of ±0.4 m (from the normal headwater level NWL) is allowed. During the
fish spawning period, the operation of the Kaunas HPP and Kruonis PSP is restricted. The
fish spawning period occurs between 1 April and 30 June. During the restricted regime, the
headwater elevation of the Kaunas HPP reservoir must be between 43.7 and 44.0 m a.s.l. A
maximum difference of 10 cm between the highest and the lowest daily water level (or, in
other words, drawdown) is allowed. A daily water level change of 20 cm is allowed in the
reservoir if, each year, the operator commissions an environmental study according to the
Environmental research program and compensates for the environmental damage if it was
caused [2].

The northeastern shore of the Kaunas HPP reservoir was selected as the study area.
It is one of the main spawning sites for perch, common roach, and common bream [19],
and is located in between the Kaunas HPP and Kruonis PSP. The size of the selected area
is approximately 5 ha and contains several potential fish spawning sites. The bottom of
the reservoir in this area is very shallow and gently sloping. A detailed survey of the area
using traditional methods was conducted beforehand to gather data as a reference. The
study area contains several different shore conditions—shallow sandy beaches, steep banks
covered with land vegetation, and several areas containing aquatic macrophytes (reeds and
bulrush) that are typical spawning and nursing grounds for the fish. It was important to
select an area with different conditions that are common in different parts of the reservoir
in order for the findings of this study to be relevant on a much larger scale. The map of the
Kaunas HPP reservoir and study location is presented in Figure 1.
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Figure 1. Map of the reservoir of the Kaunas Hydropower Plant.

2.2. Shoreline Detection Using Remote Sensing Techniques
2.2.1. Data Collection and Processing

Planned drone flights were carried out throughout the summer and autumn of 2021
during different water level fluctuations in the reservoir. There were two drones used for
the study, i.e., DJI Martice 200 equipped with the 12 MP Sentera AGX710 multispectral
camera and Autel EVO II Pro equipped with the conventional XT705 20 MP RGB camera.
For each flight, the same mission was carried out in the same area (approximately 5 ha).
The survey area, flight paths, and settings were prerecorded and used for each mission.
During the mission, the drones took approximately 350 images of the area from a 60 m
elevation with an 80% front and 75% side overlap. Drone flight mission information is
presented in Table 1.

Table 1. Performed flight missions with the UAVs.

Date UAV Used Water Level in the Reservoir, m a.s.l.

08.06.2021 DJI Martice 200 43.88
23.08.2021 Autel EVO II Pro 44.23
01.09.2021 Autel EVO II Pro 44.16
23.09.2021 Autel EVO II Pro 44.26
08.10.2021 Autel EVO II Pro 43.97

In order to consistently process the images with a high accuracy, 10 permanent ground
control points (GCP) were established. The photogrammetric process needs the support of
control points to be able to scale and to georeference the model [33]. Most of the GCPs were
placed alongside the shoreline, where the accuracy is most crucial. The remaining GCPs
were established at the start, middle, and end of study area for an overall better referencing
performance.

Coordinates of those points were measured with the Trimble R6 GNSS receiver. GCPs
were visible in the photos that were taken and referenced to the exact coordinates with
the photogrammetry software. Water levels were measured at the start and end of each
mission using a water level gauge, which was leveled with the Trimble R6 GNSS receiver
to determine the accurate water level altitude during each mission.
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Data from UAVs were processed using photogrammetry programs, i.e., Agisoft
Metashape Pro and Pix4Dmapper. Drone surveying and mapping is commonly used
in civil engineering, agriculture, land surveying, and other fields. The workflow of drone
surveying and data processing with different applications is discussed in numerous articles,
some of which [21–24] were described in Section 1.

The techniques discussed in the articles and software documentation [34] were used
to process the raw data collected with the UAVs. Images were referenced and aligned,
and images with visible GCPs were tied to the exact coordinates. Then, camera calibration
was performed. After the alignment, tie points of the images and dense point clouds were
generated using high-accuracy and moderate-depth filtering, which performed the best.
Additional filtering was performed according to the dense point cloud confidence readings.
After the correction of the dense point clouds, digital elevation models were created and
orthomosaics were built according to the DEMs. The resulting orthomosaics were the final
products and were used to compare the fish spawning sites at various water levels in the
reservoir. The resulting orthomosaics were of a very high resolution, with a ground sample
distance (GSD) of approximately 1.5 cm. The aligned GCP’s precision measured as the
average rate of root mean square errors (RMSE) of all GCPs after alignment was 0.032 m on
average.

2.2.2. Data Analysis and Shoreline Detection Techniques

Various indices were calculated using the spectral bands of the orthomosaics in order
to separate water from other areas (sand, land vegetation, etc.). Indices were calculated to
simplify complex data amalgamations, e.g., orthomosaic images. The NDWI and NDVI
were used to highlight the water from other surfaces during the analysis of multispectral
images. These indices were derived from the NIR, Green (G) and Red (R) spectral bands.
They are dimensionless indices that describe the difference between visible and near-
infrared reflectance of surfaces. The orthomosaics created from RGB images did not have
an NIR band available. For this reason, the VARI and NGRDI indices were used in the same
application to highlight the pixels that represented water. Equations of the aforementioned
indices can be found in the literature that was reviewed in Section 1.

The resulting raster images of various indices were thoroughly analyzed. The in-
dex values of four different surface conditions in the study area were compared. The
thresholding technique was used to segment images into several classes—water, aquatic
macrophytes, land vegetation, and sand. Generally, a threshold limits can be selected by
trial and error (manually) or using the peak–valley method of histogram segmentation [35].
In this instance, index value limits were set manually for each surface. The resulting
segmented images were used to detect the shorelines.

Two different areas were analyzed to evaluate the performance of different approaches.
The first area was a wavy shoreline with steep banks. The water in that area was mostly
free from aquatic vegetation, so the shoreline, between land vegetation that covers the
banks and the water, was well-defined. The more challenging part was between the bends
of the shore, which were shaded from the sun. The second area was the opposite—the
banks were very shallow, covered with sand, and clear from vegetation. One part of the
sandy beach was covered with silt. Thresholding and unsupervised classification were
carried out for the raster images containing NGRDI, VARI, NDVI, and NDWI values.

2.3. Shoreline Detection in the Fish Spawning Sites

In the spawning sites, shoreline detection was complicated because the aquatic vegeta-
tion obstructed the water. For this reason, two different image classification techniques were
used to obtain a simplified data representation of a set of homogeneous and natural regions
(called classes) to help detect the shorelines. Unsupervised classification was carried out
for all the raster images. The outcome was groups of pixels with common characteristics
(similar index values or spectral reflectance) based on the software analysis of an image
without the user providing sample classes. This task was carried out with ArcGIS PRO
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software using ISODATA (ISO) clustering. Unsupervised (calculated by the software) classi-
fication methods are explained in [36]. Hierarchical methods are divided into agglomerated
and divisive; non-hierarchical algorithms are divided into density-based, partitioning,
grid-based and others. Algorithms such as Birch and Cure are hierarchical; K-means, Fuzzy
C-Means, and ISODATA are partitioning; DB-Scan and OPTICS are density-based. New
methods—the weighted density-based optimized classification method and the automatic
density-based optimized classification method—are proposed in [37].

Supervised classification was mainly used in an attempt to improve the results in the
areas with dense aquatic vegetation. For this step, orthomosaics and raster images of the
NDWI and NGRDI values were analyzed. These indices were chosen as they performed the
best for multispectral and RGB image segmentation. Supervised classification was carried
out by defining sample areas, otherwise known as Regions of Interest (ROI). The defined
areas were analyzed using the supervised machine learning algorithm (Random Forest)
to distinguish the characteristics of the provided areas. The RF ensemble classification
and regression approach was developed by [38]. It exhibits outstanding performance and
is widely used. The algorithm was used to segment the rest of the images into regions
that can be associated with the spectral signature or index values of the provided sample
class data. Four classes (different surfaces) were defined: water, aquatic macrophytes,
land vegetation, and sand. The described surfaces were not very homogenous. For this
reason, each class had several subclasses defining them. Although increasing the number
of training polygons was not always the optimum solution, after adding each subclass, the
results were checked by classifying several small areas throughout the dataset. After the
best classification performance was reached, the same training areas were used to classify
the entire raster image containing NDWI and NGRDI values. The same procedure was
repeated for all the datasets from all flights. This technique allowed us to fine-tune the
segmentation of the surfaces, but it required more time to define the classes and train
the algorithm. Classified images were used to derive the shoreline in the potential fish
spawning sites.

Various water body segmentation techniques by satellite image classification were
discussed in [39–41]. The assessment of accuracy and quality of image classification was
carried according to the forementioned studies by calculating Overall Accuracy (OA) and
Kappa Coefficients (KC). Accuracy assessment points were generated across the segmented
raster images. Accuracy assessment points were randomly distributed within each class,
where each class has a number of points proportional to its relative area. In total, 500 points
were created for each dataset containing assigned class values during classification and
ground truth values. Ground truth references were delineated manually by careful visual
interpretation of the very high-resolution the orthomosaic images. Areas containing aquatic
macrophytes were left out from this process as they are very heterogeneous and determining
ground truth values would be very difficult. Confusion matrices were computed, and
OA and KC values were calculated [40]. These coefficients showcased the classification
ability to separate water from the vegetation. Classification accuracy in the areas containing
aquatic macrophytes was evaluated by careful visual inspection as there are too many
uncertainties in such areas to assess by OA and KC.

Raster images containing NDVI and VARI indices were not segmented using super-
vised classification as these indices did not improve the results in the first part of the study
(Section 2.2.2). The results of traditional surveying and remote sensing were compared.
The shorelines were determined from the DEMs that were generated from data collected in
the traditional bathymetric survey. The methodology and the short description of the study
are provided in Section 1. A flowchart of the UAV data collection and shoreline detection
in the potential fish spawning sites is presented in Figure 2.



Sensors 2023, 23, 303 9 of 19Sensors 2023, 23, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 2. Flowchart of the UAV data collection and shoreline detection in the potential fish spawn-
ing sites of the Kaunas HPP reservoir. 

2.4. Spectral Analysis of Aquatic Vegetation 
A DJI Matrice 200 equipped with multispectral camera was used on 8 June 2021. The 

water level in the reservoir during the flight was 43.76 m a.s.l. The multispectral camera 
captured images with six bands (wavelengths range was 400–900 nm): red, blue, green, 
red edge 1&2, and near-infrared. These data allowed for a deeper analysis of the area. The 
main purpose was to study the spectral footprint of the aquatic macrophytes and land 
vegetation. Spectral reflections of four different surfaces were analyzed: water, land veg-
etation, water vegetation, and bare sand. Areas that represented studied areas were care-
fully selected and their spectral signatures were calculated using QGIS. The Bray–Curtis 
similarity index was calculated to estimate if the surfaces could be separated [42]. 

3. Results 
3.1. Shoreline Detection Using Remote Sensing Techniques 

The different shoreline detection techniques exhibited different strengths and short-
comings when appd in different conditions. A comparison of the resulting shorelines is 
presented in Figure 3. 

The first set of pictures was the orthomosaics of the two selected locations (a and b). 
The shorelines were detected by visual inspection from high-resolution orthomosaic im-
ages and are shown as the red line. This remains in all the other pictures as a reference. 
The second set of pictures is the classified NGRDI pictures using unsupervised classifica-
tion. The algorithm detected five different classes, which is the same outcome as that of 
the VARI raster image classification. Overall, the outcome of the NGRDI and VARI unsu-
pervised classification was essentially the same, and NGRDI was chosen for further in-
vestigations as it is easily readable, where values range from −1 to 1. The outcome of the 
classified NGRDI/VARI raster images was the worst. There was a great deal of noise (in-
correctly classified pixels) in the water and land areas. In the first location (a), the shoreline 
was the least defined, and in the second location (b), the algorithm was unable to separate 
water from the wet sand on the shore. The third set of the pictures is classified images of 
NDVI and NDWI values. In both cases, the unsupervised classification algorithm (ISO 
clustering) detected seven classes and both outcomes were very similar. The NDWI rep-
resented water with a little less noise as it is designed to do, but overall, in this case, the 
two techniques were essentially interchangeable. The use of the NIR band helped to sep-
arate water from the vegetation. In the first location, the shoreline was best defined and 

Figure 2. Flowchart of the UAV data collection and shoreline detection in the potential fish spawning
sites of the Kaunas HPP reservoir.

2.4. Spectral Analysis of Aquatic Vegetation

A DJI Matrice 200 equipped with multispectral camera was used on 8 June 2021. The
water level in the reservoir during the flight was 43.76 m a.s.l. The multispectral camera
captured images with six bands (wavelengths range was 400–900 nm): red, blue, green, red
edge 1&2, and near-infrared. These data allowed for a deeper analysis of the area. The main
purpose was to study the spectral footprint of the aquatic macrophytes and land vegetation.
Spectral reflections of four different surfaces were analyzed: water, land vegetation, water
vegetation, and bare sand. Areas that represented studied areas were carefully selected and
their spectral signatures were calculated using QGIS. The Bray–Curtis similarity index was
calculated to estimate if the surfaces could be separated [42].

3. Results
3.1. Shoreline Detection Using Remote Sensing Techniques

The different shoreline detection techniques exhibited different strengths and short-
comings when appd in different conditions. A comparison of the resulting shorelines is
presented in Figure 3.

The first set of pictures was the orthomosaics of the two selected locations (a and b).
The shorelines were detected by visual inspection from high-resolution orthomosaic images
and are shown as the red line. This remains in all the other pictures as a reference. The
second set of pictures is the classified NGRDI pictures using unsupervised classification.
The algorithm detected five different classes, which is the same outcome as that of the VARI
raster image classification. Overall, the outcome of the NGRDI and VARI unsupervised
classification was essentially the same, and NGRDI was chosen for further investigations
as it is easily readable, where values range from −1 to 1. The outcome of the classified
NGRDI/VARI raster images was the worst. There was a great deal of noise (incorrectly
classified pixels) in the water and land areas. In the first location (a), the shoreline was the
least defined, and in the second location (b), the algorithm was unable to separate water
from the wet sand on the shore. The third set of the pictures is classified images of NDVI
and NDWI values. In both cases, the unsupervised classification algorithm (ISO clustering)
detected seven classes and both outcomes were very similar. The NDWI represented water
with a little less noise as it is designed to do, but overall, in this case, the two techniques
were essentially interchangeable. The use of the NIR band helped to separate water from
the vegetation. In the first location, the shoreline was best defined and the shadows did not
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have an impact on the outcome. However, in the second location, this method was unable to
separate the water from the sand. Bare wet sand absorbs NIR in a similar manner to water.
In both cases, the difference in the indexed values was not enough to separate wet sand
from water. The fourth set of pictures was classified orthomosaic. The algorithm detected
five different classes. Unlike in the other cases, it separated a class for shadows (dark areas).
The noise in the classified pictures was average. The algorithm was considering the entire
light reflectance spectrum captured by the camera and was able to separate water from
sand, assigning it a different class. However, this was not done accurately, i.e., the area
with silt on the sand was assigned to the water class and the shallow part of the reservoir
with sand on the bottom was assigned to sand. The resulting shoreline in the shallow part
of the reservoir was not accurate.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 19 
 

 

the shadows did not have an impact on the outcome. However, in the second location, 
this method was unable to separate the water from the sand. Bare wet sand absorbs NIR 
in a similar manner to water. In both cases, the difference in the indexed values was not 
enough to separate wet sand from water. The fourth set of pictures was classified ortho-
mosaic. The algorithm detected five different classes. Unlike in the other cases, it sepa-
rated a class for shadows (dark areas). The noise in the classified pictures was average. 
The algorithm was considering the entire light reflectance spectrum captured by the cam-
era and was able to separate water from sand, assigning it a different class. However, this 
was not done accurately, i.e., the area with silt on the sand was assigned to the water class 
and the shallow part of the reservoir with sand on the bottom was assigned to sand. The 
resulting shoreline in the shallow part of the reservoir was not accurate. 

 
Figure 3. Comparison of the different shoreline detection techniques in different shore conditions: 
a—reservoir banks are steep with land vegetation covering them; b—very shallow sandy shores. 
1—Orthomosaic of the area with the shoreline marked as a red line (it stays in the other pictures as 
a reference). 2—Classified raster containing NGRDI values with the shoreline marked as a yellow 
line. 3—Classified raster containing NDWI values with the shoreline marked as a yellow line. 4—
Classified multispectral orthomosaic with the shoreline marked as a magenta line. 5—NGRDI 
thresholding with the shoreline marked as a magenta line. 

The assessment of accuracy and quality of unsupervised image classification was car-
ried out to determine the best-suiting indices for highlighting water. The results of accu-
racy evaluation are provided in Table 2. 

Table 2. Accuracy assessment of unsupervised index classification. 

Evaluation Indices 
Unsupervised Classification of 

NDVI NDWI NGRDI VARI 
Overall Accuracy, % 93.4 97.4 92.0 87.4 

Kappa Coefficient 0.867 0.947 0.837 0.744 

The accuracy assessment showcased that the best index for water identification was 
NDWI, which was to be expected. NGRDI showed to be a valuable option of water and 

Figure 3. Comparison of the different shoreline detection techniques in different shore conditions:
(a)—reservoir banks are steep with land vegetation covering them; (b)—very shallow sandy shores.
1—Orthomosaic of the area with the shoreline marked as a red line (it stays in the other pictures as a
reference). 2—Classified raster containing NGRDI values with the shoreline marked as a yellow line.
3—Classified raster containing NDWI values with the shoreline marked as a yellow line. 4—Classified
multispectral orthomosaic with the shoreline marked as a magenta line. 5—NGRDI thresholding
with the shoreline marked as a magenta line.

The assessment of accuracy and quality of unsupervised image classification was
carried out to determine the best-suiting indices for highlighting water. The results of
accuracy evaluation are provided in Table 2.

Table 2. Accuracy assessment of unsupervised index classification.

Evaluation Indices
Unsupervised Classification of

NDVI NDWI NGRDI VARI

Overall Accuracy, % 93.4 97.4 92.0 87.4
Kappa Coefficient 0.867 0.947 0.837 0.744

The accuracy assessment showcased that the best index for water identification was
NDWI, which was to be expected. NGRDI showed to be a valuable option of water and
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vegetation identification if NIR is not available. It has performed well at OA of 92% and
KC 0.837, which is according to categorization of the Kappa statistic—almost perfect [43].
These indices showcase classification ability to separate vegetation from the water area.
It is the most important part in our study as in most cases shoreline marks the transition
between land vegetation and the water area. But there are other surfaces that are difficult
to classify—sand (wet and dry) and areas containing aquatic macrophytes. These surfaces
are too heterogeneous to calculate OA and KC.

The accuracy assessment of the classification of the forementioned surfaces was done
by careful visual inspection. To improve the classification accuracy, the thresholding
technique was applied for the NGRDI, NDWI, and NDVI raster images. This technique
allowed us to assign an interval of index values to different classes. This technique allowed
us to fine-tune the results, to study the index values of certain areas, and to assign their
range to a different class. Thresholding the NDVI and NDWI allowed us to separate sand,
but the part with the silt on the sand had no distinguishable difference from the water.
Thresholding the NGRDI was promising. The index is calculated from the reflections of
the wavelengths in the red and green spectrum and was able to separate sand from water
relatively well (see the fifth set of images in Figure 3). The dark areas in the images were
the weak points, with the very dark and very bright areas having similar index values. In
some cases, this can denote dry areas, such as sand, and other times shady areas, which
could also be water, and both areas will have a very similar index value. Such areas must
be doublechecked and conscious decisions must be made. Overall classification of raster
images with NDWI values can be used to automatically detect shorelines, but it would not
work accurately if the shores were very shallow and sandy. Other indices and methods are
just a tool to help highlight water from other areas, but the shorelines should be defined
manually. The NIR spectrum gives more information about the surfaces and is not affected
by shadows to the same extent. The results indicate that orthomosaics containing the visual
RGB spectrum can also be used for shoreline detection coupled with the thresholding
technique.

Performing supervised classification using the machine learning algorithm slightly
improved the results of image segmentation. The outcome was compared with the thresh-
olding of NGRDI in the two areas with different shore conditions (Figure 4).
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In the case of the shallow nearshore with sandy banks (a), the transitional area that is
constantly affected by the waves (wet sand) was noisy, with some pixels being classified
as water and others being classified as sand. The area with wet sand is marked between
the two red lines. NGRDI thresholding is more useful in this scenario because the water,
and wet and dry sand have some separation from each other, according to the NGRDI
values. In the case of steep banks, where the shoreline can be defined as the separation
between water and land vegetation (b), the supervised classification worked very well and
the shoreline was defined very accurately. The resulting image of NGRDI thresholding has
more noise, which would make automatic shoreline detection difficult without filtering.
Overall, manually defining different classes for the machine learning algorithm improved
the results and classified images had less noise. The separation of water from the sand
was more pronounced and the algorithm was able recognize more surfaces. The resulting
images were more detailed, but it struggled in the same conditions as unsupervised
classification, i.e., shallow sandy areas where improvement was just slight, and trying to
define those areas with more input for machine learning algorithm resulted in more noise
in the rest of the image (pixels that were assigned to wrong classes), which produced the
opposite effect. Classification of the images with NGRDI values did not produce better
results than thresholding. Thus, supervised classification is not always the best solution,
and sometimes, depending on the conditions of the nearshore of the reservoir, NGRDI
thresholding is a better approach. Studying NGRDI values of different surfaces can result
in accurate image segmentation into different classes, and in the case of the shallow sandy
areas it was the most accurate option.

3.2. Shoreline Detection in the Fish Spawning Sites

It is possible to detect shorelines in areas with medium-density aquatic macrophytes
(bulrushes in this case). NGRDI thresholding was able to indicate water in such conditions
with relative ease (Figure 5).
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Figure 5. Shoreline detection in the areas containing medium-density aquatic vegetation.

Remote sensing techniques have great advantages over the traditional methods in
these areas because the vegetation does not obstruct the water, and shorelines can be
detected easily. Traditional bathymetric surveys in such areas are difficult. Echo-sounding
is not possible due to vegetation, and measuring points with an RTK-GPS receiver is
physically demanding. Areas in which traditional methods have a clear advantage are
those with dense aquatic vegetation (Figure 6).
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Figure 6. Shoreline detection in the areas containing high-density aquatic vegetation.

When the density of aquatic vegetation is high (in this case, areas with dense and
high reeds), it is very difficult to detect the shoreline using RS techniques. Dense aquatic
macrophytes almost completely obstruct the water. There were not many pixels indexed
as water and judging the location of the shoreline was very difficult. The thresholding of
NGRDI allowed for better separation of the surfaces, but in these cases, the shoreline could
only be approximated.

The shorelines derived from bathymetric measurements (according to the generated
DEM) and RS were compared (Figure 7).
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Figure 7. Shoreline detection comparison derived from traditional surveying and remote sensing.

It is noticeable that the shorelines derived from RS were more accurate in areas with
an absence of or medium-density aquatic vegetation. The shorelines derived from the
bathymetric measurements were not as detailed because the digital elevation model was in-
terpolated between the measurement points. Generally, the results derived from traditional
land-based surveys will never be as detailed because it is not possible to measure enough
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points to match the spatial resolution of the data collected by RS. Although bathymetric
measurements in areas with dense aquatic vegetation are difficult, but it was possible to
obtain accurate bathymetric data of the reservoir, which is where it has an advantage over
remote sensing. The shorelines determined using the morphological method might not
have been as detailed, but they were accurate enough to calculate dewatering areas in the
fish spawning grounds at any given water level throughout the entire operating range of
the HPPs, where the shoreline detection in such areas using RS is possible but complicated
and might be not as accurate depending on the conditions.

3.3. Spectral Analysis of Aquatic Macrophytes

A spectral signature analysis was carried out for the orthomosaic image captured with
the multispectral camera (Figure 8).
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Figure 8. Spectral signatures of different surfaces: water, sand, land, and water vegetation.

Judging from the graph, sand produced the highest reflection of blue, green, and red.
This is expected because it is a light color, i.e., it reflects the light the best and the values in
the range of NIR are lower, because NIR is absorbed by the sand. Water reflects light in the
blue and green spectrums the most. In the summertime, water in the Kaunas HPP reservoir
has a light green tint and the NIR spectrum reflectance is lowest out of all of the analyzed
areas, because water absorbs the NIR the most. The reflectance in the near-infrared region of
the electromagnetic spectrum suggests that the water may have contained a small amount
of algae. The most important part of this analysis was the comparison of land and water
vegetation. It is visible in the diagram that overall water vegetation had a higher reflectance
in the RGB range, with the largest difference being noticeable in the blue spectrum. Some
yellow reeds made up the water macrophytes; for this reason, red and blue reflectance was
higher as compared to the land vegetation. The NIR reflectance was quite similar for land
and water vegetation, with the land vegetation reflecting the NIR a little more, because it
was denser in general. A statistical analysis of the spectral reflectance of land and water
vegetation was performed for further investigation (Table 3).

The standard deviation of the reflection values in the visible region of the electromag-
netic spectrum of the water vegetation class was higher because it comprised different
types of aquatic macrophytes with different signatures. Analyzing the spectral signatures
of the subclasses that were defined for land and water vegetation, the Bray–Curtis similarity
index ranged from 71 to 89%.
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Table 3. Statistical analysis of the spectral reflectance of land and water vegetation.

Wavelength, nm 446 (Blue) 548 (Green) 650 (Red) 840 (NIR)

Spectral signature of land vegetation

Values 57.140 115.434 45.338 159.510
Standard deviation 24.382 28.731 19.218 32.831

Spectral signature of water vegetation

Values 112.262 128.086 71.747 146.954
Standard deviation 50.831 47.013 37.714 26.790

4. Discussion

According to our previous study on dewatering areas during drawdown operations
and water level fluctuations in the reservoir [1], we demonstrated that large multipurpose
reservoirs in lowland countries are susceptible to various ecological problems owing to
their morphology, which was discussed in the introduction. Accurate data of the most
vulnerable littoral areas are crucial for the optimal and environmentally sound operation of
the reservoir. Generally, shallow foreshore areas are very difficult to survey because they
are too shallow for echo-sounding and are usually measured using traditional bathymetric
surveying methods. Traditional types of surveying in reservoirs are difficult and labor
intensive because foreshores are often hard to access due to aquatic vegetation and accu-
mulated silt on the bottom. Remote sensing techniques showed to be a valuable addition
to traditional methods. It is possible to obtain bathymetric data of shallow water bodies
from multispectral or RGB imaging. These methods rely on the Beer–Lambert law, which
describes the absorption effect as light passes through transparent media (water) [44]. This
is the physical principle underlying the measurement of water depth from brightness levels
in captured imagery. There are plentiful studies on the matter [45,46]. For example, after
comprehensive calibration, the authors introduced an automated bathymetric mapping
method capable of a 4 m2 spatial resolution with a precision of ±15 cm for remotely sensed
datasets [47]. In the preliminary assessment of airborne hyperspectral coastal bathymetry
capabilities based on International Hydrographic Organization (IHO) standards, the au-
thors state that the hyperspectral bathymetry estimations were close to being consistent
with an IHO order 2 standard up to a 14 m depth in the first test location and up to a
5 m depth in the second location [48]. The datasets were collected over Mayotte and the
Geyser Bank, north of Madagascar, Indian Ocean. However, there is a weakness inherent
in photogrammetric methods due to uneven light. It has been shown that the red color
band has a greater sensitivity to depth than blue or green [46] but it does not penetrate
the water column as deeply. These studies use depth and water color relationships that
are site-specific and require ground surveys to calibrate this process [49], and the accuracy
suffers when there are changes in the substrate material, overhanging vegetation, surface
disturbance from waves and shadows, etc. [47].

An article by [50] presents a generic processing chain that covers all modules required
for operational flood monitoring from multispectral satellite data. Segmentation of the wa-
ter extent is performed by a convolutional neural network that has been trained on a global
dataset of Landsat TM, ETM+, OLI, and Sentinel-2 images. In the article, various water
segmentation techniques were discussed and the authors utilized an interesting approach
that could be used for different forms of satellite data. This approach is appropriate for
monitoring large floods, when the changes in the water surface area are large; however,
for our study, the resolution of the satellite images was not sufficient to track relatively
small changes. More detailed and accurate data are needed, and each dataset was analyzed
individually to obtain the most accurate results possible.

Another approach involves the use of airborne Light Detection and Ranging (LiDAR)
technology to conduct bathymetric surveys of shallow water regions. There are various
bathymetric LiDAR systems. The majority make use of a green laser for the bathymetric
survey. However, the availability of these devices is still relatively low, mostly due to their
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high prices. LiDAR is only feasible for relatively shallow and clear waters. During the study
of two lakes in Poland, it was concluded that a LiDAR sensor can be used for measurements
in the littoral zone (up to 1.6 m), and in deeper areas the accuracy significantly decreased [51].
In another study, an assessment of the ability to map river bathymetry using airborne LiDAR
was carried out [52]. Data were collected over 220 river kilometers in the Yakima and Trinity
River Basins in the USA. The mean error of water depths varied from 0.04 to 0.52 m. A
multistep morphological technique that works by utilizing the digital elevation models
(DEMs) obtained from LiDAR with respect to a tidal datum was discussed by [53]. It remains
unclear whether LiDAR surveying is accurate in areas containing water macrophytes such
as reeds and bulrush. For our purposes, it would be feasible to use a regular topographic
LiDAR system when the water level in the reservoir is at its lowest point.

We took the shoreline detection approach for this study using photogrammetry. The
drawback of this method is that it requires multiple surveys, but it was possible to determine
the shoreline in areas containing aquatic macrophytes where other methods would fail.
It is much easier to conduct RS surveys in difficult areas, and surveying is much quicker
compared to traditional surveys. Furthermore, traditional surveys cannot match the
resolution of the data collected by remote sensing (depending on the RS data source). There
are many different techniques for shoreline detection, as was explored in the Methodology
section.

Different water segmentation methods were implemented, including machine learning,
to establish the optimum methods for shoreline detection in shallow nearshore areas with
different conditions. A very interesting comparison and assessment of different object-based
classifications using machine learning algorithms were presented in the article [54]. The
study was implemented for bergamot and an onion crop located in Calabria (Italy). Four
classification algorithms were assessed: K-Nearest Neighbor, Support Vector Machines,
Random Forests, and Normal Bayes. The Remote Sensing and Geographical Information
Systems software Library was used in the image segmentation step. A similar approach
can be utilized for aquatic vegetation classification and segmentation, which could be the
basis for further research.

Our study demonstrated that image classification and thresholding of various indices
can be used to highlight pixels that represent water in areas containing aquatic macrophytes.
It works well in areas with medium-density vegetation, but using these techniques in the
areas covered with dense aquatic vegetation often does not clearly separate the shoreline.
Shorelines can be approximated by judging the density of water pixels in the aquatic
vegetation, but it is difficult and not as accurate as in areas that are clear from vegetation.

There is no universal method to detect shorelines using RS, i.e., in different conditions,
different methods are better-suited. NGRDI thresholding showed the best results in areas
with shallow and sandy shorelines, and supervised classification was typically the best
method for separating water from vegetation. Unsupervised classification of NDWI was
also accurate and performs relatively quickly if multispectral images are available. These
findings make surveying more accessible with simpler equipment. Moreover, when as-
sessing shorelines with washed-up silt, a visual analysis of orthomosaics was the most
reliable method because the other techniques failed to separate these areas without intro-
ducing excessive noise to the segmented images. In difficult conditions with dense aquatic
macrophytes, shoreline detection was very complicated. It was necessary to double check
the results of all water surface identification techniques, because each of them had some
percentage of incorrectly identified pixels (noise) and it was relatively easy to incorrectly
identify the shoreline. In such conditions, traditional manual bathymetric surveying is the
most reliable method, but it is very challenging.

5. Conclusions

The research area of approximately 5 ha is very small compared to the total area of the
reservoir, which is 63.5 km2 at normal water level. Moreover, various spawning sites have
different morphologies and nearshore conditions, so these results cannot be applied to the
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entire reservoir. The purpose of this research was to explore the possibility of utilizing
alternative surveying methods and to compare the outcome with traditional morphological
surveys. The successful implementation of modern surveying and analysis techniques
could provide very useful insights to assist in improving reservoir storage usage while
increasing power generation.

After comprehensive data analysis, it was determined that NDWI was the best-suiting
index for highlighting water from the vegetation (OA of unsupervised classification—97.4%,
KC—0.947). NGRDI also performed very well for the orthomosaics that did not contain NIR.
The OA of unsupervised classification of NGRDI was 92% and KC 0.837. These findings
can be adopted for further research in areas with similar conditions that are common
for the reservoirs in the lowland countries. The results of the spectral signature analysis
suggest that image segmentation could be carried out using supervised classification.
Medium resolution multispectral mosaics are available for most parts of Lithuania (GSD
is approximately 0.2 m); therefore, future research will focus on using the findings of
this study for the automatic detection and mapping of potential fish spawning sites over
the entire reservoir and for assessing the degree of accuracy. This information would be
invaluable, as current assessments of spawning sites in the reservoir are mostly based on
studies that were carried out in the 1990s.
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Abbreviations

HPP Hydropower Plant
PSP Pumped Storage Hydropower Plant
UAV Unmanned Aerial Vehicle
NDWI Normalized Difference Water Index
NDVI Normalized Difference Vegetation Index
VARI Visible Atmospherically Resistant Index
NGRDI Normalized Green–Red Difference Index
WL Water level
RS Remote sensing
DEM Digital elevation model
LiDAR Laser imaging, detection, and ranging
RGB Red, green, and blue
NIR Near-infrared radiation
RF Random Forest
NWL Normal water level
m a.s.l. Meters above sea level
GNSS Global Navigation Satellite System
GCP Ground control points
RMSE Root mean square error
ROI Regions of interest
OA Overall Accuracy
KC Kappa Coefficient
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IHO International Hydrographic Organization
GSD Ground sample distance
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