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Abstract: Brain abnormality causes severe human problems, and thorough screening is necessary
to identify the disease. In clinics, bio-image-supported brain abnormality screening is employed
mainly because of its investigative accuracy compared with bio-signal (EEG)-based practice. This
research aims to develop a reliable disease screening framework for the automatic identification of
schizophrenia (SCZ) conditions from brain MRI slices. This scheme consists following phases: (i) MRI
slices collection and pre-processing, (ii) implementation of VGG16 to extract deep features (DF),
(iii) collection of handcrafted features (HF), (iv) mayfly algorithm-supported optimal feature selection,
(v) serial feature concatenation, and (vi) binary classifier execution and validation. The performance
of the proposed scheme was independently tested with DF, HF, and concatenated features (DF+HF),
and the achieved outcome of this study verifies that the schizophrenia screening accuracy with
DF+HF is superior compared with other methods. During this work, 40 patients’ brain MRI images
(20 controlled and 20 SCZ class) were considered for the investigation, and the following accuracies
were achieved: DF provided >91%, HF obtained >85%, and DF+HF achieved >95%. Therefore, this
framework is clinically significant, and in the future, it can be used to inspect actual patients’ brain
MRI slices.

Keywords: schizophrenia; brain MRI; VGG19; Markov random field; local binary pattern; disease
detection

1. Introduction

The brain is one of the chief organs of humans. The abnormality in the brain causes
mild to severe unrecognized problems, and untreated brain abnormality will lead to
various other problems [1–3]. Therefore, the proposed research considers the schizophrenia
(SCZ) diagnosis.

SCZ, a severe mental disorder, typically affects a person’s thinking and behavioral
capability. The occurrence rate of this disease listed it in the top 10 illnesses in the global
burden of diseases reported by the World Health Organization (WHO) [4]. It is generally
diagnosed in men (aged early 20 years) and women (aged 20 to 30 years), and its symptoms
are not found in humans less than 12 and more than 40 years old [5].

The various causes which initiate the disorder in teens include genetics (parent or
sibling having the illness), environmental condition, troubles with brain chemicals, and
usage of mind-altering drugs will increase the occurrence rate of SCZ in humans [6,7]. The
recent WHO report confirms that nearly 20 million people globally are suffering from mild
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to severe disease, and appropriate diagnosis and treatment are necessary to reduce the
disease impact [8,9].

Common symptoms in most patients include hallucinations, irregular behavior, speech
problems, and emotional instability. If these symptoms are noticed, the patient can undergo
a clinical examination to confirm the disease. Therefore, controlling the disease with
appropriate treatment procedures is essential. Unfortunately, the WHO report also verifies
that around 60% of patients suffering from SCZ are not receiving the appropriate diagnostic
facility and treatment in low- and middle-income countries. Because of this, SCZ patients
are dying two to three times faster than ordinary people.

Clinical-level assessment of the patient with SCZ is mandatory, and the traditional
detection procedures must be modified when significant improvement is achieved. In this
case, electroconvulsive therapy and transcranial magnetic stimulation are the two most
clinically approved procedures, and electroconvulsive therapy is widely adopted as the
gold standard clinical methodology commonly implemented to detect the SCZ. The typical
brain signal (EEG) and brain image are collected with a recommended protocol which
always provides superior results on the chosen medical data. The EEG-supported SCZ
detection is a simple and commonly considered methodology due to its reduced cost and
non-invasive nature. However, the information collected from this scheme is complex,
and the complexity will increase when a multi-channel EEG is considered to diagnose
the disease. Hence, bioimaging (MRI and fMRI) schemes are used during the screening,
and it is found that the MRI scheme is efficient in detecting the disease compared with
its alternatives. Hence, the proposed work considered artificial intelligence (AI)-based
methods, which are used to improve the overall performance during decision making
and treatment. The cost of AI-based methods is lower compared with the traditional SCZ
screening process.

This research aims to improve a reliable disease diagnostic framework to detect the
disease using MRI slices. When the disease is recognized in its early phase, appropriate
treatment procedures can be employed to reduce the impact. The developed framework
consists of the following phases: (i) collection and pre-processing of the test imagery,
(ii) pre-trained deep learning (PDL) scheme execution to mine the deep features (DF),
(iii) implementation of a chosen handcrafted feature, (HF) mining technique to get essential
features, such as gray level co-occurrence matrix (GLCM) and local binary patterns (LBP),
(iv) mayfly optimization algorithm (MOA) supported feature optimization, (v) serial feature
concatenation to combine DF and HF, and (vi) classification and validation using binary
classifiers with five-fold cross-validation. This framework employs the VGG16 as the prime
PDL to improve the disease detection process, and its performance is validated with other
pre-trained schemes in the literature.

To extract the HF, this study implemented the following protocol (i) MOA-based
Otsu’s thresholding and Markov random field (MRF)-based segmentation to get the gray
matter (GM) and white matter (WM) from the brain MRI slice and mining the GLCM
from GM and WM images, and (ii) LBP-based image enhancement with mining of various
weights (W = 1 to 4) and features. The proposed scheme was experimentally investigated
using 40 volunteers’ (20 controlled and 20 SCZ class) images collected from [10,11]. The
considered test images were in 3D form. The necessary number of 2D slices was extracted
with a chosen technique, and every image was resized to an appropriate dimension. In
order to improve the diagnostic accuracy, a threshold filter was employed to remove the
skull section from the test image, and a skull-stripped brain MRI slice was then considered
for the assessment.

The contributions of this research are as follows:

• Automatic classification of MRI slices into controlled and schizophrenia using chosen
binary classifiers.

• Improving the accuracy in MRI slice evaluation using deep- and machine-learning
features.

• Mayfly-algorithm-based feature selection to avoid overfitting issue.
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This study is presented as follows: Section 2 presents the earlier research information,
Section 3 shows the methodology employed, and Sections 4 and 5 presents the experimental
result and conclusion, respectively.

2. Related Earlier Works

Early detection of SCZ is necessary to plan and execute the treatment to reduce
the impact of the disease on patients. Further, continuous medication and treatment to
help the patient recover from the severity of the disease. In the literature, several SCZ
detection schemes were proposed to recognize the disease using bio-signal and bio-image-
based procedures.

Siuly et al. [12] discussed the detection of SCZ using the EEG signal and achieved
improved diagnostic accuracy. Jahmunah et al. [13] proposed detecting the SCZ using non-
linear signal processing procedures using multi-channel EEG signals. This was a binary
classification to categorize the signals into specific/disease classes. Krishnan et al. [14]
discussed the detection of SCZ using the multi-channel EEG processed with intrinsic
mode functions (IMF). This work implemented a binary classification to detect the disease
with superior accuracy. The recent work of Arunmozhi et al. [15] implemented a joint
thresholding and segmentation procedure to extract and evaluate the SCZ from brain MRI
slices. Finally, Cetin-Karayumak et al. [16] presented a method to discuss the white matter
(WM) abnormality in the brain in SCZ patients. This work presented a detailed examination
using diffusion MRI slices.

Along with the EEG, brain MRI-based SCZ diagnosis was also widely discussed
by researchers, and these works yielded improved results compared with EEG-based
approaches. Oh et al. [17] discussed the detection of SCZ in fMRI slices with the DL scheme.
Endres et al. [18] presented a detailed discussion of SCZ detection using EEG and MRI, and
this integrated procedure helped achieve an enhanced diagnosis over earlier methods.

Noor et al. [19] presented a detailed review of detecting various brain abnormalities
using MRI slices. This work also presented the existing procedures to detect the SCZ
with improved accuracy and confirmed the need for the diagnosis’s artificial intelligence
(AI) technique.

All the above discussed a chosen AI technique to detect the SCZ using EEG and MRI
slices. This work confirms the need for a reliable SCZ detection procedure to reduce the
disease diagnostic burden in hospitals, particularly in low- and middle-income countries.

The proposed research aims to develop a novel SCZ detection scheme by integrating
the DF and HF to achieve better accuracy. The developed framework helps to detect the
SCZ using the MRI slices. The report achieved with this scheme is considered an initial
report and must be verified and confirmed medical professionals. The information achieved
from the system can support doctors during the treatment planning and implementation.

3. Methodology

This section of the work presents the methodology employed to detect the SCZ using
the MRI slices. The proposed work was implemented on the 2D slices extracted from
the considered SCZ database. The dataset was in 3D form and 3D to 2D conversion was
implemented using the ITK-Snap software [20,21]. This conversion helps to separate the
3D MRI into an axial, coronal, and sagittal plane, and the axial plane was examined in
this study for the assessment. This work also employed an artifact removal procedure to
eliminate the skull section, as depicted in Figure 1 [22].

3.1. Proposed Scheme

Figure 2 presents the SCZ examination technique implemented in this research. Ini-
tially, the pre-processed test images were examined and necessary DF and HF were ex-
tracted. To extract the DF, the PDL scheme (VGG16) was employed. This scheme initially
supplied a 1D feature vector of dimension 1× 1× 4096, and after the necessary dropout
(50%), this feature was then reduced to a value of 1× 1× 1024 features. These features
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were then considered to train and validate the classifiers to detect the SCZ. This framework
also consisted of an HF extraction procedure to get the GLCM and LBP features, and opti-
mal values of these features were then identified using MOA. The selected HF were then
serially combined with the DF with a dropout rate of 50% (i.e., 1× 1× 512 features), and
the concatenated features (DF+HF) were then considered to validate the SCZ detection pro-
cess using the binary classifiers employed with 5-fold cross-validation. The implemented
framework confirms that the classifier accuracy achieved using DF+HF is better (>95%)
compared with that of other procedures suggested in this research work.
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3.2. Schizophrenia Database

The performance of the developed system was tested and validated using the clinical
grade SCZ MRI dataset from [10,11]. This dataset consists of 99 volunteers’ 3D images
with the following categories: SCZ, controlled (CON), SCZ-sibling, and CON-sibling.
These images were collected from male and female volunteers whose racial demographics
included White and African American. The earlier works on this dataset can be found
in [21]. In this work, 20 3D MRI images were considered from the CON/SCZ class, and
from every volunteer’s 3D data, 30 slices (axial plane) were extracted using ITK-Snap, and
every image was then resized to a dimension of 224× 224× 3 pixels. The skull section in
these images was then eliminated using the thresholding filter/skull stripping algorithm
discussed in [22,23]. The test images considered in this work are presented in Table 1 and
the sample images are presented in Figure 3.

Table 1. Test images considered in this research work.

Image Class
Image

Dimension

Number of MRI Slices Considered

Total Training Validation

Controlled 224× 224× 3 600 420 180

Schizo 224× 224× 3 600 420 180
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3.3. Deep Feature Extraction

In the literature, a considerable number of earlier works are available to provide the
necessary information about the PDL schemes employed to examine a variety of medical
images (gray/RGB scale) [24,25]. The image examination procedures proposed with VGG16
confirm its merits, such as simple architecture, easy training and validation, and better
accuracy compared with other PDL schemes. Hence, in this work, the pre-trained VGG16
was adopted to extract the DF from the brain MRI slices, and during this task, the following
initial parameters were assigned: conventional augmentation to boost the number of test
images, learning rate with a value of 1 × 10−5 to obtain better accuracy, linear dropout
rate (LDR) during training with an Adam optimizer. The number of iterations was chosen
as 4000 and the total epochs were fixed as 50. In the fully connected (FC) layers, a 50%
dropout rate was assigned, which gives a DF dimension of 1× 1× 1024, and these features
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were considered to train and validate the disease detection performance of VGG16. During
this process, a 5-fold cross-validation was assigned and the best value among the trials was
chosen as the final result of the PDL scheme. A similar procedure was then repeated with
other PDL, such as VGG19. AlexNet, ResNet18, ResNet50, ResNet101, and Inception-V3
were used in this study [26]. Initially, SoftMax was considered for the image classification
and a similar procedure was then repeated using other binary classifiers.

3.4. Handcrafted Feature Extraction

HF plays a major role in machine-learning schemes and the extracted features were
considered to support the automated detection of diseases from medical images. In this
work, the necessary HF, such as GLCM and LBP, were extracted.

3.4.1. Gray Level Co-Occurrence Matrix

In the literature, the GLCM features are widely considered to detect the disease
using medical images [27–30]. In this work, the GLCM features were extracted from the
gray matter (GM) and white matter (WM) sections of the brain MRI. This extraction was
performed using the joint thresholding and segmentation implemented with MOA, Otsu,
and MRF. The earlier works with a similar technique can be found in [22,23].

The proposed work implemented the MOA- and Otsu-based tri-level thresholding
to enhance the image and MRF-based pixel improvement and segmentation technique.
The various stages involved in this process are as follows: (i) implementation of MOA
and Otsu’s thresholding to pre-process the image, (ii) MRF-based image enhancement and
pixel-based separation, (iii) obtaining the GM and WM sections, and (iv) GLCM separately
feature extraction from GM and WM images. This is an automated scheme and helps
to separate the brain MRI slice into two sections. The attained result with the proposed
scheme can be found in Figure 4. Figure 4a depicts the sample test image and Figure 4b
depicts the reduced energy function during the MRF process, Figure 4c,d depicts the
initial and final enhance image labels, and Figure 4e,f presents the extracted GM and WM
sections, respectively.
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3.4.2. Local Binary Pattern

LBP is one of the commonly employed quality improvement practices, and in this
work, the weighted LBP proposed by Gudigar et al. [31] was employed. The LBP is a simple
and capable technique to enhance the textural components of the image. The necessary
LBP was formed by relating the inmost pixel with neighbor pixels.

In LBP, the average local gray level can be calculated as:

ALGL =
∑8

i=1 (Ngi + Cg)

9
(1)
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where Cg is the gray level of the midpoint pixel, Ngi is the grey level of neighbor pixels,
and i = 1, 2, . . . , 8.

For a typical image, the global weighted gray level can be computed with:

global weighted graylevel = β(µ + σ) (2)

where µ denotes the mean, σ represents the standard deviation, and β is a control variable
with values, such as 1, 2, 3, . . .

The weighted LBP for an image can be computed as:

LBP =
Q−1

∑
q=0

s(Ngq − Cg)2q (3)

where Ngq shows the neighboring gray values, Q is the number of neighbors, q = 0, 1, 2, . . . , Q− 1,
and s is 0 or 1 based on the magnitude and threshold.

Other essential information on the LBP can be found in [32–34].
The LBP pattern achieved for the sample test image can be found in Figure 5. In this

work, the LBP weight (W) was chosen with a value of 1 to 4, and an enhanced image was
then considered to extract a feature with dimension 1× 1× 59 features.
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3.5. Mayfly Algorithm Selected Features

MOA is one of the recently proposed soft computing techniques developed by integrat-
ing the best factions of the firefly algorithm (FA), particle swarm optimization (PSO), and
genetic algorithm (GA), the mathematical expression for this algorithm is discussed below:

Assuming that MOA has equal male (M) and female (F) flies, which are randomly
distributed in a D-dimensional search location, every fly is symbolized by i = 1, 2, . . . , n
(forn = 30). During the exploration stage, each fly is permitted to join at the finest location
(Gbest). Afterward, M is approved to meet at Gbest by altering its location and speed. The
junction M close to the finest place will be decided by the Cartesian distance (CD) enlarged
with respect to iteration. This process is shown in Equations (4) and (5):

Pt+1
i = Pt

i + Vt+1
i (4)

Vt+1
i,j = Vt

i,j + C1 ∗ e−βD2
p(pbesti,j

− Pt
i,j) + C2 ∗ e−βD2

g(Gbesti,j
− Pt

i,j) (5)

where Pt
i and Pt+1

i are initial and final locations, Vt+1
i and Vt+1

i,j initial and final velocities,
respectively.C1 = 1 and C2 = 1.5 indicate local and global learning parameters. β = 2,
Dp, and Dg are the CD. When the update in flies persists, every M will attain Gbest and
performs a velocity update to attract F by performing a unique nuptial dance.
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The velocity update during this process can be defined as:

Vt+1
i,j = Vt

i,j + d ∗ R (6)

where nuptial dance (d) = 5 and R = random numeral [−1,1].
When the search by M is over, each F is allowed to find a M converged at Gbest.
The expression for position and velocity update for the F is depicted below.

P′t+1
i = P′ti + V′t+1

i (7)

F′t+1
i,j =

{
F′ti,j + C2e−βDm f

2
(Mt

i,j −Yt
i,j) if O(F i) > O(M i)

F′ti,j + W ∗ r if O(F i) ≤ O(M i)
(8)

where O = maximized objective value.
When the iteration improves, every F will reach the M and the offspring generation

takes place. Other information on MOA can be found in [35–37].
The objective of this study is to select the best features based on the CD of the CON

and SCZ images. This process is shown in Figure 6.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17 
 

 

The objective of this study is to select the best features based on the CD of the CON 

and SCZ images. This process is shown in Figure 6. 

 

Figure 6. Selection of optimal HF using MOA. 

The MOA parameters were assigned as follows, the number of flies = 30, total itera-

tions = 3000, objective value = maximization of CD, and terminating criteria = maximum 

iteration. Other parameters were assigned as in [38]. 

In this work, the MOA is considered to select the finest HF by comparing the fea-

tures of CON and SCZ class images, and this process is presented in Equations (9)–(15)  

25WM,2WM1WMWM GLCM...,GLCM,GLCMGLCM
)2511(
=

  
(9) 

25GM,2GM1GMGM GLCM...,GLCM,GLCMGLCM
)2511(
=

  
(10) 

5921)5911( 1W1W1W1W LBP...,LBP,LBPLBP =


 (11) 

5921)5911( 2W2W2W2W LBP...,LBP,LBPLBP =


 (12) 

5921)5911( 3W3W3W3W LBP...,LBP,LBPLBP =


 (13) 

5921)5911( 4W4W4W4W LBP...,LBP,LBPLBP =


 (14) 

4W3W2W1WGMWM)28611( LBPLBPLBPLBPGLCMGLCMHF +++++=  (15) 

In this work, the MOA-based feature selection was adopted to select 10311   HF 

from 28611   features. 

3.6. Serial Features Concatenation 

Serial feature concatenation is one of the commonly adopted features uniting the 

procedures, which is employed to combine the HF and DF. In this work, the DF of VFF16 

was initially reduced to 51211   by implementing a feature ranking and a 50% dropout 

process. The reduced feature was then combined with the optimal HF of value 10311   

to get the concatenated feature shown in Equation (16). These features were then con-

sidered to train and validate the considered disease detection scheme [39–43]. 

𝐶𝑜𝑛𝑐𝑎𝑡𝑖𝑛𝑎𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐷𝐹+𝐻𝐹)=(1×1×512)+(1×1×103)=1×1×615 (16) 

  

Figure 6. Selection of optimal HF using MOA.

The MOA parameters were assigned as follows, the number of flies = 30, total itera-
tions = 3000, objective value = maximization of CD, and terminating criteria = maximum
iteration. Other parameters were assigned as in [38].

In this work, the MOA is considered to select the finest HF by comparing the features
of CON and SCZ class images, and this process is presented in Equations (9)–(15)

GLCMWM(1×1×25)
= GLCMWM1, GLCMWM2, . . . , GLCMWM25 (9)

GLCMGM(1×1×25)
= GLCMGM1, GLCMGM2, . . . , GLCMGM25 (10)

LBPW1(1×1×59)
= LBPW11 , LBPW12 . . . , LBPW159 (11)

LBPW2(1×1×59)
= LBPW21 , LBPW22 . . . , LBPW259 (12)

LBPW3(1×1×59)
= LBPW31 , LBPW32 . . . , LBPW359 (13)

LBPW4(1×1×59)
= LBPW41 , LBPW42 . . . , LBPW459 (14)

HF(1×1×286) = GLCMWM + GLCMGM + LBPW1 + LBPW2 + LBPW3 + LBPW4 (15)

In this work, the MOA-based feature selection was adopted to select 1× 1× 103 HF
from 1× 1× 286 features.
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3.6. Serial Features Concatenation

Serial feature concatenation is one of the commonly adopted features uniting the
procedures, which is employed to combine the HF and DF. In this work, the DF of VFF16
was initially reduced to 1× 1× 512 by implementing a feature ranking and a 50% dropout
process. The reduced feature was then combined with the optimal HF of value 1× 1× 103
to get the concatenated feature shown in Equation (16). These features were then considered
to train and validate the considered disease detection scheme [39–43].

Concatinated f eatures (DF+HF)=(1×1×512)+(1×1×103)=1×1×615 (16)

3.7. Classification and Validation

The performance of the disease detection system depends on the scientific measures
computed using an experimental investigation. The performance of the proposed scheme
was confirmed using an experimental investigation, and during this investigation, the
binary classifiers, such as SoftMax, decision tree (DT), logistic regression, Naïve Bayes,
SVM linear kernel, boosted trees and K-nearest neighbour (KNN) were considered. During
this investigation, the necessary measures, such as the true positive (TP), false negative
(FN), true negative (TN), and false positive (FP) were initially computed and from these
values, other values, such as accuracy (ACC), precision (PRE), sensitivity (SEN), specificity
(SPE), negative predictive value (NPV), and F1-Score (FS) were achieved. The expression
for these values can be found in Equations (17)–(22) [39,40]:

ACC =
TP + TN

TP + TN + FP + FN
(17)

PRE =
TP

TP + FP
(18)

SEN =
TP

TP + FN
(19)

SPE =
TN

TN + FP
(20)

NPV =
TN

TN + FN
(21)

FS =
2TP

2TP + FN + FP
(22)

4. Result and Discussion

This section of the paper demonstrates the results attained using an Intel i7 2.9 GHz
processor with 12GB RAM and 4GB VRAM equipped with MATLAB®.

In this proposed work, the considered system was tested and its performance was con-
firmed using the images presented in Table 1. Initially, the performance of the VGG16 was
verified using considered images. During this process, the 2D MRI slices with dimension
224× 224× 3 pixels were considered and 420 images along with specified augmentation
(rotation of images with an angle of ±60o in steps of 10o) were initially performed to train
the PDL scheme. After the training, its disease detection performance was then verified
using the SoftMax classifier with a 5-fold cross-validation. Figure 7 presents the sample
results extracted from the initial convolution layer of VGG16. Figure 7a,b presents the
convolutional and MaxPool layer values, which are transferred to the next level of the
PDL, this process continues unti the FC layer offers a feature vector with a dimension
1× 1× 1024. Finally, the SoftMax layer considers these features to categorize the testing
images into CON/SCZ classes.
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Figure 7. Initial convolution layer result of VGG16: (a) Convolution (8× 8 = 64); (b) MaxPool
(8× 8 = 64 ).

Figure 8 depicts the convergence of the VGG16’s training and validation operation.
From Figure 8a, it can be noted that the accuracy is around 90% and the loss value is closer
to 10%, as in Figure 8b. This process was repeated five times and the best value achieved
during this process (trial 4 value) was considered the final result. The sample confusion
matrix and ROC curves for this process are depicted in Figure 9a,b, respectively.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17 
 

 

  
(a) (b) 

Figure 7. Initial convolution layer result of VGG16: (a) Convolution ( 6488 = ); (b) MaxPool (

6488 = ). 

Figure 8 depicts the convergence of the VGG16’s training and validation operation. 

From Figure 8a, it can be noted that the accuracy is around 90% and the loss value is 

closer to 10%, as in Figure 8b. This process was repeated five times and the best value 

achieved during this process (trial 4 value) was considered the final result. The sample 

confusion matrix and ROC curves for this process are depicted in Figure 9a,b, respec-

tively. 

  
(a) (b) 

Figure 8. Convergence of the training and validation operation for a trial with VGG16: (a) Accu-

racy; (b) Loss. 

  
(a) (b) 

Figure 8. Convergence of the training and validation operation for a trial with VGG16: (a) Accuracy;
(b) Loss.

Various performance values achieved during the 5-fold cross-validation are presented
in Table 2, and the corresponding accuracy is depicted in Figure 10. From this Table and
Figure, it is confirmed that the performance of trial 4 is better for VGG16, and this value
was chosen as the final output. A similar procedure was repeated with other existing
pre-trained DL schemes in the literature, and the results achieved for a SoftMax classifier
are depicted in Table 3. The overall performance of the PDL schemes with the SoftMax
classifier is presented as a glyph plot in Figure 11. This information also confirms that
the disease detection accuracy of VGG16 is better compared with other PDL methods. In
Figure 11, the image with a broader area is considered the best result, which confirms that
VGG16 offers better overall results on the considered brain MRI database.
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Table 2. Performance values achieved with SoftMax during 5-fold cross-validation.

Folds TP FN TN FP ACC PRE SEN SPE NPV FS

Trial1 155 25 148 32 84.1667 82.8877 86.1111 82.2222 85.5491 84.4687

Trial2 159 21 152 28 86.3889 85.0267 88.3333 84.4444 87.8613 86.6485

Trial3 154 26 161 19 87.5000 89.0173 85.5556 89.4444 86.0963 87.2521

Trial4 168 12 161 19 91.3889 89.8396 93.3333 89.4444 93.0636 91.5531

Trial5 156 24 160 20 87.7778 88.6364 86.6667 88.8889 86.9565 87.6404
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Figure 10. Accuracy values achieved during various trials.

After verifying the disease detection performance of the PDL scheme, the binary
classification was once again implemented using the optimally selected HF and its outcome
was then verified. During this operation, 1× 1× 103 features were considered to verify
disease detection with various binary classifiers. Table 4 presents the results achieved with
various classifiers considered in this research work. For DT and KNN, its variants, such as
coarse, medium, and fine were considered, and the results depicted in this table confirm
that the optimal HF feature helped to achieve a classification accuracy of up to 85.2778%
(DT-fine) and this value is lower compared with the VGG16 with SoftMax classifier.
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Table 3. Performance values achieved with other pre-trained schemes with SoftMax classifier.

Deep-Learning Scheme ACC PRE SEN SPE NPV FS

VGG16 91.3889 89.8396 93.3333 89.4444 93.0636 91.5531

VGG19 90.5556 88.4211 93.3333 87.7778 92.9412 90.8108

AlexNet 90.8333 89.3048 92.7778 88.8889 92.4855 91.0082

ResNet18 89.7222 87.8307 92.2222 87.2222 91.8129 89.9729

ResNet50 90.2778 89.1892 91.6667 88.8889 91.4286 90.4110

ResNet101 90.2778 90.0552 90.5556 90.0000 90.5028 90.3047

Inception-V3 91.1111 90.2174 92.2222 90.0000 92.0455 91.2088
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Table 4. Disease detection performance of binary classifiers with optimal HF.

Binary Classifiers ACC PRE SEN SPE NPV FS

DT-coarse 84.1667 84.3575 83.8889 84.4444 83.9779 84.1226

DT-medium 84.4444 84.0659 85.0000 83.8889 84.8315 84.5304

DT-fine 85.2778 85.0829 85.5556 85.0000 85.4749 85.3186

Logistic regression 83.6111 83.7989 83.3333 83.8889 83.4254 83.5655

Naive Bayes 82.7778 83.1461 82.2222 83.3333 82.4176 82.6816

SVM-linear 83.6111 83.7989 83.3333 83.8889 83.4254 83.5655

Boosted trees 84.7222 83.7838 86.1111 83.3333 85.7143 84.9315

KNN-coarse 83.3333 82.9670 83.8889 82.7778 83.7079 83.4254

KNN-medium 83.0556 82.5137 83.8889 82.2222 83.6158 83.1956

KNN-fine 84.1667 83.9779 84.4444 83.8889 84.3575 84.2105

In order to improve the accuracy achieved using individual DF and HF, a commonly
adopted serial concatenation was then employed (DF+HF) and the disease detection process
was once again repeated with various binary classifiers. During this process, the feature
sub-set with a dimension of 1 × 1 × 615 features was then considered and the image
classification task was once again repeated.

The classification results achieved with concatenated features (DF+HF) are depicted
in Table 5, and these results confirm that the overall result by boosted trees is better
(accuracy > 95%) compared with other methods. The confusion matrix achieved for this
classifier is depicted in Figure 12. Figure 13 presents the glyph plot constructed using



Sensors 2023, 23, 280 13 of 16

Table 4 values. This also confirms that the boosted trees classifier outperforms other
classifiers considered in this research work.

Table 5. Disease detection performance of binary classifiers with DF+HF.

Binary Classifiers ACC PRE SEN SPE NPV FS

SoftMax 94.4444 94.9438 93.8889 95.0000 93.9560 94.4134

DT-coarse 92.7778 93.2584 92.2222 93.3333 92.3077 92.7374

DT-medium 94.4444 95.9770 92.7778 96.1111 93.0108 94.3503

DT-fine 94.7222 95.4802 93.8889 95.5556 93.9891 94.6779

Logistic regression 92.2222 91.7582 92.7778 91.6667 92.6966 92.2652

Naive Bayes 93.0556 93.2961 92.7778 93.3333 92.8177 93.0362
SVM-linear 93.3333 93.3333 93.3333 93.3333 93.3333 93.3333

Boosted trees 95.2778 95.0276 95.5556 95.0000 95.5307 95.2909

KNN-coarse 93.8889 93.4066 94.4444 93.3333 94.3820 93.9227

KNN-medium 94.7222 94.9721 94.4444 95.0000 94.4751 94.7075

KNN-fine 94.1667 93.9227 94.4444 93.8889 94.4134 94.1828
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In the proposed research, a novel procedure was developed to classify the brain MRI
slices into CON and SCZ classes, and this procedure helped to achieve a classification
accuracy of >95%. In the future, the proposed scheme can be improved by considering other
handcrafted features existing in the literature. Further, the performance of the proposed
scheme can be tested and validated on other brain abnormalities, such as brain tumors and
ischemic strokes recorded with MRI imaging modalities.
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5. Conclusions

In recent years, the incidence rate of schizophrenia (SCZ) has increased among
teenagers due to various causes, and early diagnosis and treatment is necessary to re-
duce the impact of this abnormality. Medical image-supported SCZ detection is essential
for the appropriate treatment planning and for helping patients to have a better life. The
proposed research aims to develop a disease detection system to identify the SCZ class
brain MRI slice with better accuracy. The performance of the proposed system was indi-
vidually tested using (i) DF alone, (ii) HF alone, and (iii) serially concatenated features
(DF+HF). The proposed scheme employs the VGG16 architecture to get the necessary DF
from the MRI slices, and then the necessary HF is obtained using the MRF segmented
images (GM and WM) and LBP patterns. This work also employed the MOA-based optimal
feature selection process to reduce the dimension of the HF. The concatenated features
with a dimension of 1× 1× 615 helped to achieve a classification accuracy of >95% with a
binary classification executed with the boosted trees classifier. The result achieved with
this classifier is better compared with other binary classifiers considered in this research. In
the future, the classification result of this scheme can be improved by considering other HF
existing in the literature.
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