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Abstract: 3D object detection methods based on camera and LiDAR fusion are susceptible to en-
vironmental noise. Due to the mismatch of physical characteristics of the two sensors, the feature
vectors encoded by the feature layer are in different feature spaces. This leads to the problem of
feature information deviation, which has an impact on detection performance. To address this
problem, a point-guided feature abstract method is presented to fuse the camera and LiDAR at first.
The extracted image features and point cloud features are aggregated to keypoints for enhancing
information redundancy. Second, the proposed multimodal feature attention (MFA) mechanism is
used to achieve adaptive fusion of point cloud features and image features with information from
multiple feature spaces. Finally, a projection-based farthest point sampling (P-FPS) is proposed to
downsample the raw point cloud, which can project more keypoints onto the close object and improve
the sampling rate of the point-guided image features. The 3D bounding boxes of the object is obtained
by the region of interest (ROI) pooling layer and the fully connected layer. The proposed 3D object
detection algorithm is evaluated on three different datasets, and the proposed algorithm achieved
better detection performance and robustness when the image and point cloud data contain rain noise.
The test results on a physical test platform further validate the effectiveness of the algorithm.

Keywords: 3D object detection; multimodal feature; anti-noise; attention mechanism

1. Introduction

Reliable 3D object detection is the primary step to ensure the proper working of
autonomous driving systems. Current autonomous driving systems commonly use camera
and LiDAR for 3D object detection in order to get more accurate detection results and
more applicable scenarios. The camera can output high-resolution pictures, providing rich
color and texture information, but it is not easy to extract the spatial position of the object.
LiDAR can provide accurate spatial point cloud information, therefore most 3D object
detection algorithms [1–5] are based on LiDAR and achieve better detection performance.
However, both sensors are susceptible to weather noise: the camera is susceptible to image
texture noise and the LiDAR is susceptible to spatial point coordinate noise [6–9]. This paper
focuses on rainy scenarios, as it is the most common dynamic challenging weather condition
that effects vision sensors. These effects can directly blur object colors and contours in
images, and produce multiple reflections to affect the observability of spatial boundaries in
point clouds, which seriously degrades the performance of the object detector. Therefore,
effectively fusing the information provided by both sensors is an important approach to
improve the robustness of environment perception. In this paper, we propose a camera
and LiDAR fusion 3D object detection algorithm based on point-guided sampling of point
cloud spatial features and image semantic features, which shows significant performance
improvement in rain noise datasets.

In recent years, there are some studies on 3D object detection based on camera and
LiDAR fusion, which can be classified into serial type [10–16] and parallel type [17–38]
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according to the stage of fusion. The serial type method is represented by F-PointNet [13]
which usually takes the image of the camera as input first and uses image object detection
or semantic segmentation algorithm to get the spatial location of the object, then projects it
to the LiDAR point cloud to extract the point cloud of the frustum region around the object,
and finally uses the normal point cloud 3D object detection algorithm to get 3D bounding
boxes. F-PointPillars [10] replaced the point cloud detection network with PointPillars
on this basis and improved the detection speed. F-ConvNet [14] encoded the grouping
within the frustum region and achieved better detection accuracy. This type of method can
effectively reduce the number of point clouds and improve the computational efficiency, but
requires high image detection performance of the front. The parallel type method, on the
other hand, starts with MV3D [30], which extracts the image features of the LiDAR point
cloud and camera separately, and then fuses them at different stages, and finally obtains the
3D object detection results through the fully connected layer. Another approach of parallel
type methods is to introduce the correspondence between spatial points and pixel points
into the feature fusion, which can improve the feature correlation. Both MVP [31] and
EPNet [20] take advantage of this and achieve better detection performance. Most of the
subsequent parallel type methods use this fusion method, which requires the establishment
of a projection relationship between spatial and pixel points by sensor calibration, and then
fusing the point or voxel features with the image features of the corresponding pixel points.
However, since the point cloud is sparse while the image has higher pixel point density, it
will cause the problems of resolution mismatch and uneven sampling of image features.
Therefore, this paper proposes a P-FPS algorithm to project the point cloud onto the image
plane and then downsample the point cloud by farthest point sampling (FPS). This method
can improve the sampling rate of image features for close objects.

Attention-based methods [39] can aggregate information from different feature spaces,
and DETR [40] introduced self-attention into the field of image-based 2D object detection.
Some studies [41–43] since then have attempted to apply attention mechanisms to image-
based perception, and others [44–47] have used attention mechanisms in point cloud-based
applications. For image and point cloud feature fusion, the heterogeneity of the two sensors
can lead to the features obtained by the feature extraction network not to be in the same
feature space. In order to enable the point cloud features to fuse the most associated image
features, an MFA module is proposed in this paper. This module allows point cloud features
to be adaptively fused with image features from different feature spaces.

The contributions of this paper are as follows:

1. Aiming at the mismatch resolution between point cloud and image, a point-guided
3D object detection algorithm based on point cloud and image fusion is proposed.
The algorithm is based on the point-guided strategy of PV-RCNN, which fuses the
multi-stage features of two sensors and enriches the raw point cloud features. Com-
pared with other 3D object detection algorithms, this algorithm achieves significant
robustness when point clouds and images contain rain noise, and can utilize image
and point cloud information more sufficiently.

2. An MFA module is proposed for the problem of fused information interference caused
by different feature spaces of images and point clouds. This module uses an attention
mechanism to calculate the attention weights of multiple image features and point
cloud features corresponding to each point. Based on the correlation between point
cloud features and spatial features, different image features are fused adaptively.

3. To solve the problem of insufficient image features of close objects extracted from
point clouds obtained by FPS, a P-FPS algorithm is proposed. By projecting the LiDAR
point cloud onto the image plane before implementing FPS, uniform sampling of the
point cloud in the image plane is achieved and the image feature sampling rate of the
object is improved.

The remainder of this paper is as follows: In Section 2, the related background research
work is discussed. The proposed algorithmic framework and key modules are presented
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in detail in Section 3. Section 4 describes the experimental setup and experimental results.
Finally, Section 5 presents an ablation study of the method proposed in this paper.

2. Related Work

Image-driven fusion. Currently, camera-based 2D object detection has been able
to achieve an average accuracy of over 90% in publicly available datasets. However,
in 3D object detection, better results can be achieved by using LiDAR. Some studies
have attempted to utilize the advantage of both sensors and used a serial form of 2D
detection followed by 3D detection. Qi et al. [13] proposed F-PointNets for RGB-D data,
and used Fast R-CNN to generate 2D bounding boxes and delineate a frustum region
in 3D space, and then performed 3D detection of point clouds in this region based on
PointNet. This approach reduces the computational requirements for point cloud search
on the one hand, and reduces the interference of background point clouds on detection on
the other hand. However, the frustum region obtained by this method will still contain
background points behind the object; Wang et al. [14] made further improvements to
address this problem by using sliding regions for point cloud feature extraction separately.
To solve the heterogeneity problem in camera-LiDAR fusion, some works inspired by
Pseudo-LiDAR [48] fuse the pseudo point cloud generated from the camera with the
point cloud acquired by LiDAR. Pseudo-LiDAR++ [49], based on Pseudo-LiDAR [48], uses
the binocular camera disparity estimation principle to generate pseudo point clouds and
improve the quality of pseudo point clouds by matching them with LiDAR point clouds
through K-Nearest Neighbor (KNN).

Feature fusion. Unlike the image-driven approach, MV3D [30] and AVOD [26] use
the projection map of the LiDAR point cloud and the camera image as inputs, extract
image and point cloud features separately, and fuse the proposal regions to obtain the
final 3D detection results, avoiding the dependence on the camera detection performance.
3D-CVF [17] first transforms image features from multiple perspective to the Bird Eye View
(BEV) plane, and then selects the fusion degree of the two types features by an adaptive
gate fusion network. ContFuse [50] uses continuous convolution to aggregate images
and BEV features at different resolutions based on geometric position relationships. This
method uses dense image features to enrich the sparse LiDAR point cloud to enhance the
3D detection performance. These methods ignore the matching between features, although
they use multi-layer fusion.

Project-based fusion. Fusing complementary information from point clouds and
images would benefit 3D detection. However, the inherent heterogeneous nature between
sensors created difficulties in information fusion, and many studies projected point clouds
onto the images for data sampling. If these data are processed directly, some problems are
encountered: (1) sparse point clouds do not correspond to high-resolution image features
one by one, resulting in incomplete data fusion; (2) point cloud data are missing depth or
height information after projection. To address these problems, many attempts have been
made in recent studies. Zhu et al. [37] proposed VPFNet, a network that first generates
3D proposal regions from point clouds and divides them into multiple small grids again,
with the corner points of each grid as virtual points, and next projects these points onto the
image for image feature sampling and point cloud feature extraction, which reduces the
computation and compensates the lack of sparse point clouds. Huang et al. [20] proposed
a LI-Fusion module for fusing point cloud and image information at different scales in
the feature extraction stage, and then associating the image features to the corresponding
point cloud locations, while adding a consistency forcing loss for balancing the impact
of classification loss and location loss on the detection results. Wen et al. [36] combined
the fusion framework of MV3D [30] and AVOD [26], and proposed to project the height
information of the point cloud into the image to obtain RGB-D data, and then fused it with
the bird’s-eye view to construct a single-stage detector while using an adaptive attention
mechanism in feature extraction. Projection-based fusion methods usually capture image
features based on keypoints after FPS downsampling. Due to the affine transformation, the
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point cloud is no longer uniform in the image plane, and the feature-rich close objects cannot
be extracted completely. Therefore, this paper proposes to project the point cloud onto
the image plane followed by FPS in order to sample uniform image features. Meanwhile,
unlike the concat fusion of previous methods, an MFA module is proposed to make the
point cloud adaptively fuse image features with different weights.

3. Framework of Proposed 3D Detection Algorithm

For the above problems, this paper proposes a 3D object detection method that fuses
LiDAR and camera. The method can adaptively fuse image and point cloud features
based on the attention mechanism to cope with the performance degradation when the
point cloud or image contain rain noise. As shown in Figure 1, the network is based on
PV-RCNN [1], and image features are fused into the raw LiDAR features. When using
cameras and LiDAR for 3D object detection, the difference in the spatial location of the two
sensors can cause the results to be in different reference coordinate systems. To associate
the point cloud and image features, a projection of the point cloud to the image plane is
used to map each point to the corresponding pixel location. The projection of the point
PL(x, y, z) of the LiDAR to the pixel point PI(u, v) is expressed as:
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where f is the camera focal length, dx and dy are the length and width of a single pixel at
the image plane, u0 and v0 are offset of the pixel coordinate system, R is rotation matrix, T
is translation matrix, zc is the depth of the point to the image plane, K is the camera internal
reference matrix, and M is the transformation matrix from the LiDAR coordinate system to
the camera coordinate system.
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By keypoints guidance, point cloud features and image features of different scales can
be merged into the same point at the same time. Due to the heterogeneity of images and
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point clouds, the two types of features are not in the same feature space. To address this
problem, the proposed MFA module can effectively fuse the two types of features to get
fused features. Subsequently, the fusion features guided by keypoints are processed by
the region proposal network (RPN) module to get ROIs. Finally, ROIs are further reduced
by ROI pooling, and the location and class information of the object is obtained by the
refinement network.

3.1. P-FPS

Many point-based LiDAR 3D object detection algorithms [51,52] downsample the raw
point cloud by FPS to get the keypoints to reduce the computational effort. Projection-based
fusion algorithms [20,53] will project the LiDAR point cloud onto the image and often
use this downsampling method to process the raw point cloud. However, FPS uniformly
samples point clouds in 3D space, which results in uneven distribution of point clouds
when projected onto an image. As shown in Figure 2, distant objects contain little feature
information because they contain relatively few pixels. In contrast, the close object contains
more pixels and can provide rich features. The key points obtained by FPS are mostly
distributed in the distance. The image features sampled in this way lose considerable detail.
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To solve the above problems, a P-FPS is proposed for point cloud sampling. As shown
in Figure 3, suppose there are M 3D spatial coordinates PLi(xi, yi, zi) ∈ RL, i = 1, 2 · · ·M in
the raw point cloud, which can be projected onto the image plane by Equation (2) to obtain
the corresponding 2D pixel coordinates PIi(ui, vi) ∈ RI , i = 1, 2 · · ·M. In 3D space, the FPS
requires the calculation of the 3D Euclidean distance between the coordinates of two points,
PLi and PLj. Correspondingly, in the image plane, the 2D Euclidean distance DI between
the pixel coordinates PIi and PI j is required to be calculated, which can be expressed as:

DI = ‖Fp(xi, yi, zi)− Fp
(
xj, yj, zj

)
‖2, i, j = 1, 2 · · ·M (3)

where Fp(·) is the projection transformation relationship from the point cloud to the image
plane, which can be obtained from Equation (2). After the image plane is processed by 2D
FPS, the close object can contain more points. With the index information of these points,
the keypoints in 3D space can be obtained. The specific content of the algorithm is shown
in Algorithm 1.



Sensors 2023, 23, 233 6 of 19

Sensors 2023, 23, x FOR PEER REVIEW 6 of 19 
 

 

(2) to obtain the corresponding 2D pixel coordinates 𝑃𝐼𝑖(𝑢𝑖 , 𝑣𝑖) ∈ 𝑅
𝐼 , 𝑖 = 1,2⋯𝑀. In 3D 

space, the FPS requires the calculation of the 3D Euclidean distance between the coordi-

nates of two points, 𝑃𝐿𝑖 and 𝑃𝐿𝑗. Correspondingly, in the image plane, the 2D Euclidean 

distance 𝐷𝐼  between the pixel coordinates 𝑃𝐼𝑖 and 𝑃𝐼𝑗 is required to be calculated, which 

can be expressed as: 

𝐷𝐼 = ‖𝐹𝑝(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) − 𝐹𝑝(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗)‖2, 𝑖, 𝑗 = 1,2⋯𝑀 (3) 

where 𝐹𝑝(∙) is the projection transformation relationship from the point cloud to the im-

age plane, which can be obtained from Equation (2). After the image plane is processed 

by 2D FPS, the close object can contain more points. With the index information of these 

points, the keypoints in 3D space can be obtained. The specific content of the algorithm is 

shown in Algorithm 1. 

The sampling method above allows closer points to be obtained, but results in a slight 

reduction of distant points. To balance this loss, the number of points obtained by FPS and 

2D-FPS is divided by the following equation: 

𝑁𝑢𝑚P−FPS = [𝛼 ∙ 𝑁𝑢𝑚2DFPS + (1 − 𝛼) ∙ 𝑁𝑢𝑚FPS] (4) 

 

Algorithm 1 2D FPS 

Input: Raw point set 𝑃𝐿𝑖 ∈ 𝑅
𝐿, 𝑖 = 1,2⋯𝑀 

Output: Keypoints set 𝑃𝐾𝑗 ∈ 𝑅
𝐿, 𝑗 = 1,2⋯𝑇 

1 Suppose t keypoints has been sampled and (t + 1)th keypoint is sampled as follows 

2 for 𝑖 = 0 to (𝑀 − 𝑡) by 1 do 

3 for 𝑗 = 0 to 𝑡 by 1 do 

4 Calculate the distance between point 𝑃𝐿𝑖  and point 𝑃𝐾𝑗   𝐷𝐼 = ‖𝐹𝑝(𝑃𝐿𝑖) −

𝐹𝑝(𝑃𝐾𝑗)‖2 

5 if 𝐷𝐼 < last minimum dist then 

6 dist = 𝐷𝐼 

7 end if 

8 end for 

9 end for 

10 Select the point with minimum dist as the keypoint 

11 return Keypoints set  

 

 

Figure 3. Illustration of the P-FPS. 

  

Project

Raw Points

2D FPS

Index

Key Points

FPS

α 

1-α 

Figure 3. Illustration of the P-FPS.

The sampling method above allows closer points to be obtained, but results in a slight
reduction of distant points. To balance this loss, the number of points obtained by FPS and
2D-FPS is divided by the following equation:

NumP−FPS = [α·Num2DFPS + (1− α)·NumFPS] (4)

Algorithm 1 2D FPS

Input : Raw point set PLi ∈ RL, i = 1, 2 · · ·M

Output : Keypoints set PKj ∈ RL, j = 1, 2 · · · T
1 Suppose t keypoints has been sampled and (t + 1)th keypoint is sampled as follows
2 for i = 0 to (M− t) by 1 do
3 for j = 0 to t by 1 do
4 Calculate the distance between point PLi and point PKj: DI = ‖Fp(PLi)− Fp

(
PKj

)
‖

2
5 if DI < last minimum dist then
6 dist = DI
7 end if
8 end for
9 end for
10 Select the point with minimum dist as the keypoint
11 return Keypoints set

3.2. Point-Guide Feature Abstract

3D Feature Abstraction. The raw point cloud is first divided into many voxels of size
d × w × h. The feature vector of each non-empty voxel is encoded as:

Vi =

{
∑ xi

Point_num
, ∑ yi

Point_num
, ∑ zi

Point_num
, ∑ ri

Point_num

}
(5)

where Point_num is the number of points contained within each voxel and ri is the reflection
intensity of that point. Then, the 3D sparse convolution of 3 × 3 × 3 is used to obtain
spatial features at four different downsampling scales (1×, 2×, 4×, 8×).

2D Feature Abstraction. Image features contain rich texture and color information. In
order to be consistent with 3D feature extraction, ResNet-18 [54] is utilized to extract image
features. The network uses a series of 3 × 3 2D convolutional kernels to downsample the
feature maps at four different scales. The four scales of feature maps focus on different
feature details, and the same downsample scale as the 3D backbone is adopted.

Point Feature Sample. After obtaining T keypoints PK =
{

pK1, · · · , pKj
}

, j = 1, 2 · · · T
by P-FPS, each point will aggregate 3D and 2D features, respectively. For 3D features,
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each scale feature is first sampled using ball query. Suppose that the kth layer Voxel-wise
features are expressed as:

Vk =
{

vk
1, · · · , vk

N

}
(6)

The 3D coordinates of the kth layer are expressed as:

Vc = {vc
1, · · · , vc

N} (7)

The feature vectors of all voxels within the radius r are encoded as:

Fr
i =

{[
vk

i ; vc
i − pKi

]T
∣∣∣∣∣ ‖vc

i − pKi‖2 < r
∀vc

i ∈ Vc, ∀vk
i ∈ Vk

}
(8)

where vc
i − pKi denotes the local space features. Subsequently, these voxel features are

aggregated to the keypoint pKi as follows:

F3Dk
i = max{MLP(G(Fr

i ))} (9)

where G(·) denotes the random sampling of t voxels features. The feature vectors of all
4 scales are concatenated to the keypoint pKi as follows:

F3D
i =

[
F3D1

i , F3D2
i , F3D3

i , F3D4
i

]
(10)

For 2D features, the keypoints cannot be accurately corresponded to individual pixel
points, although they have been projected onto the pixel plane. The reason is that the
projection point coordinates are continuous, while the pixel point coordinates are discrete.
Therefore, bilinear interpolation is employed to sample the four pixels around the projection
point, and this process can be expressed as:

F2Dk
i =

{
B
(

FIk
i1 , FIk

i2 , FIk
i3 , FIk

i4

)}
(11)

where B denotes the bilinear interpolation function and FIk
i1 , FIk

i2 , FIk
i3 , FIk

i4 denote the feature
vectors of the four neighboring pixel points around the projection point. Finally, as with
the 3D features, the 2D features are stitched to the same keypoint pKi

F2D
i =

[
F2D1

i , F2D2
i , F2D3

i , F2D4
i

]
(12)

3.3. MFA Fusion

Since DETR [40] introduced the self-attention transformer [39] into the field of object
detection, many studies [36,41,42,45] have attempted to use the attention mechanism for
2D or 3D object detection. Most of these approaches focus on spatial attention, and in this
paper, we propose an MFA module based on the attention of feature channels. The purpose
of this module is to allow point cloud features to adaptively fuse image features based on
feature correlations. This module improves the robustness of the detection algorithm when
the image or point cloud contain noise.

As shown in Figure 4, for a keypoint pKi, the image features F2Di
i at the kth layer

scale are encoded by two sets of N 1D convolution kernels to obtain N Image value Vk
in

and Image key Kk
in, respectively, while the point cloud features F3Dk

in are encoded by 1D
convolution kernels to obtain Point query Qk

i . Each feature point is sampled to obtain a 1D
feature vector, therefore a 1D convolution kernel is used to encode the image feature vector
and the point cloud feature vector to obtain the same feature space. The vector length of
each layer is set to [32,32,64,128] after the 1D convolution kernel encoding.
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Figure 4. Multimodal Feature Attention (MFA) fusion module.

In the spatial self-attention mechanism of DETR [40], a positional encoding is added
to the feature vector to enable the network to learn positional features. In the MFA module,
the feature vectors used for attention calculation come from the same location, thus there
is no need to add position encoding. Image key and Point query are used to calculate
the feature weights. The correlation vector REk and feature weight Wk are obtained by
summation of the dot product, and the formula is as follows:

REk =


rek

1
rek

2
· · ·
rek

j

 =


SUM(Qk

i ·Kk
i1)

SUM(Qk
i ·Kk

i2)
· · ·

SUM(Qk
i ·Kk

ij)

 1√
dk

, j = 1, . . . , N (13)

Wk = Softmax
(

REk
)
=


wk

1
wk

2
· · ·
wk

j

, j = 1, . . . , N (14)

where dk is the dimension of Image key and Point query, which is used as a scale factor to
prevent extreme values after the summation of the dot product. Then the softmax function
is used to score the N elements in the correlation vector REk

j to get the feature weight Wk,
which represents the correlation between different image features and point cloud features.
Feature weight is weighted and summed with N Image values Vk

in to obtain the final image
feature vector, which is summed with Point query Qk

i to obtain the final fusion feature
vector FFk

i .
FFk

i = J(wk
j ·Vk

ij) + Qk
i (15)

where J(·) denotes the summation of the dot product.
The raw point-cloud feature is aggregated as in Equation (8). For the BEV, we project

the keypoint to the 2D bird-view coordinate system, and utilize bilinear interpolation to
obtain the features from the bird-view feature. Finally, to enrich the features, each keypoint-
guided feature vector is joined with feature vectors representing the raw point cloud and
BEV. It can be expressed as:

Fk
i =

[
FF1

i ; FF2
i ; FF3

i ; FF4
i ; Fraw

i ; FBEV
i

]
(16)

After downsampling by P-FPS, although more points fall within the object, there are
still many background points that do not contribute much to the detection task. Therefore,
following the design of PV-RCNN, the predicted keypoint weighting (PKW) module is
used to predict the probability of each keypoint being a foreground point. The difference is
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that the keypoint features processed by PKW contain information from images and point
clouds. The process of predicting keypoints can be expressed as:

F̃p
i = A

(
Fk

i

)
·Fk

i (17)

where A(·) denotes a three-layer MLP network with a sigmoid function to predict fore-
ground confidence between [0, 1].

3.4. ROI Pooling and Detection Head

The RPN structure is the same as PV-RCNN, where many ROIs are predicted based on
3D spatial features. As shown in Figure 5, the keypoints feature vectors contained within
each ROI are aggregated to a fixed 6 × 6 × 6 grid point in order to obtain a more accurate
prediction of the bounding boxes. The process is similar to the point feature abstraction
process, where the keypoints around the grid points are sampled by using ball queries at
different scales. The final ROI contains 216 grid point feature vectors within each ROI, and
then the class and 3D bounding boxes of the object are predicted by two layers of MLP.
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4. Experiments
4.1. Datasets

KITTI [55] is a common benchmark for outdoor 3D object detection. There are 7481
training samples and 7518 test samples, where the training samples are generally divided
into the train split (3712 samples) and the val split (3769 samples). In the 3D object detection
task, Car, Pedestrian and Cyclist were evaluated separately. KITTI presents three object
detection tasks (Easy, Moderate and Hard) of different difficulty according to the size of the
object, the degree of occlusion and the degree of truncation. In the experimental results, we
adopted “Easy”, “Mod.” and “Hard” to represent these three tasks.

Most of the KITTI data are collected in good weather, however there are many real
scenarios with bad weather (e.g., rain) that can affect the accuracy of LiDAR and camera
outputs. To simulate the rainy scenarios, two noises are added separately. The camera is
often influenced by rain which causes blurring and occlusion of the output image, resulting
in the loss of detailed features of the object [7]. In this paper, this blurring is simulated
using Gaussian blurring as follows:F(u) = 1√

2πσ
e
− u2

2σ2
u

F(v) = 1√
2πσ

e
− v2

2σ2
v

(18)
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where u, v denote the local coordinates of the Gaussian kernel and σ2
u , σ2

v denote the variance
in both directions. The Gaussian kernel is a two-dimensional normally distributed matrix
containing a set of pixel weights that can smooth the pixels inside the Gaussian kernel. For
the occlusion effect of raindrops, we randomly generated different raindrop traces through
image processing.

LiDAR is prone to noise in rainy environments [56,57], because raindrops can cause
multiple reflections to LiDAR. The result of this is that the 3D contour boundary of the
object is less obvious. Random noise is added to the 3D coordinates of the raw point cloud
to simulate this effect.

Figure 6 shows the effect after adding the noise. It can be observed that the vehicle
textures in the images become blurred and the vehicle contours in the point cloud are no
longer regular. These changes increase the difficulty of object detection because the object
specific features are weakened.
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4.2. Training and Inference Details

Since the camera FOV is in front of the vehicle, this paper takes the camera FOV as the
boundary and removes the point clouds beyond the boundary. Meanwhile, a rectangular
area is set to filter the remaining point clouds. The range of this region is (0 m < x < 70.4 m,
−40 m < y < 40 m, −1 m < z < 3 m), which is divided into many voxels of size (0.05 m,
0.05 m, 0.1 m).

For training, both the 2D backbone and 3D backbone use pretrained parameters di-
rectly, and the parameters are not updated. In addition, since there is a fixed transformation
relationship between LiDAR and camera, and the fusion data augmentation scheme is
not mature, conventional data augmentation methods are not used in this paper. The
network is built using OpenPCDet and trained on a GTX3090 with batchsize 4, epoch 80,
and learning rate 0.01.

4.3. Results on the KITTI Dataset with Rain Noise

The mainstream object detection algorithms are tested on the generated KITTI with
rain noise. Table 1 shows the test results of each algorithm in a KITTI validation split with
rain noise. For better evaluation, all algorithms are retrained on data with rain noise, and
the same training method is used. As can be seen in Table 1, the proposed algorithm shows
the best results in all three detection tasks of Car, Pedestrian and Cyclist. Compared with
the baseline algorithm PV-RCNN in this paper, the mAP is improved by 5.86%, 21.15%
and 41.17% in the three categories of the 3D detection task, respectively. Meanwhile,
Table 2 demonstrated that the proposed algorithm is still the optimal result in the BEV task.
Compared with PV-RCNN, the mAPs of the three categories are improved by 3.76%, 16.80%
and 40.00%, respectively. In the detection tasks of Pedestrian and Cyclist, the algorithm in
this paper shows a relatively large lead. The reason is that Pedestrian and Cyclist contain
few point clouds and their features are more affected by rain noise. It causes difficulties in
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point cloud-based algorithms in both training and detection, and the proposed algorithm
can aggregate image features as a complement to enrich the overall feature information.

Table 1. Results of 3D detection on the KITTI validation split with rain noise after training.

Modality Car Pedestrian Cyclist
Easy Mod. Hard mAp Easy Mod. Hard mAp Easy Mod. Hard mAp

PV-RCNN [1]

L

85.32 74.28 69.96 76.52 46.71 41.71 38.52 42.31 61.23 40.13 36.51 45.96
PointRCNN [4] 85.59 76.74 72.58 78.30 47.90 40.54 34.47 40.97 80.44 51.49 49.15 60.36

PartA2 88.91 77.31 74.57 80.26 56.79 49.38 43.17 49.78 76.31 51.72 47.44 58.49
SECOND [2] 80.24 67.93 64.45 70.87 41.82 35.37 31.68 36.29 61.32 42.46 40.43 48.07

PointPillars [5] 74.58 61.73 59.70 65.34 32.79 28.00 24.51 28.43 55.66 35.45 33.41 41.51

EPNet [20] L + C 87.96 76.53 75.24 79.91 - - - - - - - -
MFA fusion

(Ours) 88.24 77.95 76.85 81.01 56.82 50.49 46.47 51.26 84.46 60.20 57.59 64.88

Table 2. Results of Bird’s Eye View (BEV) on the KITTI validation split with rain noise after training.

Modality Car Pedestrian Cyclist
Easy Mod. Hard mAp Easy Mod. Hard mAp Easy Mod. Hard mAp

PV-RCNN [1]

L

92.12 83.95 79.39 85.15 52.93 47.45 44.21 48.20 62.70 41.15 39.00 47.61
PointRCNN [4] 91.95 84.26 81.97 86.06 54.37 44.82 38.44 45.88 81.09 53.97 49.54 61.53

PartA2 92.87 84.13 83.63 86.88 63.44 55.51 48.96 55.97 77.37 54.59 50.23 60.73
SECOND [2] 89.93 82.01 79.95 83.96 51.59 44.25 40.22 45.35 64.20 45.96 43.78 51.31

PointPillars [5] 89.76 79.51 77.30 82.19 40.67 34.10 31.53 35.43 58.23 37.61 35.59 43.81

EPNet [20] L + C 92.16 85.89 84.27 87.44 - - - - - - - -
MFA fusion

(Ours) 92.49 86.31 86.24 88.35 61.85 55.62 51.43 56.30 81.19 60.74 58.02 66.65

Figure 7 shows the comparison of PR curves for different detection algorithms on
KITTI with rain noise. Recall is the proportion of the number of objects that are correctly
detected among all ground truths. The precision in the Figure 7 indicates the percentage of
detected objects that are correctly detected at different recall rates. From the figure, it can
be observed that the proposed algorithm achieves the highest accuracy rate at the recall
rate of [1–0.6]. The high accuracy is also maintained at the recall rate of [0.6–0].
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In order to compare the robustness of the algorithms to the effects of rain noise, pre-
trained models are directly used for testing on noisy datasets. The proposed algorithm
is trained on the raw KITTI without rain noise. As can be seen in Table 3, the proposed
algorithm still achieves the best results even without training on noisy data.
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Table 3. Results of 3D detection on the KITTI val split with rain noise before training for the
Car category.

Modality Car
Easy Mod. Hard mAp

PV-RCNN [1]

L

34.90 31.00 29.07 31.66
PointRCNN [4] 27.04 25.61 23.54 25.40

PartA2 20.02 21.64 20.24 20.63
SECOND [2] 36.76 33.30 31.91 33.99

PointPillars [5] 30.82 27.87 27.26 28.65

MFA fusion (Ours) L + C 37.07 33.73 31.43 34.08

4.4. Results on the NUSCENES Dataset

To validate the effectiveness of the proposed algorithm, it was evaluated and compared
on the NUSCENES dataset. The dataset uses six cameras, one 32-line LiDAR, five millimeter
wave radars, IMU and GPS with 1000 different urban scenes, including scenes with visual
impact such as night and rain. As shown in Table 4, the proposed algorithm in the
NUSCENES dataset achieves a competitive performance. The proposed algorithm achieves
the highest results in the mAP metric. The rainy and night scenes contained in the dataset
affect the camera more, and the proposed algorithm adaptively learns the association
of image features with point cloud features in different feature spaces, thus achieving a
high robustness.

Table 4. Results of detection on the NUSCENES dataset.

mATE mASE mAOE mAVE mAAE mAP NDS

PointPillars [5] 33.87 26.00 32.07 28.74 20.15 44.63 58.23
SECOND [2] 31.15 25.51 26.64 26.26 20.46 50.59 62.29

CenterPoint [58] 30.11 25.55 38.28 21.94 18.87 56.03 64.54
MFA fusion (Ours) 35.56 28.33 35.29 29.75 22.46 57.54 60.51

4.5. Results on Physical Test Platform

As shown in Figure 8, a physical test platform was built to verify the algorithm
proposed in this paper. The platform is installed with a 32-line LiDAR, an IMU, a monocular
camera, and a 77 GHz millimeter wave radar. Data from all sensors were collected by
VECTOR VN5640 and aligned to the same timestamp with same time source. The proposed
algorithm was tested on LiDAR and camera data, which were converted to the format of
the KITTI dataset.
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Figure 8. Physical test platform.

As shown in Figure 9, a slice of data collected by the actual physical test platform
shows that the proposed algorithm obtains better 3D detection performance. Our algorithm
and PV-RCNN are trained on KITTI data with noise, while noise is added on the actual test
data. The results in the first row are output by the camera, the results in the second row are
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obtained by the proposed algorithm, and the results in the third row are obtained by the
PV-RCNN. It can be observed that the proposed algorithm is able to detect more objects.
It is important to note that testing the algorithm on the collected data is a cross-domain
problem. This is due to the fact that the KITTI sensor models and scenarios are not the
same as the collected data, and random noise simulating the effects of weather is added
during the testing. The proposed algorithm incorporates information from different stage
features and different feature spaces to effectively alleviate this problem.
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5. Ablation Studies
5.1. On P-FPS

To study whether the points sampled by the proposed P-FPS contribute to the object
detection task, the recall of ground truth points is used to evaluate the results. The object
bounding box provided by the ground truth is used to determine whether the points
sampled by P-FPS and FPS belong to the foreground points. As shown in Figure 10, the
number of sampled points falling into the ground truth object box by P-FPS is approximately
three times higher than that by FPS for the same setting of keypoints number. From the
results, it is clear that the proposed P-FPS can sample more points belonging to the close
objects, which is helpful for both the effectiveness of image feature sampling and the
subsequent object bounding boxed prediction stage.
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Figure 10. Comparison of P-FPS and FPS on recalling GT points: (a) P-FPS (recall 1507 points);
(b) FPS (recall 575 points).

While increasing the number of close object points, the distant points should not be
ignored. Therefore, different proportions are assigned for the sampling points number
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of FPS and 2D-FPS by Formula (4). As shown in Figure 11, the effects of different α are
compared on the detection performance, and three categories of mAP are used to evaluate
the detection results. It can be seen that the proposed method achieves the optimal detection
performance at α = 0.3. When α decreases, the sampling results tend to be FPS, and the
keypoints obtained do not contain closer object points. On the contrary, when α increases,
the sampling results tend to be P-FPS, and the keypoints lose the features of distant objects.
Table 5 shows the 3D detection results of the proposed sampling method compared with
the traditional FPS method. The proposed sampling algorithm is substantially better than
FPS in Car and Pedestrian, and obtains competitive results in Cyclist.
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Table 5. Results of 3D detection on the rain noise data with different sample methods.

Car Pedestrian Cyclist
Easy Mod Hard mAp Easy Mod Hard mAp Easy Mod Hard mAp

FPS 88.14 76.58 76.23 80.32 56.15 50.32 44.82 50.43 83.61 61.89 57.38 67.63
P-FPS 88.24 77.95 76.85 81.01 56.82 50.49 46.47 51.26 84.46 60.20 57.59 67.42

5.2. On Fusion Feature

PKW module can predict the probability of keypoints being foreground points, and
the accuracy of this result will directly affect the subsequent 3D bounding box prediction.
Keypoints with predicted probability greater than 0.05 are marked as true positives. It can
be observed from Figure 12a,b that by fusing the feature information of the image, the
foreground points predicted by the PKW module are more accurate. Conversely, if only
LiDAR point cloud features are used, the PKW module will predict more background points.
The results confirm that the PKW module will assign more weights to the foreground points
by using the fused features, which further reduces the influence of background points.
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prediction with fusion feature. (b) Foreground point prediction without fusion feature.

The detection performance of fusing features at different stages is evaluated separately.
As shown in Table 6, the first 4 rows are the result of using only one of the features in{

FF1
i , FF2

i , FF3
i , FF4

i
}

. It can be observed that the FF1
i , FF2

i features obtain higher detection
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accuracy, which indicates that low-dimensional features contribute more to the detec-
tion algorithm. The last row adopts the fused features of all stages and obtains the best
detection accuracy.

Table 6. Effects of different feature components.

FF1
i FF2

i FF3
i FF4

i mAP (Car)
√ 80.54

√ 79.91
√ 79.25

√ 77.36
√ √ √ √ 81.01

5.3. On MFA

In the attention mechanism, multiple heads are usually used to fuse representations
from different feature spaces. The detection performances of the proposed algorithm with
different numbers of heads are evaluated. As shown in Figure 13, in the Car category, the
best detection performance is achieved when the number of heads is 4. When the number
of heads decreases or increases, the detection accuracy decreases.
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Figure 13. Performance comparison on the car category with different heads.

The image features contain rich texture features. In order to verify the effectiveness of
these features in improving the detection performance in rain scenarios, the image features
are removed and compared with the proposed algorithm. It can be seen from Table 7 that
only using point cloud features will significantly reduce the detection performance of the
algorithm for car category. This suggests that even if the image features become blurred,
there is still a non-negligible contribution to the detection accuracy.

Table 7. The suppression effect of fusion features under rain noise.

Feature Easy Mod Hard mAP (Car)

Only LiDAR 88.05 74.21 70.49 77.58
MFA fusion 88.24 77.95 76.85 81.01

To visually demonstrate the attention effect of MFA, the attention results of each
keypoint are visualized in Figure 14. The first row in the figure is the raw image output
by the camera, the second row is the attention difference of each feature point, and the
third row is the detection result. Each keypoint aggregates image features in four different
feature spaces through the MFA module, and these features are assigned different weights
by the attention mechanism. The different colors shown in the Figure 14 represent the
image features with the largest weight among the four kinds of image features fused by
the keypoint. It can be observed that the proposed method adaptively selects different
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image feature fusion weights at different locations in the image. There is a clear boundary
difference between most objects and backgrounds. This shows that the MFA module can
selectively fuse image features according to the illumination changes and texture details of
the image.
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6. Conclusions

In this paper, a new camera and LiDAR-based 3D object detection algorithm is pro-
posed, which is based on point-guided sampling of point cloud features and image features.
The multi-head attention mechanism is introduced into the feature fusion task, and the
proposed MFA mechanism is used to realize the adaptive fusion of point cloud features
and image features. A projection-based sampling method, P-FPS, is proposed, which can
significantly improve the sampling rate of image features and obtains more abundant
image information to the fused features. In some scenes, the proposed F-FPS can extract
about three times the number of effective feature points, compared with traditional FPS.
In order to simulate the scene where the sensor contain rain noise, the KITTI dataset with
rain noise is established. The proposed method shows better detection performance and
robustness when tested on KITTI and NUSCENES datasets. Compared with the baseline
algorithm PV-RCNN in this paper, the mAP is improved by 5.86%, 21.15% and 41.17% in
the three categories of the 3D detection task, respectively. Finally, the algorithm is tested
on the physical test platform, which further verifies the effectiveness of the algorithm. In
future work, more real extreme weather data will be collected, and weather simulation tests
in virtual environments will be used to test the robustness of the algorithm. In addition,
the domain adaptation problem caused by the different distributions of the training dataset
and the testing dataset will also be studied to improve the generalization of the feature
extraction network.
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