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Abstract: High-speed railway administrations are particularly concerned about safety and comfort
issues, which are sometimes threatened by the differential deformation of substructures. Existing
deformation-monitoring techniques are impractical for covering the whole range of a railway line at
acceptable costs. Fortunately, the information about differential substructure deformation is contained
in the dynamic inspection data of longitudinal level from comprehensive inspections trains. In order
to detect potential differential deformations, an identification method, combining digital filtering, a
convolutional neural network and infrastructure base information, is proposed. In this method, a
low-pass filter is designed to remove short-waveband components of the longitudinal level. Then, a
one-dimensional convolutional neural network is constructed to serve as a feature extractor from
local longitudinal-level waveforms, and a binary classifier of potential differential deformations in
place of the visual judgement of humans with profound expertise. Finally, the infrastructure base
information is utilized to further classify the differential deformations into several types, according
to the positional distribution of the substructures. The inspection data of four typical high-speed
railways are selected to train and test the method. The results show that the convolutional neural
network can identify differential substructure-deformations, with the precision, recall, accuracy and
F1 score all exceeding 98% on the test data. In addition, four types of deformation can be further
classified with the support of infrastructure base information. The proposed method can be used for
directly locating adverse substructure deformations, and is also becoming a promising addition to
existing deformation monitoring methods.

Keywords: differential deformation; identification; substructure; high-speed railway; longitudinal
level; convolutional neural network

1. Introduction

Nowadays, the high-speed railway (abbr. HSR) in China has become the predominant
and preferred means of transport, due to the merits of efficiency and comfort. However,
the comfortable and safe operation of high-speed vehicles is inevitably dependent on the
stability of railway substructures, including subgrade, bridge and tunnel, as depicted in
Figure 1. In addition, the deformation of substructures, especially differential deformation,
is a kind of frequently occurring disease, threatening the comfort and even the safety of
passengers if the deformation develops to a certain magnitude.
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In general, the differential deformation of substructures has several forms of existence.
The first is the subgrade differential settlement due to foundation deformation, typically
induced by groundwater exploitation [1], structural self-weight and cyclic vehicle load [2].
Moreover, the subgrade frost-heave in seasonal frozen-soil regions, due to the volume
expansion of aqueous soil in the natural low temperature environment [3], is another type
of subgrade deformation. The second is the differential settlement of piers, which can be
attributed to similar causes as the subgrade differential settlement. The third is the differen-
tial settlement in tunnels, where the deformation of the inverted arch is the predominant
disease, due to the complexity of geological conditions and operation interference. The last
is the differential settlement of bridge-subgrade or tunnel-subgrade transitions, induced
by the difference in settlement velocity and stiffness of different structures [4]. As for the
railway infrastructure containing superimposed layers of substructures and superstructures
from the bottom up, the above-mentioned substructure displacement will eventually be
transferred to the rail surface, leading to vertical unevenness along the railway line, i.e.,
the longitudinal level [5]. As a consequence, the dynamic responses of vehicles running
on these sections will be aggravated [1,6], evoking comfort and safety issues. Moreover,
the vehicle dynamic responses induced by substructure differential settlement will in turn
accelerate the deterioration of longitudinal level irregularities [7] and railway infrastruc-
ture [8,9], increasing maintenance and renewal costs. Therefore, it is of great importance to
effectively monitor and identify the differential substructure deformation. It is also worth
noting that while the deflection of the catenary [10] also threatens the safe operation of
HSRs, this kind of disease is not of concern here.

Up until now, many monitoring methods have been adopted for HSR substructure
deformation. Traditional methods, on the basis of settlement monitoring pile, sedimentation
plate, sedimentation cup, and leveling measurement [11–14], are widely used, but also
blamed for the high cost, low efficiency and large manual workload. For the purpose of
automatic monitoring, optical fiber sensors [15], such as FBG (fiber Bragg grating) sensor
and BOTDR (Brillouin optical time domain reflectometry), are also adopted, but mainly for
the settlement monitoring of the deep soil layer [11], and they are usually impractical for
covering the whole range of a HSR line. In recent years, wide-area monitoring methods
based on GNSS (global navigation satellite system) [16,17] and InSAR (interferometric
synthetic aperture radar) [18–20] have attracted much attention from researchers and
engineers. They share the merits of automatic monitoring, and full-time, wide coverage
and remote sensing, but are mainly used for large-area deformation, with a shortage of
relatively low precision.

In spite of the aforementioned monitoring methods, people tend to ignore track dy-
namic inspection by the comprehensive inspection trains (abbr. CITs) as an auxiliary means
of monitoring substructure deformation. Nowadays, in order to guarantee the safe and sta-
ble operation of HSR lines, railway administrations and companies around the world utilize
CITs to periodically inspect geometric track irregularities, which reflects the unevenness of
the rail surface. The track inspection data (abbr. TID) are then compared with predefined
regulatory limits to locate adverse track states. More importantly, according to the mapping
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relationship of deformation between substructures and rail surface [3,5,7], the deformation
information of structures is contained in the TID and can be recognized, thus providing a
convenient and efficient means of monitoring the deformation state and detecting potential
diseases. In the literature, there are research studies concentrating on the identification of
track deformation induced by mud pumping [21] and high temperature [22,23] by using
TID. Moreover, the recognition of the 32 m cyclic-creep camber deformation of simply sup-
ported girders has also been fulfilled by early research using longitudinal-level inspection
data [24,25]. The characteristic wavelengths of the deformation of the railway track and
girders are below 10 m and cyclic 32 m, respectively. However, research focusing on the
identification of substructure deformation with wavelengths above 40 m, using TID, are
rarely found.

In light of the above situation, this study aims to fulfil the purpose of the differential-
deformation identification of HSR substructures, mainly on the basis of dynamic inspection
of longitudinal-level irregularity. Meanwhile, the base information account of railway
infrastructures, which contains locations, lengths and types of substructures and curves,
is also gathered and utilized. Then, a differential-deformation-identification method is
proposed. In the method, a digital filter is designed to remove irrelevant information in the
longitudinal level and a delicate convolutional-neural-network (abbr. CNN) is constructed
to automatically identify potential substructure deformations. Finally, the locations of
identified deformations are matched with the base information account, to determine the
exact deformation types.

The rest of the paper is organized as follows. The fundamental principle of track
dynamic inspection, on-board CITs, and basic information about TID are introduced in
Section 2, while the proposed differential-deformation-identification method is detailed
in Section 3. Then, a case study and evaluation of the method are presented in Section 4.
Finally, Section 5 summarizes the main conclusions.

2. Track Dynamic Inspection

CITs are instrumented with the track-dynamic-inspection system, which mainly con-
sists of accelerometers, displacement meters, gyroscopes, acquisition devices and signal
processing computers. CITs typically conduct dynamic inspection at a commercial speed,
and the major inspection item is geometric track irregularities, including longitudinal
level (surface), alignment, gauge, cross-level and twist [26]. As the substructure deforms
mainly in the vertical direction, it is most correlated with the geometric parameter of the
longitudinal level, which is inspected in accordance with the basic theory of the inertial
reference method [27], as plotted in Figure 2.
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The inertial reference method builds an inertial reference in the running vehicle body
by using accelerometers and gyroscopes, and measures the relative distance between the
rail and the vehicle body by using displacement meters. Then, the relative position of
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the rail surface in the inertial coordinate, i.e., the longitudinal level, can be generated.
As depicted in Figure 2, let Z represent the vertical displacement of the vehicle body, Y
represent the longitudinal-level irregularity and W represent the relative distance between
the rail surface and the vehicle body. In detail, Z can be calculated by the quadratic
integral of vertical vehicle-body acceleration, and W is directly measured by the displace-
ment meter. Therefore, longitudinal level Y can be calculated in accordance with the
following formula:

Y = Z + W =
x ..

Zdtdt + W (1)

According to the above principle, the track dynamic-inspection system synthesizes
several original signals into various track-irregularity parameters, after a series of processes
including A/D conversion and filtering. The TID are spatially sequential data and are
discretized at 0.25 m increments along the railway track. Moreover, the measurements of
longitudinal level are output in three wavebands, i.e., 1.5~42 m, 1.5~70 m and 1.5~120 m,
as plotted in Figure 3. It can be seen that the amplitude of longitudinal level increases with
the waveband. As the differential deformation of HSR substructures typically covers a
waveband ranging from tens of meters to over one hundred meters, the longitudinal level
with a waveband of 1.5~120 m is adopted.
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3. Differential-Deformation-Identification Method

In order to identify substructure deformation and determine the deformation type,
an identification method combining digital filter, CNN and a base information account, is
constructed. The method takes the spatially sequential longitudinal-level inspection data
as the input, and outputs the deformation type together with the corresponding position.
Each component and the whole structure of the proposed method are detailed as follows.

3.1. Data Filtering

It is generally acknowledged that the differential deformation of railway substruc-
tures is mainly influenced by the long-wave components of longitudinal level, and the
components with wavebands below 40 m are empirically considered as an interference
in the identification of substructure deformation. Thus, a digital filter is designed to re-
move the irrelevant components of longitudinal level. In detail, a Chebyshev low-pass
filter is adopted, with the pass-band cut-off wavelength of 60 m, the stop-band cut-off
wavelength of 40 m, the pass-band ripple of 1dB and the stop-band attenuation of 30 dB.
Furthermore, zero-phase filtering is performed by processing the longitudinal-level data
in both the forward and reverse directions, in accordance with [28]. The amplitude re-
sponse of the designed filter is plotted in Figure 4a, and the comparison of waveforms
before and after filtering, as well as the power spectral density of the longitudinal level
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is also depicted, in Figure 4b,c. It can be judged that the designed filter can effectively
smooth the longitudinal-level waveform, removing irrelevant disturbing components
(wavebands below 40 m) and keeping those components directly related to differential
substructure deformation.
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3.2. 1DCNN Convolutional Neural Network

The longitudinal-level waveforms activated by various types of differential substruc-
ture deformation share similar characteristics of sinusoidal or cosinoidal shapes, typically
with large amplitudes and wavelengths ranging from 40 m to above 100 m. Such wave-
form characteristics in shape are useful in the identification of differential substructure
deformations. As the convolutional neural network is advantageous in learning shape
properties [29], it is adopted here as a feature extractor from longitudinal-level waveforms,
as well as a binary classifier of whether or not a local waveform is generated by a potential
substructure deformation, with the support of two superimposed fully-connected layers.
Therefore, a delicate convolutional-neural-network is designed, as depicted in Figure 5.
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The inspection data of the longitudinal level is composed of amplitudes and corre-
sponding positions. Suppose X = (x [1], x [2], . . . , x [N]) and Y = (y [1], y [2], . . . , y [N])
as the position and amplitude of the longitudinal level, respectively, and N denotes the
data capacity. The longitudinal-level data (X, Y) is segmented in a step-wise manner with
a window length of L, which is set as 120 m (480 points for the discretization interval of
0.25 m), according to the upper waveband-limit of longitudinal-level inspection data. The
moving step of the window can be randomly set to increase flexibility in the selection
of waveform samples. Then the selected waveforms are manually labelled with 1 or 0,
representing whether or not a waveform sample corresponds to a differential substructure
deformation. Thus, a dataset of waveform and label pairs, i.e., {(Xk, Yk), yk}, k∈[1, K], can
be generated. In the dataset, Xk = (x[tk], x[tk + 1], . . . , x[tk + L − 1]), Yk = (y[tk], y[tk + 1],
. . . , y[tk + L − 1]), tk∈[1, N − L + 1], and yk = 1 or 0.

The amplitude Y of the longitudinal level is taken as the input of the convolutional
neural network. Due to the sequential property of the input data, one-dimensional convo-
lution as well as one-dimensional pooling is adopted in the following layers. Therefore, the
proposed structure is named 1DCNN here. Four stacking layers of convolution and pooling
are adopted to gradually extract key shape features in the longitudinal-level waveform
samples. The extracted features are then put into two stacking fully-connected layers, to
generate the most probable labels corresponding to the inputs.

In the convolutional layer, same convolution and moving stride 1 are adopted to
maintain identical width between the layer input and output. Meanwhile, the size of the
convolutional kernels is set as 5, and the rectified linear unit (abbr. ReLU) [30] is taken as
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the activation function. The mapping relationship between the input sequence and the
output feature map of a convolutional layer can be interpreted using the following formula:

Yd+1
(i) = Bd

(i) +
Cd

∑
j=1

CKd
(i,j) ∗ Yd

(j) (2)

where CKd
(i,j) represents the convolutional kernel linking the jth input channel, Yd

(j), of
the dth convolutional layer and the ith output feature map, Yd+1

(i), which will also be the
input of the d+1th convolutional layer; Bd

(i) represents the bias; * represents the convolution
operation; Cd is the channel size of the dth convolutional layer. The convolutional kernel
strides over the whole width of Yd

(j), conducting dot product at each stride, as shown in
Figure 6. Then all the Cd convolution channels are added up, together with the bias, to
generate a feature map. After the convolution operation, the channel size of input Yd is
doubled, without altering its width.
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In the pooling layer, max-pooling is adopted with kernel size 2 and stride 2. After
the pooling operation, the width of feature map Yd+1 is halved, without altering the
channel size.

In the fully-connected layer, the number of hidden neurons is set as 128, with a drop
rate of 0.2. The output is a scalar representing the most probable label with respect to a
waveform sample. Furthermore, a predicted label, ŷk, is classified as positive if the value
is above 0.5, indicating that the longitudinal- level waveform is induced by a differential
substructure deformation. The specifics of the 1DCNN structure are detailed in Table 1.

Table 1. Specifics of 1DCNN structure.

Layer
Size of Layer

Output
(Width × Channel)

Details

Input 480 × 1 480 continuous data points of
longitudinal level

Convolutional 480 × 4 Kernel size 5, stride 1, ReLU
Max-pooling 240 × 4 Kernel size 2, stride 2

Convolutional 240 × 8 Kernel size 5, stride 1, ReLU
Max-pooling 120 × 8 Kernel size 2, stride 2

Convolutional 120 × 16 Kernel size 5, stride 1, ReLU
Max-pooling 60 × 16 Kernel size 2, stride 2

Convolutional 60 × 32 Kernel size 5, stride 1, ReLU
Max-pooling 30 × 32 Kernel size 2, stride 2

Dimension transformation 960 × 1 Reshape multi-channel features
Fully-connected 128 × 1 Dropout rate 0.2, ReLU
Fully-connected 1 × 1 Identity activation

Output 1 × 1 Scalar
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The mean square error between the predicted labels, ŷ, and the actual labels, y, is
taken as the loss function, with the L2-norm regularization of model parameters added, to
enhance generalization. In addition, a stochastic-gradient-descent algorithm is adopted to
train 1DCNN with a learning rate 0.001.

3.3. Classification Using Base Information

The main function of 1DCNN is to recognize potential differential substructure-
deformations through extracting the shape features of local longitudinal-level waveforms
and binary classification. However, the exact deformation type of each waveform is still
unclear. In this section, we further classify the recognized longitudinal-level waveforms
into five types, i.e., vertical curve, transition deformation, pier deformation, tunnel defor-
mation and subgrade deformation, with the aid of the base information account of railway
infrastructures. The base information account is available in the database of the permanent
way management information system (i.e., the PWMIS), of China [31]. Moreover, it is worth
mentioning here that longitudinal-level waveforms in the vicinity of vertical curves have
similar shape features with substructure deformations. Such waveforms are attributed to
the gradient change of adjacent slopes, and should be detected, but not categorized into
substructure deformation.

From the base information account, the start and end position of bridges, tunnels and
slopes can be extracted, thus obtaining the spatial range of different substructures, as well as
the central location of transitions and vertical curves. For transitions, the section that covers
a length of 200 m around the central point is empirically taken as the transition section. For
a vertical curve, based on the gradients α1 and α2 of neighboring slopes and radius R, the
length, S, of the vertical curve can be estimated in accordance with the following formula:

S = R · (tan α2 − tan α1) (3)

Let SP and EP denote the start and end position, and subscript vc, tr, br, tu, su denote
vertical curve, transition, bridge, tunnel and subgrade, respectively. Finally, a dataset of the
spatial range, {SP, EP} = {[SPvc, EPvc], [SPtr, EPtr], [SPbr, EPbr], [SPtu, EPtu], [SPsu, EPsu]},
of the aforementioned infrastructures can be generated. For a waveform and predicted
label pair {(Xk, Yk), ŷk}, if ŷk > 0.5, x[tk + L/2] of Xk is iteratively compared with all the
elements of SP to find the nearest infrastructure type and classify Yk into the corresponding
deformation type. This process is named position matching, and is detailed in Figure 7.
During the classification process, the vertical curves are firstly extracted, due to the fact
that vertical curves and substructures are spatially overlapped but belong to different
infrastructure types. Moreover, vertical curves are commonly considered as normal while
differential substructure deformations are structural diseases. Thus, a waveform classified
as a vertical curve should not be regarded as a substructure deformation. The four types of
substructure deformation can then be easily classified, either iteratively or in parallel, for
the reason that there is no spatial overlap among different substructure types.
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In accordance with the above introduction, the flow chart of the differential-deformation-
identification method is depicted in Figure 8. The proposed method contains three major
parts, that is, the filtering of longitudinal-level data, the identification of potential sub-
structure deformations using 1DCNN, and further classification based on base information
account and position mapping. Finally, four types of differential substructure deformations,
as well as vertical curves, can be identified.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 7. The flow chart of position-matching algorithm. 

In accordance with the above introduction, the flow chart of the differential-defor-

mation-identification method is depicted in Figure 8. The proposed method contains three 

major parts, that is, the filtering of longitudinal-level data, the identification of potential 

substructure deformations using 1DCNN, and further classification based on base infor-

mation account and position mapping. Finally, four types of differential substructure de-

formations, as well as vertical curves, can be identified. 

 

Figure 8. The flow chart of the differential-deformation identification method. Figure 8. The flow chart of the differential-deformation identification method.



Sensors 2023, 23, 219 10 of 16

4. Case Study
4.1. Data Source

Four railway lines from the China HSR network are selected as the test lines, which are
representative of the busiest service routes. The TID of these test lines are all inspected by
CITs, and the longitudinal level with a waveband of 1.5~120 m is selected as the data source.
For convenience of expression, the test lines are denoted as line 1, line 2, line 3, and line 4
and the corresponding datasets are denoted as data 1, data 2, data 3, data 4, respectively. In
the segmentation process, the random moving-step of the window is utilized to extract the
most likely waveforms that exactly cover the range of potential substructure deformations
and comply well with human visual judgement, without producing as many redundant
waveform samples as the point-wise moving step. Due to the difficulties in the in situ
verification of substructure deformations, authentic labels are practically unavailable.
Manual labelling is adopted here by visually observing waveforms. Three experts with
rich expertise are invited for the labelling work, during which process cross-verification
is adopted until consensus is reached. Therefore, the trained 1DCNN can be regarded as
a predictor of probable differential substructure-deformations, in place of human visual
judgement. The manually selected waveforms are labelled with 1 or 0, representing a
positive or a negative sample. In order to create a balanced dataset {(X, Y), y}, negative
samples of a longitudinal-level waveform are distributed between two adjacent positive
samples. An intercepted section of the longitudinal-level waveform and the corresponding
labels are depicted in Figure 9. In the figure, the scattered points represent the labels and
are located at the center of the waveform samples.
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4.2. Performance Evaluation of 1DCNN

The 1DCNN are trained and tested using the above dataset. In the training process,
the initial ninety percent of each dataset is adopted for training and validation, and the
remaining ten percent is for testing and prediction. The 1DCNN is constructed on the
TensorFlow framework, with the support of two NVIDIA GeForce GTX 1080Ti GPUs
(NVIDIA Corporation, Santa Clara, CA, USA).

For the evaluation of the classification ability of 1DCNN, precision, recall, accuracy
and F1 score are adopted as the evaluation indices. Their definitions are as follows:

Precision =
TP

TP + FP
× 100% (4)

Recall =
TP

TP + FN
× 100% (5)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (6)

F1 =
2× Precision× Recall

Precision + Recall
× 100% (7)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
The evaluation indices of predictions made by 1DCNN on the test data are shown in Table 2.
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It can be concluded from Table 2 that 1DCNN has satisfactory performance as an examiner
of potential substructure deformations, with the average precision, recall, accuracy and F1
score of four test-lines exceeding 98%.

Table 2. Statistics of evaluation indices of 1DCNN.

Line
Whole

Length/km

Number of
Labelled Samples

(Test Data)

Number of
Predicted Samples Precision Recall Accuracy F1

Score
Positive Negative TP TN FP FN

Line 1 2294 150 147 146 146 1 4 99.3% 97.3% 98.3% 98.3%
Line 2 1318 101 100 100 95 5 1 95.2% 99.0% 97.0% 97.1%
Line 3 532 31 31 30 31 0 1 100% 96.8% 98.4% 98.4%
Line 4 964 51 50 51 49 1 0 98.1% 100% 99.0% 99.0%

Average 98.2% 98.3% 98.2% 98.2%

The time consumption for prediction on the test data of the four test-lines is 2.46 s,
0.85 s, 0.89 s and 0.89 s, respectively, that is, less than 0.008 s for a waveform sample,
on average.

In addition, some FP and FN samples of Line 1 are selected and plotted in Figure 10.
It can be seen that the filtered longitudinal-level waveforms contained in the shadowed
box of Figure 10a,b share similar shape features of a cosinoidal type, while the former is
actually a negative sample and the latter a positive sample. In addition, the predictions of
the two samples made by 1DCNN are 0.570 and 0.471, respectively, both approximating
the classification threshold 0.5. This indicates that 1DCNN is less discriminative only in
some special cases, which are also difficult to extinguish with the naked eye.
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Trained 1DCNN can then be utilized for prediction. During prediction, a newly
inspected TID can be processed in accordance with Figure 8, adopting point-wise seg-
mentation without labelling. For each segmented waveform, the corresponding output of
the 1DCNN can be referenced as the possibility that the waveform indicates a potential
substructure deformation. In this way, the whole range of the TID can be traversed, and all
the potential differential substructure-deformations can be located and detected.
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4.3. Identification of Deformation Types

Recognized substructure deformations need to be further classified into certain defor-
mation types, with the aid of a basic information account. Taking the test data of line 1, for
example, among the 150 positive samples there are 54 samples of vertical curves, 44 samples
of transition deformation, 34 samples of pier deformation, 8 samples of tunnel deformation
and 10 samples of subgrade deformation. Some waveform examples of the above five types
are plotted in Figure 11.
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(c) pier deformation; (d) tunnel deformation; (e) subgrade deformation and transition.
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In accordance with Figure 11, different types of substructure deformations are char-
acterized with similar shape features in the longitudinal-level waveform, i.e., sinusoidal
or cosinoidal shapes. Thus, conventional analytical techniques such as feature matching
or spectral analysis are usually incapable of effectively distinguishing different deforma-
tion types. However, it becomes obvious and simple with the support of infrastructure
base information.

In Figure 12, four waveform samples of subgrade deformation from Line 3 are plotted.
This HSR line is located in Northeast China, which is the seasonal frozen-soil region. The
waveform samples are confirmed to be located in the subgrade frost-heave section. Such
deformations can also be identified by using the proposed method.
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4.4. Evolution of Substructure Deformations

The longitudinal-level inspection data is helpful in monitoring the deformation state
of HSR substructures, with the support of the proposed identification method. Once a
suspected differential substructure-deformation is identified, the evolution process of the
deformation state, reflected in the longitudinal-level waveforms, can be manifested, as
plotted in Figure 13.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

In accordance with Figure 11, different types of substructure deformations are char-

acterized with similar shape features in the longitudinal-level waveform, i.e., sinusoidal 

or cosinoidal shapes. Thus, conventional analytical techniques such as feature matching 

or spectral analysis are usually incapable of effectively distinguishing different defor-

mation types. However, it becomes obvious and simple with the support of infrastructure 

base information. 

In Figure 12, four waveform samples of subgrade deformation from Line 3 are plot-

ted. This HSR line is located in Northeast China, which is the seasonal frozen-soil region. 

The waveform samples are confirmed to be located in the subgrade frost-heave section. 

Such deformations can also be identified by using the proposed method. 

 

Figure 12. Waveform samples of subgrade frost-heave. 

4.4. Evolution of Substructure Deformations 

The longitudinal-level inspection data is helpful in monitoring the deformation state 

of HSR substructures, with the support of the proposed identification method. Once a 

suspected differential substructure-deformation is identified, the evolution process of the 

deformation state, reflected in the longitudinal-level waveforms, can be manifested, as 

plotted in Figure 13. 

 
(a) 

 
(b) 

Figure 13. Cont.



Sensors 2023, 23, 219 14 of 16
Sensors 2023, 23, x FOR PEER REVIEW 14 of 16 
 

 

 
(c) 

Figure 13. Evolution of differential substructure deformation: (a) pier deformation; (b) subgrade 

settlement; (c) frost-heave deformation of subgrade. 

Figure 13a illustrates the same sample of pier deformation as Figure 11c, and Figure 

13b illustrates a sample of subgrade settlement deformation. The longitudinal-level data 

are selected once a year, from 2012 to 2021. It can be seen that the pier-deformation wave-

form in the shadowed box of Figure 13a shows no obvious development with time, while 

the subgrade settlement grows annually from 2012 to 2018, until the track maintenance 

work in 2019. Figure 13c illustrates a waveform sample of subgrade frost-heave defor-

mation, and the longitudinal-level data are selected once a month. According to the wave-

forms in the shadowed box, it is apparent that the amplitude of the longitudinal level 

grows significantly in January, February and March, when the atmosphere temperature 

reaches the annual minimum compared to other months. In addition, the waveform re-

covers when the environment turns warm, after April. This proves that the substructure 

deformation information is actually contained in the longitudinal-level inspection data, 

and the proposed differential-substructure-deformation-identification method is promis-

ing in serving in affiliation with existing monitoring methods. 

5. Discussions and Conclusions 

The differential deformation of high-speed railway substructures is a frequently oc-

curring disease, threatening the safe, stable and comfortable operation of high-speed ve-

hicles. Traditional monitoring techniques are confronted with various difficulties in the 

effective supervision of such long and vast structures as high-speed railways. In situ mon-

itoring devices such as sedimentation plates and optical sensors are usually placed at par-

ticular locations where the deformation is serious, and it is thus economically impossible 

to cover the whole range of an HSR line. Remote monitoring techniques such as GNSS 

and InSAR are mainly devoted to large-area deformation monitoring, being incapable of 

obtaining substructure deformation which covers a spatial range from tens of meters to 

above a hundred meters. Fortunately, the information of substructure deformation is con-

tained in the longitudinal-level inspection data from regular dynamic inspections by com-

prehensive inspection trains, and by delving into inspection data, differential substructure 

deformation can be identified. Moreover, the easily available inspection data covers the 

whole range of an HSR line, thus greatly reducing the high cost of electronic- or optical-

sensor installation. 

Therefore, a differential deformation-identification method based on longitudinal-

level irregularity, digital filtering, a convolutional neural network and infrastructure base 

information is proposed. In detail, a Chebyshev low-pass filter with the cutoff wavelength 

of 40m is designed to filter out irrelevant components of the longitudinal level. A convo-

lutional neural network, with four stacking layers of convolution and pooling and two 

fully-connected layers, is then constructed to figure out potential differential substruc-

Figure 13. Evolution of differential substructure deformation: (a) pier deformation; (b) subgrade
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Figure 13a illustrates the same sample of pier deformation as Figure 11c, and Figure 13b
illustrates a sample of subgrade settlement deformation. The longitudinal-level data are
selected once a year, from 2012 to 2021. It can be seen that the pier-deformation waveform
in the shadowed box of Figure 13a shows no obvious development with time, while the
subgrade settlement grows annually from 2012 to 2018, until the track maintenance work
in 2019. Figure 13c illustrates a waveform sample of subgrade frost-heave deformation,
and the longitudinal-level data are selected once a month. According to the waveforms
in the shadowed box, it is apparent that the amplitude of the longitudinal level grows
significantly in January, February and March, when the atmosphere temperature reaches
the annual minimum compared to other months. In addition, the waveform recovers when
the environment turns warm, after April. This proves that the substructure deformation
information is actually contained in the longitudinal-level inspection data, and the proposed
differential-substructure-deformation-identification method is promising in serving in
affiliation with existing monitoring methods.

5. Discussions and Conclusions

The differential deformation of high-speed railway substructures is a frequently occur-
ring disease, threatening the safe, stable and comfortable operation of high-speed vehicles.
Traditional monitoring techniques are confronted with various difficulties in the effective
supervision of such long and vast structures as high-speed railways. In situ monitoring
devices such as sedimentation plates and optical sensors are usually placed at particular
locations where the deformation is serious, and it is thus economically impossible to cover
the whole range of an HSR line. Remote monitoring techniques such as GNSS and InSAR
are mainly devoted to large-area deformation monitoring, being incapable of obtaining
substructure deformation which covers a spatial range from tens of meters to above a
hundred meters. Fortunately, the information of substructure deformation is contained in
the longitudinal-level inspection data from regular dynamic inspections by comprehensive
inspection trains, and by delving into inspection data, differential substructure deformation
can be identified. Moreover, the easily available inspection data covers the whole range of
an HSR line, thus greatly reducing the high cost of electronic- or optical-sensor installation.

Therefore, a differential deformation-identification method based on longitudinal-
level irregularity, digital filtering, a convolutional neural network and infrastructure base
information is proposed. In detail, a Chebyshev low-pass filter with the cutoff wave-
length of 40m is designed to filter out irrelevant components of the longitudinal level.
A convolutional neural network, with four stacking layers of convolution and pooling
and two fully-connected layers, is then constructed to figure out potential differential
substructure-deformations. Finally, infrastructure base information is utilized for the fur-
ther classification of deformation types, based on a position-mapping algorithm. According
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to test results in the inspection data of four typical high-speed railway lines in China, the
average precision, recall, accuracy and F1 score of the convolutional neural network are
98.2%, 98.3%, 98.2% and 98.2%, respectively, all exceeding 98%. The precision or recall
on some test lines even reaches 100%. The specific deformation types can be efficiently
classified in accordance with the mapping of data location and actual infrastructure po-
sitions. Furthermore, a series of inspection data from different inspection runs can also
be analyzed for tracking the development path of deformation. The proposed method is
helpful in identifying and locating probable differential substructure-deformations, and is
thus valuable for maintenance work. Moreover, it may also be utilized as an affiliation or
an alternative to existing deformation-monitoring techniques.
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