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Abstract: The walkability of a neighborhood impacts public health and leads to economic and envi-
ronmental benefits. The condition of sidewalks is a significant indicator of a walkable neighborhood
as it supports and encourages pedestrian travel and physical activity. However, common sidewalk as-
sessment practices are subjective, inefficient, and ineffective. Current alternate methods for objective
and automated assessment of sidewalk surfaces do not consider pedestrians’ physiological responses.
We developed a novel classification framework for the detection of irregular walking surfaces that
uses a machine learning approach to analyze gait parameters extracted from a single wearable ac-
celerometer. We also identified the most suitable location for sensor placement. Experiments were
conducted on 12 subjects walking on good and irregular walking surfaces with sensors attached at
three different locations: right ankle, lower back, and back of the head. The most suitable location
for sensor placement was at the ankle. Among the five classifiers trained with gait features from the
ankle sensor, Support Vector Machine (SVM) was found to be the most effective model since it was
the most robust to subject differences. The model’s performance was improved with post-processing.
This demonstrates that the SVM model trained with accelerometer-based gait features can be used as
an objective tool for the assessment of sidewalk walking surface conditions.

Keywords: wearable accelerometer; machine learning; gait analysis; walkability; sidewalk surface
assessment

1. Introduction

Walking is one of the most popular and cheapest forms of physical activity. A high level
of walking in a community leads to various public health, environmental, and economic
benefits [1–4]. Therefore, maintaining walkable neighborhoods has garnered increased
interest. Walkability measures are an indication of the extent of the friendliness of a
neighborhood-built environment to pedestrian walking, and walkability assessment is used
to evaluate such friendliness. It also considers pedestrians’ feelings [2]. The availability and
condition of sidewalks are significant predictors of perceived safety and general satisfaction
in the pedestrian environment [5]. Therefore, assessing sidewalks is an integral component
of walkability assessment tools [6].

To take pedestrians’ perceptions into account, one of the common sidewalk assessment
practices is through pedestrian interviews or surveys [7]. However, these responses can
be biased and lack expert insights. Another common practice for sidewalk assessment is
on-site inspection performed by experts to identify violations of pre-defined regulations [8].
Due to the ineffectiveness and inefficiency of these practices, alternative advanced methods
have been proposed to automate sidewalk assessment using infrastructure-based data such
as street-view images, videos, or GIS technologies. However, these methods do not capture
subjects’ interactions with their external walking environments.
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With the advancement of wearable sensors, it is possible to measure and analyze
human physiological responses to surrounding environments. The portability and af-
fordability of these sensors makes it possible to develop a real-time sidewalk condition
monitoring system that incorporates the personal characteristics of pedestrians. A few
studies have been conducted on using machine learning techniques for sidewalk assess-
ment utilizing smartphone acceleration data collected from subjects. To our knowledge,
no studies have been conducted on utilizing machine learning techniques that incorporate
gait analysis to assess sidewalk walking surface conditions with a single accelerometer.
Furthermore, no study has determined the most suitable placement of a single wearable
sensor to assess walking surface conditions.

In this study, we propose a novel classification framework for the walkability do-
main that uses machine learning to analyze gait features extracted from a single wearable
accelerometer for the detection of irregular walking surfaces. We also identify the most
suitable location on the human body to place a single accelerometer for irregular walking
surface detection. We determine the most effective machine learning model along with an
optimal subset of gait features that best discriminates between good and irregular walk-
ing surfaces, which can be implemented as a real-world application for identification of
problematic walking areas in a continuous manner. Furthermore, the optimal subset of gait
features helps to understand gait parameters most affected by irregular walking surfaces.

The remainder of the paper is structured as follows: First, we present a review of
related works. Next, the experimental design and the research methodology utilized in this
work are discussed. The results are then provided followed by a discussion on the findings
and implication of this study.

2. Related Works
2.1. Traditional Approaches for Sidewalk Assessment

A pedestrian survey is one of the common approaches used to detect sidewalk de-
fects [7]. This method is subjective, costly, and ineffective in providing a detailed analysis of
these defects [7]. Field inspections by trained inspectors are another common method prac-
ticed by governmental agencies for identification of regulatory violations [8]. Researchers
have also proposed methods to improve current sidewalk assessment practices. Sousa et al.
proposed a method to evaluate sidewalks using field measurements [9]. Another study
also proposed computing the Pavement Condition Index based on surveys designed for the
purpose of sidewalk condition assessment [10]. However, these methods are labor-intensive
and unreliable. Furthermore, they are not scalable to larger cities.

2.2. Advanced Approaches for Sidewalk Assessment

Many advanced methods have been proposed to automatically assess roadways
based on urban data such as images, videos, or GIS technologies [11–16]. Several studies
have proposed automated machine learning approaches to estimate roadway anomalies
using smartphone sensors mounted on vehicles [17–20]. One study [21] measured the
surface roughness of pedestrian and bicycle lanes with a smartphone mounted on bicycles.
However, these data sources were unable to answer the question of how the human body
responds to roadway or sidewalk surfaces [22]. Individuals respond differently to the same
surroundings based on their characteristics; therefore, their variability must be analyzed [7].

Only a few methods have been proposed to assess sidewalk or roadway surfaces in
an automated fashion that incorporates human bodily responses using machine learning
techniques. Miyata et al. [23] estimated barriers and obstacles using a machine learning
model trained with acceleration data from pedestrians’ smartphones. Another study
proposed an approach to detect road bumps with acceleration data from smartphones
that are placed on cyclists’ pants [24]. Kobayashi et al. estimated sidewalk surface types
using acceleration data from smartphones placed on pedestrians [25]. They achieved that
by training a Random Forest model. Kobayashi et al. expanded their study to train a
convolutional neural network to estimate sidewalk surface types [26]. In Kobayashi et al.’s
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studies [25,26], the models trained with window-based features extracted from smartphone
data were not robust to subject differences.

Several studies have discovered that it is feasible to utilize pedestrians’ physiological
responses measured with wearable sensors placed at various locations to detect different
sidewalk characteristics or defects [7,27,28]. There are also gait analysis studies conducted
to examine the effects of irregular and uneven surfaces on human gait [29–33]. Therefore, we
assume that accelerometer-based gait features can reduce noise and overfitting compared
to commonly used window-based features from smartphones, which can lead to more
generalizable models towards subject differences.

2.3. Sensor Location

Several studies have placed sensors at different locations to examine the effects of the
external environment and irregular surfaces on subjects’ gait parameters. In examining the
correlation between pedestrians’ gait patterns and the built environment, Kim et al. utilized
acceleration data from the right ankle to compute gait parameters [27]. Another study
evaluated the effects of even and irregular surfaces on basic gait parameters and head and
hip accelerations [33]. The researchers expanded on that study to the older population [34].

Employing sensors at multiple locations for real-time continuous monitoring is not
practical. Furthermore, adding data from multiple locations in the analysis causes the
process to be computationally intensive [35]. In addition, multi-sensor approaches have
potential user acceptance and user friendliness issues. Therefore, we evaluate sensor
placement at the head, the hip, and the right ankle for our study to identify the most
suitable location for distinguishing good and irregular walking surfaces.

3. Materials and Methods

The workflow of incorporating gait analysis with machine learning techniques is
illustrated in Figure 1. It consists of four steps: data pre-processing, feature extraction,
feature selection, and modelling.
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Figure 1. Workflow of gait analysis with machine learning.

3.1. Data Collection

Twelve healthy subjects—eight males and four females—were recruited to participate
in the study. The subjects wore three accelerometers at different locations on the body. As
shown in Figure 2, the head accelerometer was mounted on the back of a cap while the
hip accelerometer was affixed at the back of the hip. The right ankle accelerometer was
mounted on the outer side of the subject’s shoe.

The linear accelerations of the body were measured using Mbient sensors (MetaMo-
tionR, Mbient Lab, San Francisco, CA, USA). These tri-axial accelerometers were configured
to sample data at 100 Hz. The experiment was set up to mimic a real-world sidewalk setting.
A stretch of well-paved, smooth, and levelled walking paths at The Peter Kiewit Institute
of the University of Nebraska at Omaha, denoted with starting and ending points, was
selected for the experiment. Within that stretch, four irregular walking surface segments
were created: a grass-covered surface segment, a surface segment with obstructions, an
uneven surface segment, and a debris-covered surface segment. These walking segments
are typical walking surfaces that are likely to be encountered in the real-world. Figure 3
illustrates the good and irregular walking segments. Subjects were instructed to walk on
the path at their normal walking speed from the starting point to the ending point and back
to the starting point on the same path. Figure 4 visualizes the walking pattern of a subject
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with a duration of five seconds (500 data points) in the form of raw acceleration readings
captured by sensors placed at the three different locations.
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(Irregular); (c) Obstructions (Irregular); (d) Uneven (Irregular); and (e) Debris-covered (Irregular).
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Figure 4. Five- second raw walking acceleration data of a subject measured by sensors placed at the
right ankle, the back of the hip, and the back of the head.

3.2. Data Pre-Processing

The X, Y, and Z axes of the ankle accelerometer represent signals in Vertical (V),
Anteroposterior (AP), and Mediolateral (ML) directions, respectively, as illustrated in
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Figure 5. As for accelerometers located on the hip and head, the X, Y, and Z axes represent
V, ML, and AP directions, respectively.
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Figure 5. Accelerometers’ directions for all three locations.

For data pre-processing, the timestamp data from the three accelerometers were first
synchronized using the synchronize function in MATLAB R2022a (Mathworks, Natick, MA,
USA). Then, the raw acceleration data were labelled by referring to the video recordings.
Since the aim was to analyze gait patterns to detect irregular walking surfaces, all irregular
walking surface scenarios were grouped into one Irregular class. Before extracting gait
features, stride segmentation was first performed on the raw data using the AP directional
acceleration of the right ankle accelerometer for accurate stride recognition [36]. The stride
distribution for each walking surface label is displayed in Table 1.

Table 1. Walking surface label distribution.

Label Count Percentage

Good 3774 65%
Irregular 1995 35%

Total 5769 100%

3.3. Feature Extraction

We extracted features that have demonstrated to be useful in mobility studies [36,37].
First, 20 base features were extracted, of which the descriptions and formulas are presented
in Table 2. The VM5, VMD, LVMD, VVMD, AVMD, VM30, LVM30, VVM30, and AVM30
features captured the characteristics of the initial 5% of the stance, double stance, and mid-
stance phases of a gait cycle. We also captured the directional impulse and the magnitude
of the initial loading phase through features LHM, LHSD, VHM, VHSD, AHM, and AHSD.
The characteristics of a whole stride were also extracted to understand the stride magnitude,
directional magnitude of the stride, and stride duration. For each of those 20 base features,
we also computed the variability of those features between strides. This summed to a total
of 40 gait features for each sensor.
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Table 2. Description of features extracted.

Feature Description Formula

VM Vector magnitude for the whole stride
√

ML2 + V2 + AP2 for the whole stride vectors
VM5 Vector magnitude for the initial 5% of the stride

√
ML2 + V2 + AP2 for the initial 5% of the stride vectors

LVM Vector magnitude of the ML direction for the whole stride
√

ML2 for the whole stride vectors
VVM Vector magnitude of the V direction for the whole stride

√
V2 for the whole stride vectors

AVM Vector magnitude of the AP direction for the whole stride
√

AP2 for the whole stride vectors

VMD Vector magnitude for the double stance
√

ML2 + V2 + AP2 for ±10% vectors around the
heel-strike event

LVMD Vector magnitude for the ML direction during the double
stance

√
ML2 for ±10% vectors around the heel-strike event

VVMD Vector magnitude for the V direction during the double
stance

√
V2 for ±10% vectors around the heel-strike event

AVMD Vector magnitude for the AP direction during the double
stance

√
AP2 for ±10% vectors around the heel-strike event

VM30 Vector magnitude for the mid-stance
√

ML2 + V2 + AP2 for vectors from 30% of the gait cycle

LVM30 Vector magnitude for the ML direction during the
mid-stance

√
ML2 for vectors from 30% of the gait cycle

VVM30 Vector magnitude for the V direction during the
mid-stance

√
V2 for vectors from 30% of the gait cycle

AVM30 Vector magnitude for the AP direction during the
mid-stance

√
AP2 for vectors from 30% of the gait cycle

LHM Heel-strike magnitude in the ML direction Max (ML) at the heel strike
LHSD Std. dev. of ML acceleration during the initial 10% stride Std (ML) of the initial 10% of the stride vectors
VHM Heel-strike magnitude in the V direction Max (V) at the heel strike
VHSD Std. dev. of V acceleration during the initial 10% stride Std (V) of the initial 10% of the stride vectors
AHM Heel-strike magnitude in the AP direction Max (AP) at the heel strike

AHSD Std. dev. of the AP acceleration during the initial 10%
stride Std (AP) of the initial 10% of the stride vectors

ST Stride time Time between two consecutive heel strikes

3.4. Most Suitable Sensor Location Selection

We first determined the most suitable sensor location for irregular walking surface
detection. To ensure that the most suitable sensor location was subject agnostic, we used a
protocol that iterates through all 12 subjects to leave one subject out as the test set and the
remaining subjects as the training set. For each iteration, the three sensor locations were
evaluated using a stratified five-fold cross-validation (CV) method repeated five times to
compare the classification performance of each of the classification models mentioned in
Section 3.6 across all sensor locations. The full set of features extracted for all three locations
was fed into the models. This resulted in a set of 12 metrics per location for each classifier. A
one-way ANOVA test was performed, followed by a Tukey post-hoc multiple comparison
test, to assess whether the location of the accelerometer had a statistically significant impact
on the classification performance of each model.

3.5. Feature Selection

Since incorporating additional features is computationally costly for sensor-based
systems and affects model interpretability, there is a need to systematically identify the
optimal subset of the original extracted feature set of the most suitable location. We
compared two popular feature selection techniques in this study: Elastic Net (ENET) and
Maximum Relevance and Minimum Redundancy (MRMR). Prior to selecting features, the
extracted features were normalized to zero mean and scaled to unit variance.

3.5.1. Elastic Net (ENET)

Multicollinearity occurs when there is a strong correlation between features that could
lead to excessively complex models and overfitting. ENET [38] is a popular regularization
and feature selection method that deals with multicollinearity between features. It combines
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the advantages of two well-known penalties known as Least Absolute Shrinkage and
Selection Operator (LASSO) and Ridge. The ENET regularization approach solves the
problem through the following equation:

minβ

[
1
n

n

∑
i=1

(
yi − xT

i β
)2

+ λ

(
(1− α)

‖β‖2
2

2
+ α‖β‖1

) ]
(1)

where yi and xT
i =

(
xi1, . . . , xip

)
are the response and predictors of the i-th stride, respec-

tively. ‖β‖1 and ‖β‖2 are the LASSO and ridge penalty, respectively. α is the mixing
parameter that determines the ratio of LASSO and ridge penalty with the range of [0, 1],
with α = 0 being ridge penalty, while α = 1 being LASSO. λ is the regularization parameter,
and the choice of both λ and α is crucial to selecting important variables.

The optimal α and λ parameters were selected using a stratified five-fold CV with
a grid search. This was repeated 12 times using the leave-one-subject-out as the test
set protocol. Gait studies on mobility have demonstrated that good prediction metrics
can be achieved with only eight to 10 features while balancing model complexity and
computational cost [35,37]. Hence, we selected only the top 10 features at each iteration.
Not all the top 10 features selected were the same at each iteration. Therefore, we compiled
and profiled the top 10 features selected for all iterations by the frequency of each feature
being selected, which quantified the importance of the features.

To identify the optimal number of ENET top features to include in the final ENET
feature subset, based on the feature profile, we added the features one-by-one starting with
the most important feature, and ran our models using a repeated stratified five-fold CV
to obtain the performance metric. The classification performance across all models would
improve until they plateau as more important features were added. We determined the
optimal number of features threshold based on the model that yielded the best metrics
across all iterations of feature adding, since we are evaluating ENET and MRMR based on
the best metric that each method can achieve. The threshold would be the point where the
rate of improvement of the metric decreases. We identified that threshold objectively using
an algorithm called Kneedle [39]. This is a knee detection algorithm applicable to a wide
range of cost-benefit analysis problems based on a formal mathematical definition and was
implemented using a Python package called Kneed.

3.5.2. Maximum Relevance and Minimum Redundancy (MRMR)

MRMR [40,41] is a well-known method that selects features by considering the rel-
evance of the features for predicting the target variable and the redundancy among the
selected features. We chose the MRMR F-test correlation quotient MRMR-FCQ for our
study among the variants because it has demonstrated better performance in terms of
computation time and robust accuracy [41].

In the MRMR process, we need to specify the number of top k features we would like
to select. The MRMR framework iterates k times until the top k features are selected. At
each iteration, each feature would be scored based on this formula:

f FCQ(Xi) = F(Y, Xi)/

[
1
|S| ∑

Xs∈S
ρ(Xs, Xi)

]
(2)

where Xi(i ∈ 1, 2, . . . , 40) denotes one of the total 40 features, Y is the class label, S is the
set of selected features, |S| denotes the number of features, Xs ∈ S is one of the features in
the feature set, and Xi is one of the features not in the selected set. The relevance between
a given feature Xi and Y is measured with an F-statistic as denoted by F(Y, Xi). As for
redundancy between selected features Xs and features yet to be selected Xi, it is measured
with Pearson correlation ρ(Xs, Xi). The feature with the highest score was added to S.

We set k = 10 at each leave-one-subject-out iteration to select the top 10 features and
compiled all the top features selected across all iterations, similar to the ENET procedure.
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Then, we identified the optimal number of MRMR top features to include in the final MRMR
feature subset using the same approach described for ENET. The results are presented in.
Finally, we compared the two feature subsets of MRMR and ENET. The optimal feature
subset would be the one that produced the best metric with the smaller number of features.

3.6. Classification Models

We compared five classifiers in this study: Support Vector Machine (SVM), Random
Forest (RF), Logistic Regression (LR), Ada Boost (ADA), and Extreme Gradient Boosting
(XGB). SVM, RF, LR, and ADA are classification algorithms commonly used for gait analysis.
XGB [42] was selected because it is a widely recognized algorithm that has consistently
won many machines learning challenges. These classifiers are implemented using Python’s
scikit-learn module [43]. A brief description for each of the models is as follows:

• SVM: SVM maps features onto a high-dimensional feature space using kernels for
non-linear class boundaries and finds a hyperplane that distinctively classifies the
samples well [44]. We configured our SVM to use a radial basis function kernel and
searched for the optimal cost parameter, the kernel coefficient value, and gamma that
gave us the best metric.

• RF: RF is an ensemble learning algorithm that builds a number of decision trees to
solve classification tasks. Each tree is built with a subset of the training data, with
each node in the tree split using the best randomly selected sample of features. A
majority vote from the decision trees is taken to obtain the final classification [44]. For
this model, we optimized the number of trees in the forest, the maximum depth of
each tree, the minimum number of samples required in each node split, the number
of features to consider while searching for the best split, and the minimum samples
required for a leaf node.

• LR: LR is a widely used classification model for binary classification. It estimates
the association of one or more features with a binary response variable utilizing the
maximum likelihood of finding the regression coefficients for each feature to minimize
the distance between the predicted probability of each class to the actual class [44].

• ADA: ADA is a boosting ensemble learning algorithm that takes a weighted combi-
nation of multiple weak learners into a strong classifier [45]. These weak learners are
one-level decision trees called decision stumps.

• XGB: XGB is a gradient boosting ensemble learning classifier. It utilizes the gradient
descent algorithm on decision trees for sequentially building stronger learners from
weak learners by minimizing a loss function [42]. We optimized the maximum depth
of each tree, the learning rate at each iteration during training, the number of trees,
the fraction of samples to train for each tree, the fraction of features to be sampled
randomly per tree, and the fraction of features to be used in each node for each tree.

To select the most effective model, we trained the top three classifiers observed during
feature selection using the best feature subset. We used the leave-one-subject-out as the
test set protocol to evaluate the subject-wise generalizability of our final models. As each
iteration would yield a different training set, we tuned the hyperparameters for classifiers
at each iteration using a randomized search with a stratified five-fold CV. The optimized
models were then evaluated using the test set. The classifiers were compared using the test
metrics averaged across all subjects.

3.7. Performance Metric

Since the class imbalance problem may bias certain performance metrics such as
accuracy except for the area under the ROC curve [46], the Area Under the Curve (AUC)
metric was used to evaluate the classifiers. The AUC metric is a single-value metric that
summarizes the ROC curve to evaluate the performance of a classifier. The samples that
are labelled as irregular walking surfaces, which is the minority class, are the positive class
for our experiment.
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3.8. Class Imbalance

Based on the label distribution in Table 1, our dataset was moderately imbalanced, as
the proportion of irregular walking surfaces was only 35%. Since an imbalance in training
data would cause classifiers to have poor performance on the minority class [46], we used
re-sampling techniques to address that.

We used an over-sampling technique called Synthetic Minority Oversampling TEch-
nique (SMOTE) [47]. SMOTE creates synthetic examples of the minority class using the
k-nearest neighbor algorithm to add samples to the minority class to balance the classes [47].
We configured SMOTE from Python’s imblearn package [48] to oversample the minority
class with synthetic examples utilizing 5-nearest neighbor such that the class distribution
for the majority and minority classes had a class ratio of 50:50.

4. Results
4.1. Most Suitable Sensor Location for Irregular Walking Surface Detection

Figure 6 shows the distribution of the resulting AUC from the leave-one-subject-out
as the test set protocol. The AUC distribution for the right ankle location can be observed
to be consistently better than the head and the hip locations.
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To determine whether the impact of the location on the classification performance is
statistically significant for each classifier, a one-way ANOVA test was performed. Table 3
displays the results of the ANOVA tests for each classifier. Based on the p-values, we can
conclude that the location of the accelerometer has a significant impact on classification
performance for all five classifiers. We then used the Tukey Pairwise comparison test to
perform multiple comparisons.

Table 3. One-way ANOVA results for each classifier.

Classifier ANOVA p-Value

SVM 2.08 × 10−13

RF 4.42 × 10−4

LR 2.10 × 10−13

ADA 2.64 × 10−9

XGB 7.49 × 10−9

Based on the results of Tukey’s pairwise test in Table 4 and the box plot, it can be
concluded that the right ankle location was significantly different from the other two
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locations and produced the best performance for all classifiers. The head and hip locations
had no significant impact on classification performance for all classifiers except for SVM.
Therefore, we conclude that the ankle is the most suitable location to place an accelerometer
to detect irregular walking surfaces.

Table 4. Tukey’s pairwise comparison for location pairs across classifiers.

Classifiers Group 1 Group 2 Mean
Difference

Adjusted
p-Values Lower Upper Reject

SVM Head Hip −0.0076 0.0053 −0.0131 −0.0021 TRUE
SVM Head Ankle 0.0201 0.001 0.0145 0.0256 TRUE
SVM Hip Ankle 0.0277 0.001 0.0221 0.0332 TRUE
RF Head Hip −0.0011 0.8658 −0.0063 0.0042 FALSE
RF Head Ankle 0.0077 0.0031 0.0024 0.0129 TRUE
RF Hip Ankle 0.0087 0.001 0.0035 0.014 TRUE
LR Head Hip 0.005 0.2 -0.002 0.012 FALSE
LR Head Ankle 0.0335 0.001 0.0265 0.0405 TRUE
LR Hip Ankle 0.0285 0.001 0.0215 0.0355 TRUE

ADA Head Hip 0.0043 0.3008 −0.0027 0.0113 FALSE
ADA Head Ankle 0.0235 0.001 0.0165 0.0305 TRUE
ADA Hip Ankle 0.0192 0.001 0.0121 0.0262 TRUE
XGB Head Hip 0.004 0.2956 −0.0025 0.0105 FALSE
XGB Head Ankle 0.0207 0.001 0.0142 0.0272 TRUE
XGB Hip Ankle 0.0167 0.001 0.0102 0.0232 TRUE

4.2. Optimal Feature Subset

Since the right ankle accelerometer is the most suitable location for discriminating
between good and irregular walking surfaces, we performed feature selection on the right
ankle feature set for optimal feature subset selection.

4.2.1. ENET Results

From the leave-one-subject-out as the test set protocol, the optimal λ ranged from 0.001
to 0.01 while α ranged from 0.0 to 0.9. Figure 7 displays the frequency profile of the top 10
selected features compiled from the leave-one-subject-out protocol.
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Figure 7. Frequency of features selected by ENET.

It resulted in 17 features, since the top 10 features selected in each iteration differ. Some
features were selected as frequently as other features, which means they have the same
importance and usefulness in discriminating between good and irregular walking surfaces.
Therefore, to determine the optimal number of top ENET features to include in the final
ENET feature subset, we added the features batch-by-batch instead of one-by-one, starting
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from the most important feature, and ran them through all five models. As observed
in Figure 8, when more features are added, the AUC would improve until a point when
adding more features only contributed to slight improvements in classification performance
or the AUC would decrease.
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Figure 8. Classification performance curve from adding important features selected by ENET batch-
by-batch.

We then used the Kneedle algorithm to objectively identify the threshold that balances
the trade-off between model performance and training computational cost. Since different
curves produced by different classifiers would yield different thresholds, we used the
Kneedle algorithm to identify the optimal number of ENET top features based on the
model that yields the best metric across all iterations, which is RF. Based on Figure 9, the
top eight features selected by ENET were able to achieve an AUC of 87%. The final ENET
feature subset consisted of its top eight features.
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4.2.2. MRMR Results

The frequency profile of the top 10 selected features by MRMR compiled from the
leave-one-subject-out as the test set protocol is shown in Figure 10.
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Figure 10. Frequency of features selected by MRMR.

There are 17 features in total. To determine the optimal number of top MRMR features
to include in the final MRMR feature subset, we added one feature batch at a time moving
down the importance rank and evaluated them with our models. The results are illustrated
in Figure 11. It can be observed that SVM outperforms RF when there are 13 or more features.
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Figure 11. Classification performance curve from adding important features selected by MRMR
batch-by-batch.

Therefore, we ran the Kneedle algorithm on the performance results of both models.
As we can see from Figures 12 and 13, the selected thresholds were the same for both
models at 13 features. The top 13 features of MRMR produced the best performance using
SVM, which is at an AUC of 85%. Hence, the final MRMR feature subset consisted of the
top 13 features as shown in Figure 10.
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4.2.3. ENET and MRMR Comparison

The best classification performance achieved by the full feature set and feature subsets
selected by ENET and MRMR is shown in Table 5. The best AUC attained by ENET’s eight
features is similar to the AUC obtained when using all 40 features. Furthermore, the ENET
feature subset was able to achieve better classification performance with fewer number of
features compared to MRMR’s performance.

Table 5. Comparison of the number of features selected and performance of ENET and MRMR.

All Features ENET MRMR

Number of Features 40 8 13
Best AUC 0.88 0.87 0.85

Looking at Table 6, when classifiers were trained with ENET’s top 8 features, they
achieved better classification results than MRMR’s top eight features in general. The same
can also be observed when comparing the top 13 features of ENET with MRMR. Since
we are optimizing by selecting the feature subset that can yield the best classification
performance with the least number of features, the optimal feature subset chosen was the
top eight features selected by ENET. Additionally, taking a closer look at Figures 7 and 10,
VM was selected as one of the most important features for both methods, which indicates
that VM is a strong predictor. Comparing the classifiers in Table 6, we can also identify
SVM, RF, and XGB as the top three classifiers for the purpose of discriminating between
good and irregular walking surfaces.

Table 6. Classification results for top eight and top 13 features of ENET and MRMR for all classifiers.

SVM RF LR ADA XGB

ENET Top 8 Features 0.85 0.87 0.76 0.77 0.83
MRMR Top 8 Features 0.81 0.82 0.78 0.77 0.81
ENET Top 13 Features 0.87 0.87 0.81 0.8 0.84

MRMR Top 13 Features 0.85 0.84 0.81 0.79 0.83

4.3. Most Effective Model

We trained our top three classifiers identified during feature selection with the optimal
feature subset. The test results for all three classifiers for each subject iteration including the
average test results are shown in Table 7. SVM achieved the highest average test AUC. It
was also the most robust to subject differences compared to RF and XGB since the test AUC
of SVM was always greater than 70% when tested with gait patterns of a subject unseen
during training and had the lowest standard deviation. Hence, we can conclude that SVM
is the most effective model for irregular walking surface detection.
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Table 7. Classification results for each test subject for the top three classifiers.

Test Set Subject SVM RF XGB

A 0.74 0.78 0.62
B 0.81 0.60 0.76
C 0.83 0.72 0.85
D 0.70 0.57 0.57
E 0.85 0.76 0.72
F 0.70 0.75 0.65
G 0.84 0.70 0.73
H 0.87 0.78 0.63
I 0.82 0.78 0.76
J 0.72 0.70 0.68
K 0.75 0.76 0.68
L 0.92 0.85 0.88

Std. Deviation 0.07 0.08 0.09
Average 0.80 0.73 0.71

4.4. Post-Processing

We observed that when subjects were walking on irregular walking surfaces, inter-
rupted gait occurred intermittently among normal gaits. Not every stride was interrupted.
Up until this point, we detected irregular walking surfaces on a per stride basis by pre-
dicting if each stride occurred on an irregular surface or not. Therefore, we assumed that
if we combined several consecutive strides’ walking surface predictions by a classifier
and took the average of the predicted probability of occurring on an irregular walking
surface of the combined gaits to produce a final prediction of the walking surface covered
by the combined gaits, it would improve the classification metric. We use a sliding window
approach to segment the per stride prediction obtained from classifiers for each subject. k
consecutive strides were sampled into one segment to produce the final prediction for that
segment, sliding to the next segment by the step size of one stride. The results are shown
in Figure 14. As we increased k, the classification performance improved across all three
classifiers, which confirmed our assumption. With post-processing, the average AUC of
the most effective model, SVM, improved from 80% to 85%.

Sensors 2023, 23, 193 16 of 20 
 

 

in Figure 14. As we increased k, the classification performance improved across all three 

classifiers, which confirmed our assumption. With post-processing, the average AUC of 

the most effective model, SVM, improved from 80% to 85%. 

 

Figure 14. AUC distribution of test subjects using increasing stride aggregations for prediction for 

each classifier. 

5. Discussion 

In this study, we identified the most suitable placement of a single accelerometer for 

the purpose of discriminating between good and irregular walking surfaces, which is at 

the ankle. Then, we selected the optimal subset of gait features extracted from the raw 

accelerations of the ankle sensor to train several machine learning classifiers for compari-

son. The most effective model could detect irregular walking surfaces with satisfactory 

classification performance. Our results demonstrate the feasibility of utilizing wearable 

accelerometers and a machine-learning approach to differentiate good and irregular walk-

ing surfaces. 

Our results show that the accelerometer placed at the right ankle had better capability 

of estimating walking surface conditions compared to accelerometers placed at the hip 

and the head. It improved the classification performance of various models. This could be 

because changes in the magnitude of accelerations were smaller at the head and the hip 

compared to the ankle when subjects were walking on irregular walking surfaces. There-

fore, changes in underlying stride parameters could be better captured when the sensor 

was placed at the ankle. Furthermore, as the ankle sensor was closer to the ground, a sub-

tle gait adaptation for each stride when walking on irregular walking surfaces can be cap-

tured. Therefore, we recommend that a wearable acceleration sensor be placed at the ankle 

when implementing the proposed method in a real-time walking surface condition assess-

ment application. 

This study also determined an optimized feature set that balances computational cost 

for a real-time sensor-based system, model interpretability, and classification perfor-

mance. The optimized feature set consisted of eight features: VM, VVMD, VMD, VM30, 

AVM, LVMD, VHSD, and VVM. The feature VM was found to be the strongest predictor. 

AVM and VVM, which characterize the whole stride acceleration of the ankle sensor in 

different directions, were also selected. They may have been selected because subjects 

would adapt their whole gait to maintain their stability while walking on irregular walk-

ing surfaces. Three out of eight features selected characterize the double-stance phase: 

VVMD, LVMD, and VMD. Since the double-stance phase occurs when the body weight 

transitions from one limb to another [37], stability is affected during this phase, which 

could explain the importance of these features. 

SVM was found to be the most generalizable subject-wise despite the limited number 

of subjects. The results have demonstrated that SVM was more robust to individual dif-

ferences compared to RF and XGB. Its classification performance was also further im-

proved with post-processing by combining the predicted probability of several strides to 

Figure 14. AUC distribution of test subjects using increasing stride aggregations for prediction for
each classifier.

5. Discussion

In this study, we identified the most suitable placement of a single accelerometer for
the purpose of discriminating between good and irregular walking surfaces, which is at the
ankle. Then, we selected the optimal subset of gait features extracted from the raw accelera-
tions of the ankle sensor to train several machine learning classifiers for comparison. The
most effective model could detect irregular walking surfaces with satisfactory classification
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performance. Our results demonstrate the feasibility of utilizing wearable accelerometers
and a machine-learning approach to differentiate good and irregular walking surfaces.

Our results show that the accelerometer placed at the right ankle had better capability
of estimating walking surface conditions compared to accelerometers placed at the hip
and the head. It improved the classification performance of various models. This could
be because changes in the magnitude of accelerations were smaller at the head and the
hip compared to the ankle when subjects were walking on irregular walking surfaces.
Therefore, changes in underlying stride parameters could be better captured when the
sensor was placed at the ankle. Furthermore, as the ankle sensor was closer to the ground,
a subtle gait adaptation for each stride when walking on irregular walking surfaces can be
captured. Therefore, we recommend that a wearable acceleration sensor be placed at the
ankle when implementing the proposed method in a real-time walking surface condition
assessment application.

This study also determined an optimized feature set that balances computational cost
for a real-time sensor-based system, model interpretability, and classification performance.
The optimized feature set consisted of eight features: VM, VVMD, VMD, VM30, AVM,
LVMD, VHSD, and VVM. The feature VM was found to be the strongest predictor. AVM
and VVM, which characterize the whole stride acceleration of the ankle sensor in different
directions, were also selected. They may have been selected because subjects would adapt
their whole gait to maintain their stability while walking on irregular walking surfaces.
Three out of eight features selected characterize the double-stance phase: VVMD, LVMD,
and VMD. Since the double-stance phase occurs when the body weight transitions from
one limb to another [37], stability is affected during this phase, which could explain the
importance of these features.

SVM was found to be the most generalizable subject-wise despite the limited number
of subjects. The results have demonstrated that SVM was more robust to individual differ-
ences compared to RF and XGB. Its classification performance was also further improved
with post-processing by combining the predicted probability of several strides to produce
final predictions. This means that when the proposed method is implemented as an appli-
cation, at least five seconds of data need to be measured since the average stride time is
around 1.10 s based on our data.

Since current sidewalk condition assessment usually relies on trained experts from
governmental agencies or voluntary participation of residents or pedestrians, the intervals
between assessments are long due to staffing and budget limitations [7]. On the other hand,
automated assessment methods utilizing urban data do not reflect pedestrians’ responses
to sidewalk surface conditions while walking. In contrast, the proposed machine learning
approach can be implemented as a tool to assess sidewalk walking surface conditions
based on pedestrians’ gait patterns measured with a single accelerometer. This approach
is highly practical since it can detect irregular walking surfaces with a high classification
accuracy using only a single wearable sensor. As a pedestrian is walking with the wearable
sensor, the sidewalk walking surface conditions can be continuously assessed by analyzing
his or her real-time bodily response data. It will reduce the time and cost required for
on-site inspection while eliminating human biases during the assessment. Unlike auto-
mated approaches using urban data, the proposed approach addresses the user-oriented,
effectiveness, and efficiency aspects of sidewalk surface condition assessment.

One of the limitations of this study is that the experiment was not conducted in a
real-world walkable and less walkable neighborhood. Subjects could exhibit different
walking patterns in an experimental setting. The other limitation is that the sample size in
terms of the number of subjects is small. To address that, we drew conclusions repeatedly
by iteratively leaving one subject out as the test set to evaluate our methods. Despite these
limitations, this study is the first step towards an objective and automated assessment of
sidewalk walking surface conditions of a neighborhood.

For future work, we will develop a deep learning model for the same purpose with
a single accelerometer placed on the ankle. We are considering using a Long Short-Term
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Memory network, which is widely used in the domain of human activity recognition.
Future experiments will be conducted in a real-world walkable and less walkable neighbor-
hood with more subjects. The best machine learning classifier and the optimal feature set
can be used to develop an irregular walking surface detection model utilizing real-world
data. Additionally, GPS data can also be incorporated to locate and identify the cause of
problematic walking surface areas.

6. Conclusions

In this study, we proposed a novel method for irregular walking surface detection
using machine learning techniques and accelerometer-based gait features extracted from a
single sensor. We also identified the most suitable location for sensor placement among the
three locations commonly used to measure the effect of external environment on subjects’
gait parameters, the optimal feature set, and the most effective classifier for irregular
walking surface detection. Our results indicate that the most suitable location for sensor
placement is a subject’s ankle. We also find that SVM is the most effective model because it is
the most generalizable and can achieve satisfactory classification performance with limited
data. Furthermore, we also demonstrate that classification performance can be improved
by taking several consecutive strides into account to make predictions. In conclusion, our
results support the potential application of the proposed method as an objective tool for
assessing the sidewalk walking surface condition of a neighborhood.
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