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Abstract: Indoor 3D positioning is useful in multistory buildings, such as shopping malls, libraries,
and airports. This study focuses on indoor 3D positioning using wireless access points (AP) in
an environment without adding additional hardware facilities in large-scale complex places. The
integration of a deep learning algorithm into indoor 3D positioning is studied, and a 3D dynamic
positioning model based on temporal fingerprints is proposed. In contrast to the traditional posi-
tioning models with a single input, the proposed method uses a sliding time window to build a
temporal fingerprint chip as the input of the positioning model to provide abundant information
for positioning. Temporal information can be used to distinguish locations with similar fingerprint
vectors and to improve the accuracy and robustness of positioning. Moreover, deep learning has been
applied for the automatic extraction of spatiotemporal features. A temporal convolutional network
(TCN) feature extractor is proposed in this paper, which adopts a causal convolution mechanism,
dilated convolution mechanism, and residual connection mechanism and is not limited by the size of
the convolution kernel. It is capable of learning hidden information and spatiotemporal relationships
from the input features and the extracted spatiotemporal features are connected with a deep neural
network (DNN) regressor to fit the complex nonlinear mapping relationship between the features
and position coordinates to estimate the 3D position coordinates of the target. Finally, an open-source
public dataset was used to verify the performance of the localization algorithm. Experimental results
demonstrated the effectiveness of the proposed positioning model and a comparison between the
proposed model and existing models proved that the proposed model can provide more accurate
three-dimensional position coordinates.

Keywords: WiFi fingerprinting; indoor positioning; DNN; TCN

1. Introduction

Since the concept of Industry 4.0 was proposed, location-based services (LBS) have
attracted significant attention because of their social and commercial value [1] and the
technology behind these services has undergone advancement in the field of outdoor posi-
tioning. The global navigation satellite system (GNSS), which occupies a dominant position
in outdoor positioning [2], has been put into use, bringing great convenience to people’s
daily lives; however, people generally tend to spend 87–90% of their time indoors [3].
Indoor positioning has broad application prospects, such as guiding customers to shops
and food courts in shopping malls, and pushing store information. During an emergency
rescue, first responders can use indoor positioning to quickly locate a person in distress,
and in terms of personnel and goods management, real-time monitoring of personnel
status in chemical plants can be done to avoid factory accidents. In hospitals, indoor
positioning is used to provide consultation services and push public service information
and in museums, accurate indoor positioning can convert a user’s phone into a virtual
guide. Although GNSS has been able to more accurately realize outdoor positioning, it is
limited by several factors in indoor scene positioning applications. Satellite signals from
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the outdoor environment to the indoor environment will suffer from serious attenuation or
even complete blockage [4] which in turn causes the devices to receive a very weak signal,
and therefore, an inaccurate location is obtained. Indoor positioning remains a problem
that needs to be solved, especially in large multistory buildings.

Industries and academia have devoted themselves to research on indoor positioning
technology and methods. In the past decade, the number of papers published in the field of
indoor positioning has rapidly increased and many wireless technologies have been stud-
ied for indoor positioning, including ultrasonic, Bluetooth, radio frequency identification
(RFID), ultra-wide bandwidth (UWB), and WiFi technologies. The advantages, disadvan-
tages, and positioning accuracies of these techniques are summarized in Table 1 [5].

Table 1. Major indoor positioning technologies.

Positioning
Technique Advantage Disadvantage Positioning

Accuracy Popular System

Ultrasonic [6] High positioning accuracy Multipath effect, thermal drift
effect, high cost, severe decay Centimeter scale Bat [7]

RFID [8] Low cost, high speed Short distance, low
communication capacity Centimeter scale LANDMARC [9]

UWB [10]

Strong resistance to
interference, strong

penetration, high positioning
accuracy

High cost Sub-meter scale Dart UWB [11]

Bluetooth [12] Low power consumption,
easily deployable Short distance Meter scale BIPS [13]

Infrared [14] Low-cost, mature technology Poor resistance to interference Meter scale Active Badge [15]

Zigbee [16] Low-cost, low power
consumption Poor stability Meter scale [17]

WiFi [18]
No additional hardware

required for deployment, low
cost, wide application range

Tedious fingerprint collection,
degeneration of WiFi signal Meter scale RADAR [19]

Among these technologies, ultrasonic, RFID, UWB, Bluetooth, infrared, and ZigBee
indoor positioning techniques require specific hardware support and several positioning
beacons, such as infrared, ultrasonic, or RFID beacon whilst WiFi is the most widely
deployed indoor wireless infrastructure [20]. The Wi-Fi positioning technique does not
require additional hardware and can provide indoor positioning solely using an evenly
distributed wireless network set up in the building and the smart device at the user’s end.
Owing to the increasing popularity of WiFi, WiFi signals are now ubiquitous in society, as
they meet the infrastructure requirements of WiFi positioning. In addition, many people
have become habituated to using Wi-Fi. Consequently, WiFi positioning has a substantial
advantage over other indoor positioning techniques. Therefore, this study focuses on the
WiFi fingerprint indoor positioning technology and aims to design an indoor 3D positioning
algorithm. First, it constructs temporal fingerprint slices based on sliding windows. The
algorithm uses temporal fingerprint slices as inputs. Temporal features are considered and
compared with the normal positioning method. In the proposed algorithm, a temporal
convolutional network (TCN) feature extractor is used for the automatic extraction of
spatiotemporal features to achieve end-to-end indoor 3D positioning.

The remainder of this paper is organized as follows. Section 2 briefly reviews pre-
vious research on WiFi fingerprint-based indoor-positioning methods and deep learning.
Section 3 describes the framework of the proposed 3D temporal fingerprint algorithm.
Section 4 presents a test of the proposed algorithm and presents an analysis of the results.
Finally, Section 5 presents conclusions and provides an outlook for future research.
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2. Literature Review

The fingerprint positioning method must construct a fingerprint map in advance
from the target area [21] and a popular method is to construct fingerprint maps in a
discrete manner. This approach partitions discrete predefined reference points into an
unlocatable environment. The fingerprint is randomly collected at the reference points
and did not contain temporal information. Many machine learning algorithms, such as
K-nearest neighbor (KNN) [22], naive Bayes [23], support vector machine [24], and random
forest [25], are used for plane position estimation. RADAR is the first indoor positioning
system to use the location-fingerprint method. This method uses the K-nearest neighbor
algorithm, with the core idea being to use the Euclidean distance to measure the similarity
of location fingerprints. At present, the improvement of the K-nearest neighbor algorithm
in fingerprint-based indoor positioning remains an important research direction. Brunato
proposed the weighted K-nearest neighbor (WKNN) positioning algorithm, which assigns
different weights to K reference points according to the size of similarity and obtains
the location coordinate estimation of the target by calculating the weighted average of
coordinates of K neighboring points [26]. Li et al. used Manhattan distance as a similarity
measure, which, compared to the Euclidean distance-based WKNN algorithm, improved
the accuracy by 33.82% [27]. Tran and Pham proposed a positioning model based on support
vector machine (SVM) classification, and found that SVM parameters have a significant
impact on positioning performance [24]. Li et al. proposed an indoor positioning prediction
model based on an SVM and used an improved sparrow search algorithm to optimize
the parameters. The effect of ensemble learning is better than that of a single learner,
which is introduced into indoor positioning to further improve positioning accuracy [28].
For example, Lee et al. proposed an indoor positioning model based on random forest
classification. With the emergence of deep learning, researchers are attempting to apply
deep learning to indoor positioning to achieve better positioning results [29]. In 2016,
Zhang et al. introduced deep learning into Wi-Fi fingerprint positioning for the first time.
The authors proposed a four-layer deep neural network positioning model that divided
the indoor environment into hundreds of square grids, and the number of neurons in
the output layer of the neural network classifier was equal to the number of grids [30].
Felix et al. applied deep belief networks and two different types of restricted Boltzmann
machines for indoor positioning [31].

For the study of 3D positioning, Sospedra et al. proposed the first open-source multi-
floor location fingerprint dataset and adopted the KNN method [32]. Nguyen summarized
and compared mainstream WiFi fingerprint-based positioning algorithms such as WKNN,
naive Bayes, and neural networks, with experimental results showing that the WKNN
algorithm performed well in most cases. In 3D positioning, Clustering is a popular method
for floor recognition [33]. Zhou et al. applied the k-means algorithm to cluster a location
fingerprint map. The cluster center was used to represent different floors, and the cluster
center with the largest similarity to the undetermined site was selected to determine the
floor. The selection of the cluster center and K value had a significant influence on the
results [34]. Cramariuc et al. proposed an affinity propagation clustering algorithm based
on the penalized log-Gaussian distance to perform affinity propagation clustering on fin-
gerprint maps, which improved the performance of fingerprint clustering in multistory
buildings. However, the fingerprint data of different layers were still mistakenly assigned to
the same cluster [35]. Kim et al. proposed a 3D positioning architecture for an autoencoder
combined with a deep neural network (DNN) classifier. The authors used the autoencoder
to reduce the dimension of input data, achieving a floor hit ratio of 91.27% and a position
coordinate positioning accuracy of 9.29 m [36]. Song et al. proposed different models to
predict buildings, floors, and coordinates. Given that buildings are far away from each
other, a fully connected neural network was used for building prediction, and a combi-
nation of a fully connected neural network and a one-dimensional convolutional neural
network was utilized for floor prediction and coordinate prediction, respectively [37].
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Another method for constructing fingerprint maps is to use continuous data. This
approach involves collecting fingerprints along the trajectory sequentially and recording the
location information of the sampling points. The collected fingerprints contained temporal
information and the historical information of the walking trajectory can be used to enhance
position estimation. Au et al. used a Kalman filter for continuous localization which
requires the assumption of Gaussian noise distribution and linear motion [38]. Hoang
proposed the SRL (Simultaneous Region Localization)-KNN positioning algorithm, which
does not require additional assumptions, and combines the historical location information
of the user into the KNN to restrict the search space of the nearest neighbor nodes to the
circle. The estimated position at the previous time point was at the center of the circle,
the radius is determined by the user’s moving speed and the time difference between
two consecutive measurements to reduce spatial ambiguity in positioning [39]. Bai et al.
applied deep learning to continuous positioning and proposed a positioning model based
on a double-layer cascaded RNN. The first RNN layer was used for position matching to
match the historical fingerprint measurements with the corresponding estimated position
and the second RNN layer is used for position filtering. The output of the first RNN layer
is used as the input for the second RNN layer. This method simultaneously trains two
RNN networks by minimizing a common loss function to obtain the final accurate position
estimate [40]. Khassanov et al. proposed a positioning model that combines a four-layer
neural network and long short-term memory (LSTM) to achieve end-to-end continuous
indoor positioning [21].

From the research mentioned above, it can be observed that deep learning can be
used for indoor positioning to improve positioning accuracy as illustrated in Figure 1.
The core of deep learning is a neural network. Neural network algorithms mimic the
structure and operation mechanism of brain neural networks, which are connected to a
large number of neurons for information transmission [41]. Convolutional neural networks
(CNN) contain multilevel nonlinear changes that are classical and widely used structures.
The connection between neurons is inspired by the organization of the animal visual
cortex [42]. CNNs have developed rapidly over the past decade and have the advantage of
maintaining a strong feature extraction ability under a low number of parameters. Google,
Facebook, and other business giants prioritized the research on CNN used in temporal
modeling until TCN was first proposed by Bai et al. in 2018 [43]. A TCN is a type of special
structure that can be used in the sequence of the convolution of the modeling problem of
a neural network. It adopts a causal convolution mechanism, an expansion mechanism
of convolution, and a residual connection. The TCN was not restricted by the size of the
convolution kernel. It can be used to obtain a long history of information. Its structure
is more compact, and its parameters can be significantly reduced. The TCN is suitable
for solving traditional temporal gradient and gradient explosion problems of the network.
Experiments have proven that TCN is superior to RNN and LSTM in terms of the efficiency
and accuracy of temporal data analysis. For example, in the field of fault detection, Gao
et al. proposed a TCN-based fault diagnosis model for power converters. The model has
good robustness and reliability in noisy environments, and it can achieve adaptive feature
extraction without any auxiliary pre-denoising algorithm. Compared to the LSTM-based
diagnosis model, the fault recognition accuracy was improved by 6%. The number of
parameters accounts for 1/4 of the LSTM diagnostic model. This model has advantages
in terms of computational efficiency and time [44]. For the load forecasting problem
of industrial customers, Wang et al. proposed a short-term load forecasting model for
industrial customers based on the TCN and LightGBM(Light Gradient Boosting Machine).
They applied a TCN to extract the deep characteristics and temporal relations of the input
data. The model effectively reduced redundant features and improved the load-forecasting
performance. Compared to the existing LSTM load forecasting model, the proposed model
has better robustness and prediction effects [45].
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Figure 1. Some Deep Learning Methods in WiFi fingerprint-based Indoor Positioning.

In summary, research on indoor positioning has primarily focused on two-dimensional
(2D) plane positioning, however, in practical application scenarios, most are multifloor
environments, where 2D position coordinates cannot determine the location of the target,
and it is necessary to obtain the vertical dimension information, floor, or height of the
target in the building. In addition, the traditional location algorithm only considers the
position matching of a single fingerprint and ignores the correlation between fingerprint
sequences. The current position of the target is related to its historical position. Therefore, it
is necessary to develop an indoor 3D positioning model that considers spatiotemporal data.
Deep learning, which can be used in 3D positioning model design, has been an effective
tool for data analysis in recent years.

3. Algorithm Design

This study proposed an indoor 3D positioning algorithm called TCN_DNNLoc, which
is a hybrid algorithm combining TCN and DNN. The proposed algorithm is divided into
an offline model training stage and an online fingerprint matching stage. The framework is
illustrated in Figure 2.
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In the offline stage, the temporal fingerprint map is constructed, the 3D positioning
model is trained and the fingerprint data are collected in a continuous manner. WiFi
fingerprints are collected along the trajectory and the corresponding 3D position coordinates
of the collected points are recorded, along with the collected time stamp. Then, the
fingerprint map is preprocessed and the RSSI in the fingerprint vector is converted to a
number between 0 and 1 for improving the learning ability of the model. Next, a fixed-
length sliding time window is used to construct temporal fingerprint slices, which are
used as the input of the model, and the TCN feature extractor is used to learn the hidden
information and temporal relationship in the input data. Finally, the extracted spatio-
temporal features are transmitted to the DNN position regressor for nonlinear mapping of
temporal features to 3D coordinates, and the training set is used for model training.

In the online fingerprint-matching stage, the positioning model is first loaded. The
collected fingerprint is used to construct the timing fingerprint slice, which is input into
the positioning model to realize end-to-end 3D position coordinate prediction. Finally, the
positioning result is sent back to the user.

In the following sections, a temporal fingerprint map and its pre-processing method
are introduced. Subsequently, a temporal fingerprint slice construction method based on
a sliding window is discussed. Next, a fingerprint spatial and temporal feature-learning
model based on the TCN is proposed, and finally, the proposed TCN_DNNLoc 3D temporal
fingerprint positioning algorithm is introduced in detail.

3.1. Preprocessing of the Temporal Fingerprint Map
3.1.1. Temporal Fingerprint Map

A 3D temporal fingerprint map is constructed continuously. The timestamp, WiFi
fingerprint vector, and corresponding 3D position coordinates are recorded by continuous
sampling along the trajectory at a certain time interval. The 3D temporal position fingerprint
map data are listed in Table 2, with the fingerprints arranged in chronological order.

Table 2. 3D temporal fingerprint map data.

Fingerprint ID AP1 AP2 ... APn x y z Timestamp

1 RSSI11 RSSI12 ... RSSI1n x1 y1 z1 t1
2 RSSI21 RSSI22 ... RSSI2n x2 y2 z2 t2
3 RSSI31 RSSI32 ... RSSI3n x3 y3 z3 t3
4 RSSI41 RSSI42 ... RSSI4n x4 y4 z4 t4
5 RSSI51 RSSI52 ... RSSI5n x5 y5 z5 t5
6 RSSI61 RSSI62 ... RSSI6n x6 y6 z6 t6

.... ... ... ... ... ... ... ... ...

The WiFi fingerprint vector collected at time t can be expressed as shown in (1):

FPt = {MAC1 : RSSI1t, MAC2 : RSSI2t, . . . , MACn : RSSInt} (1)

where n represents the number of Access Points (Aps) in the environment and MACi
represents the MAC address of the ith AP in an environment. The MAC address is a unique
AP identifier and RSSIit represents the Wi-Fi signal strength value from the ith AP at time t.
The closer it is to the AP, the greater the RSSI value.

The temporal fingerprint map is defined as shown in (2):

Ω = {(FP1, Loc1), (FP2, Loc2), . . . , (FPm, Locm)} (2)

where FPt represents the fingerprint vector collected at time t and Loct is the 3D position
vector corresponding to the sampling point at time t. The 3D position vector is defined as
shown in Equation (3):

Loct = {xt, yt, zt} (3)
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A temporal fingerprint-based indoor positioning problem can be formulated as a
sequence learning problem that predicts the user’s 3D position vector Loct at time t based
on the current and previous fingerprint vectors, as shown in Equation (4).

Loct = f (FP1, FP2, . . . , FPt) (4)

Here, f (·) is a sequential function that allows exploiting temporal dependencies in the input.

3.1.2. Temporal Fingerprint Map

This section describes the process of preprocessing WiFi RSSI. Through preprocessing,
the RSSI value can be converted to a number between zero and one, which is helpful
in improving the learning ability of the neural network model. Related studies have
proved that WiFi RSSI preprocessing has a significant impact on positioning performance.
Nurpeiissov et al. [46] proposed three representation methods for WiFi RSSI preprocess-
ing, namely: zero-one normalized representation, exponential representation, and power
representation, as shown in Equations (5)–(7), respectively.

ZeroToOneNormalized(RSSI) =
RSSI − c
−c

(5)

Exponential(RSSI) =
exp( RSSI−c

α )

exp(−c
α )

(6)

Powed(RSSI) = (
RSSI − c
−c

)
β

(7)

where the parameter c is a constant value that should be set to a number less than or equal
to the minimum RSSI value to move the RSSI value to a positive range. The zero-one
normalization representation performs a linear transformation of the original RSSI and
normalizes the RSSI value after moving it to a positive range. The RSSI is more likely
to have signal fluctuations when it is far from the AP. Consequently, the exponential
representation and power representation perform nonlinear transformations on the RSSI
and add penalties for higher RSSI values. The denominator parameter α is set to a constant
and the exponential parameter β is generally set to a mathematical constant e. After
preprocessing, the RSSI value was converted to a value between 0 and 1. An RSSI value
close to 1 indicates a stronger signal and 0 indicates an undetected AP.

Preprocessing of the WiFi RSSI has a significant influence on positioning accuracy.
For the IMUWIFINE dataset [39] used in this study, the positioning situations of zero-one
normalization representation, exponential representation, power representation, and no
preprocessing were tested. The RSSI value in the dataset ranges from−93 dBm to−34 dBm
and the RSSI value of the undetected AP was set to −100 dBm; thus, c was set to −100 in
this study. The experimental results are shown in Figure 3. It can be observed that WiFi
RSSI preprocessing significantly improves the positioning effect. In addition, the power
representation has the best effect, and consequently, a power representation is chosen to
conduct the RSSI data preprocessing.

3.2. Construction of Fingerprint Slice

Traditional positioning algorithms use a single fingerprint as the model input. Owing
to the noise and redundancy in WiFi fingerprints, fingerprints collected for the same
location may not be the same. Additionally, once the points that are far away from each
other in the physical space have a high similarity in the signal space, it will affect the
positioning accuracy. A sliding time window to build a temporal fingerprint chip as the
input of the positioning model to provide abundant information for positioning. Temporal
information can be used to distinguish locations with similar fingerprint vectors and to
improve the accuracy and robustness of positioning.
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In this study, a fingerprint vector sequence is selected as the input of the model.
Temporal fingerprint slices are constructed by window sliding, where the size of the sliding
window was set as W, and the fingerprint vectors in continuous-time t−W + 1 to time were
set t as a group to form a temporal fingerprint slice. Each temporal fingerprint slice contains
W fingerprint vectors collected continuously. Fingerprint vectors have spatiotemporal
dependence and the positioning accuracy can be improved by combining the historical
fingerprint information. Considering the size of the window W = 4 as an example, the
construction method of the sliding window is introduced, as shown in Figure 4. A window
of size four was maintained, and a step of one is taken to continuously slide down on
the temporal fingerprint dataset. The fingerprint vector collected from t1 to t4 constitutes
the fingerprint slice and the fingerprint vector collected from t2–t5 constitutes another
fingerprint slice. Fingerprinted slices are constructed successively in this manner.

The reconstructed fingerprint slice dataset using the sliding window is shown in
Table 3. Each fingerprint slice contains four fingerprint vectors collected continuously, all of
which contain time information. The position coordinate corresponding to the last sample
in the window is taken as the position label of the entire fingerprint slice.

Table 3. Fingerprint slice dataset.

Fingerprint Slice Position Coordinate

[FP1, FP2, FP3, FP4] x4, y4, z4
[FP2, FP3, FP4, FP5] x5, y5, z5
[FP3, FP4, FP5, FP6] x6, y6, z6
. . . . . .

[FPM, FPM+1, FPM+2, FPM+3] xM+3, yM+3, zM+3
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3.3. Positioning Model Design

The model architecture is shown in Figure 5. It is primarily divided into four modules,
namely: a fingerprint slice input module, a TCN feature extractor module with three
residual blocks, a DNN regressor module with two hidden layers, and a 3D coordinate
output module.

Sensors 2023, 22, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Positioning Model Architecture. 

3.3.1. Input Module 
The fingerprint vector of a single strip is easily affected by the dynamic changes in 

the environment and the inherent noise of the signal; therefore, the fingerprint slice Se-
ries_FP = [FPt-w+1, FPt-w+2, …, FPt] is used as the input of the model. Series_FP is a two-dimensional 
matrix of W × N. W indicates the sequence length of time, which is equal to the size of the 
sliding window. Here, N indicates the total number of AP in the environment. The 
fingerprint slice contains a fingerprint vector collected continuously over time, W. The 
location label corresponding to the fingerprint slice is Loc { , , }t t t tx y z= , which represents 
the actual physical location coordinates of the sampling point at time t. 

3.3.2. TCN Feature Extractor Module 
The TCN feature extractor with three residual blocks is used to extract the features 

of Series_FP, as shown in Equation (8) and _ST Features  indicates the extracted spatio-
temporal features. 

_ ( _ )ST Features TCN Series FP=  (8)

The specific architecture of residual blocks is shown in Figure 6. 

Figure 5. Positioning Model Architecture.

3.3.1. Input Module

The fingerprint vector of a single strip is easily affected by the dynamic changes
in the environment and the inherent noise of the signal; therefore, the fingerprint slice
Series_FP = [FPt-w+1, FPt-w+2, . . . , FPt] is used as the input of the model. Series_FP is a two-
dimensional matrix of W × N. W indicates the sequence length of time, which is equal to
the size of the sliding window. Here, N indicates the total number of AP in the environment.
The fingerprint slice contains a fingerprint vector collected continuously over time, W. The
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location label corresponding to the fingerprint slice is Loct = {xt, yt, zt}, which represents
the actual physical location coordinates of the sampling point at time t.

3.3.2. TCN Feature Extractor Module

The TCN feature extractor with three residual blocks is used to extract the features
of Series_FP, as shown in Equation (8) and ST_Features indicates the extracted spatio-
temporal features.

ST_Features = TCN(Series_FP) (8)

The specific architecture of residual blocks is shown in Figure 6.
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Each residual block contained two layers, namely: causal and dilated convolutions.
Through the causal convolution mechanism, causal constraints are added, and the connec-
tions that do not meet the temporal dependence are removed in the training and learning
processes. Through the dilated convolution mechanism, larger receptive fields of informa-
tion are obtained without increasing the number of network layers. The weight-normalized
layer is added after each causal and dilated convolution layer to speed up model conver-
gence. The ReLU activation layer activates neurons nonlinearly and adds nonlinear factors
to the model to improve its feature learning ability. The Droupout layer sets the loss rate to
inactivate neurons proportionally and at random to avoid an excessive fitting model. This
is discussed in detail in the next section.

The framework of the TCN feature extractor is shown in Figure 7. where, d denotes
the dilation coefficient. The dilation coefficient of the three residual blocks increases
exponentially, which causes the information receptive field to expand by two times, in
turn. Here, k represents the size of the convolution kernel used for feature extraction. The
frameworks of the three residual blocks are identical, except for the expansion coefficient.
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The residual connection mechanism prevents network degradation, which effectively solves
the problems of gradient disappearance and explosion.
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3.3.3. DNN Regressor Module

After extracting spatio-temporal features, the TCN feature extractor is connected to
the DNN regressor with two hidden layers to learn the nonlinear mapping between spatio-
temporal features and 3D positions, as shown in Figure 6. To prevent network overfitting,
a dropout layer is added after each hidden layer. The dropout layer is composed of three
neuron outputs for the 3D position coordinate estimation.

The ST_Features vector is passed forward to the DNN regressor with two hidden
layers, as shown in Equations (9)–(12):

y1 = f(w1ST_Features + b1) (9)

y′1 = drop(y1) (10)

y2 = f (w2y′1 + b2) (11)

y′2 = drop(y2) (12)

Here, w1 and w2 are the weights of the two fully connected hidden layers, whilst b1
and b2 are the biases of the two hidden layers. The variables y1 and y2 are the outputs of
the two hidden layers and f(·) indicates the activation function. ReLU activation function
is choosen for the model, which adds nonlinear factors to the model, converts the linear
result into a nonlinear output, improves the expression ability of the neural network to
the model, and solves the problem that the linear function cannot be fitted. The use of
the ReLU activation function and dropout layer can alleviate the overfitting problem to
some extent.

3.3.4. Output Module

After passing through two fully connected hidden layers, information is transmitted
to the output layer with three neurons, which do not use the activation function, as shown
in Equation (13):

oi = w3iy′2 + b3i, i = 1, 2, 3 (13)

The oi represents the value of each neuron in the output layer, o1 represents the x-
coordinate predicted by the model, o2 represents the Y-coordinate predicted by the model
and o3 is the Z coordinate predicted by the model. The variables w3i and b3i represent the
connection weight and bias, respectively, from the second hidden layer to the ith neuron in
the output layer.



Sensors 2023, 23, 153 12 of 20

The mean square error was used as the loss function of the model, as shown in
Equation (14):

LMSE(Loct, ˆLoct) =
1
T

T

∑
t=0

∣∣∣∣Loct − ˆLoct
∣∣∣∣

2 (14)

where Loct denotes the actual 3D coordinates at time t, ˆLoct denotes the 3D coordinates
predicted by the model at time t. An Adam optimization was used to update the parameters.

4. Experiments and Analysis
4.1. Dataset

The experiment used the IMUWIFINE dataset [46] launched by ISSAI, which is an
open-source position fingerprint dataset with temporal information. The collection site
was located in Building C4 on the campus of Nazarbaye University. It covers a total area
of over 9000 square meters on three floors: the fourth, fifth, and sixth. The fingerprint
vector and corresponding 3D position coordinates were recorded every five seconds along
a continuous track. A collection of examples is presented in Figure 8.
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Specific attribute information for the dataset is presented in Table 4. A total of 220 APs
were placed in the environment and a default value of −100 dBm was used to represent
the undetected APs.

Table 4. IMUWIFINE dataset details.

Attribute Meaning

AP001-AP220 RSSI from the corresponding AP (dbm)
x Value on the X-coordinate (m)
y Value on the Y-coordinate (m)
z Value on the Z-coordinate (m)
Timestamp Timestamp of the sample (s)

4.2. Evaluation Index

The 3D average error distance and cumulative error distribution functions were used
as the performance evaluation indexes of the model.

The definition of 3D average error distance is shown in Equation (15):

3D_MED =

N
∑

i=1
dist(Loci, ˆLoci)

N
(15)
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where Loci is the actual 3D position coordinate of the target predicted by the positioning
model introduced in Section 3.3. dist() is the Euclidean distance between the actual position
Loci and predicted position ˆLoci, whilst N is the sum of the number of samples in all tests.

The dist() is defined as in Equation (16):

dist(Loc, ˆLoc) =
√
(x− x̂)2 + (y− ŷ)2 + (z− ẑ)2 (16)

The cumulative error distribution function (CEDF) is another evaluation index and
the trend in the error distribution curve indicates the overall error distribution. The faster
the curve rises, the better the positioning effect.

4.3. Parameter Setting

To improve the performance of the positioning model, the TCN feature extractor and
DNN position regressor were optimized.

The number of convolution kernels in the TCN feature extractor affects the spatiotem-
poral feature extraction, which in turn affects the accuracy of the model. This study tested
the effect of the TCN with different numbers of convolution kernels. The experimental
comparison results are shown in Figure 9.
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Figure 9. Localization effect of different convolution kernel numbers.

Initially, with an increase in the number of convolution kernels, the positioning pre-
cision of the model was greatly improved. The best positioning effect was obtained by
using 128 convolution kernels. As the number of convolution kernels continued to increase,
the model positioning performance decreased. Additionally, when the number of model
parameters increased dramatically, the training time became significantly longer. Conse-
quently, the number of convolution kernels in the TCN space-time feature extractor was set
to 128.

For DNN regressors, different network structures affected the performance of the
model. The experimental comparison results are shown in Figure 10.
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Figure 10. Localization effect of different DNN structures.

It can be observed that the performance of a single hidden layer was limited. However,
increasing the number of network layers can cause overfitting and affect the positioning per-
formance of the model. In the experiment, 128–128 means that two hidden layer structures
with 128 neurons were adopted; this selection yielded the best positioning performance.

This study adopted a sliding window to build the temporal fingerprint slice where the
length of the temporal fingerprint slice was equal to the size of the sliding window. The
longer the series, the more historical information it contains but the more cumulative errors
it introduces. To balance these two points for the optimal time series length, experiments
were conducted with different series lengths. The positioning errors for the different series
lengths are shown in Figure 11.
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Figure 11. 3D positioning error of different series length.

The minimum average error distance was obtained when the time-series length was
eight. The cumulative error distribution curves for different time-series lengths are shown
in Figure 12. It can be observed from the figure that when W = 8, the error distribution
curve rises the fastest, and the curve is the shakiest. More than 80% of the positioning
results achieved errors of less than two meters. The details can be found in Table 5.
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Table 5. The proportion of the average error distance for different time-series lengths.

<1 m <2 m <4 m <6 m

W = 3 41% 79% 98% 100%
W = 4 45% 79% 98% 100%
W = 8 49% 82% 99% 100%

W = 16 30% 73% 97% 100%
W = 20 28% 69% 97% 100%

In summary, parameter settings of TCN_DNNLoc algorithm are shown in Table 6.

Table 6. TCN_DNNLoc model parameters.

Parameter Value

Epochs 1000
Doupout 0.1
Residual blocks 3
Convolution kernel size 4
Number of convolution kernels 128
activation function ReLU
Loss function Mse
Optimization algorithm Adam

4.4. Performance Comparison of Different Algorithms

The performance of the proposed TCN_DNNLoc model was compared with the
nonsequential model SRL_KNN [39], FNN [21], and sequential model LSTM [46]. All
hyperparameters were tuned on the validation set, and the final model was evaluated on
the test set of IMUWiFine Dataset. For SRL_KNN, K is set to 3. For FNN, the model is with
5 hidden layers and 128 hidden units. ReLU is used in all hidden layers. More details about
the model can be found in Ref. [21]. For LSTM, the model is consisting of four ReLU and
three LSTM layers with a dimension size of 128 units. More details about the model can be
found in Ref. [46]. The epochs of all the model are set the same as 1000.

The 3D positioning errors of different models are shown in Figure 13.
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Figure 13. 3D positioning error of different models.

It can be observed from the figure that the positioning accuracy of the sequence model
is significantly higher than that of the nonsequence positioning model. For the comparison
between the two sequential models, the 3D average error distance of the positioning model
based on LSTM was 1.33 m, and the 3D average error distance of the TCN_DNNLoc was
1.22 m, an accuracy improvement of 7.5%. The cumulative error distribution curves for the
different models are shown in Figure 14.
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It can be observed from Figure 14 that the error distribution curve of TCN_DNNLoc
increased the fastest, and the curve was the shakiest. More than 80% of the positioning
results achieved positioning errors of less than two meters, and the positioning performance
was the best, proving the validity of the TCN_DNNLoc model. The details are included
in Table 7.
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Table 7. The proportion of the average error distance of different models.

<1 m <2 m <4 m <6 m
Average Error (m)

Valid Test

TCN_DNNLoc 49% 82% 99% 100% 1.21 1.22
LSTM 42% 81% 98% 100% 1.35 1.33

SRL_KNN 40% 70% 93% 96% 1.62 1.66
FNN 34% 69% 94% 97% 1.75 1.71

5. Conclusions

In our daily life, 3D indoor positioning is of great significance. It can not only help
people navigate in multi-story buildings, but also help managers to count the distribution of
people flow in the buildings. At present, it can also help to control the spread of COVID-19
more accurately. This study reviewed relevant references and comprehensively analyzed
existing positioning techniques and methods. We focus on the WiFi fingerprint method
because of its wide deployment in multi-story buildings. Compared to a single fingerprint
input, the fingerprint sequence collected continuously contains historical data, which can
provide richer information for positioning. Temporal information can be used to distinguish
positions with similar fingerprint vectors and improve the accuracy and robustness of
mobile positioning. Based on previous studies, this study applied deep learning techniques
to the indoor positioning field and proposed a new sequence-positioning model called
TCN_DNNLoc.

In the proposed model, the sliding time window method is used to construct temporal
fingerprint slices, which are used as the input to the model, to provide richer information for
positioning, solve the problems of environmental noise and spatial ambiguity, and improve
the accuracy and robustness of positioning. A TCN spatiotemporal feature extractor was
proposed to extract the sequence fingerprint slice of hidden information and temporal
relations. The proposed TCN model adopts causal convolution, dilated convolution, and
residual connection mechanisms, and is not restricted by the size of the convolution kernels.
The proposed model also expands the receptive with long history information, compact
structure, and reduced parameters, and solves the problems of gradient disappearance
and gradient explosion. The extracted spatiotemporal features are connected to a deep
neural network (DNN) position regressor, and the complex nonlinear mapping relationship
between the features and 3D position coordinates is learned to estimate the 3D position
coordinates of the target. The effectiveness of the TCN_DNNLoc model was proved by an
experimental comparison with the existing 3D method.

There are two future research directions of this study:

(1) The positioning accuracy was affected by the connection weight and bias of the model.
Future research should consider using a heuristic algorithm to optimize the parame-
ters. Examples include the genetic algorithm (GA) [47], particle swarm optimization
(PSO) [48], simulated annealing [49], and quantum annealing algorithms [50]. The
optimization algorithms can be used to optimize the connection weight matrix and
bias of the positioning model to avoid falling into the local optimal solution. Moreover,
the convergence speed of the model can be improved.

(2) This study considered only WiFi technology for positioning; however, each positioning
technology has its own characteristics and limitations. With the development of
microelectric systems, the accuracy of sensors has improved continuously, whilst the
built-in sensors of mobile phones, such as air-pressure sensors and accelerometers,
can be used for auxiliary positioning. Future research must consider the integration
of WiFi technology with other technologies to provide more accurate positioning
information. Multi-technology fusion and mutual learning can compensate for the
limitations of single-positioning technology and improve positioning accuracy.



Sensors 2023, 23, 153 18 of 20

Author Contributions: L.W. conceived the ideas and designed the framework of the algorithm; S.S.
implemented the algorithm and conducted the experiments; Z.W. contributed to the RFID system
design; L.W. prepared the draft; Z.W. contributed to the manuscript writing and editing. All authors
commented on the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 71502029 and Grant 61703087.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in [46].

Acknowledgments: The authors would like to acknowledge the financial support from the National
Natural Science Foundation of China.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rajasekar, S.S.; Palanisamy, C.; Saranya, K. Privacy-preserving location-based services for mobile users using directional service

fetching algorithm in wireless networks. J. Ambient Intell. Humaniz. Comput. 2021, 12, 7007–7017. [CrossRef]
2. Yassin, A.; Nasser, Y.; Awad, M.; Al-Dubai, A.; Liu, R.; Yuen, C.; Raulefs, R.; Aboutanios, R. Recent advances in indoor localization:

A survey on theoretical approaches and applications. IEEE Commun. Surv. Tutor. 2017, 19, 1327–1346. [CrossRef]
3. Chen, R.; Chen, L. Indoor Positioning with Smartphones: The State-of-the-art and the Challenges. Acta Geod. Cartogr. Sin. 2017,

46, 1316–1326.
4. Laoudias, C.; Moreira, A.; Kim, S.; Lee, S.; Wirola, L.; Fischione, C. A survey of enabling technologies for network localization,

tracking, and navigation. IEEE Commun. Surv. Tutor. 2018, 20, 3607–3644. [CrossRef]
5. Shang, S.; Wang, L. Overview of WiFi fingerprinting-based indoor positioning. IEEE Commun. 2022, 20, 3607–3644. [CrossRef]
6. Carotenuto, R.; Merenda, M.; Iero, D.; Della Corte, F.G. An indoor ultrasonic system for autonomous 3-D positioning. IEEE Trans.

Instrum. Meas. 2019, 68, 2507–2518. [CrossRef]
7. Zhang, W.; Yu, K.; Wang, W.; Li, X. A self-adaptive AP selection algorithm based on multiobjective optimization for indoor WiFi

positioning. IEEE Int. Things J. 2021, 8, 1406–1416. [CrossRef]
8. Magnago, V.; Palopoli, L.; Buffi, A.; Tellini, B.; Motroni, A.; Nepa, P.; Macci, D.; Fontanelli, D. Ranging-free UHF-RFID robot

positioning through phase measurements of passive tags. IEEE Trans. Instrum. Meas. 2020, 69, 2408–2418. [CrossRef]
9. Monica, S.; Bergenti, F. Hybrid indoor localization using WiFi and UWB technologies. Electronics 2019, 8, 334. [CrossRef]
10. Bernardini, F.; Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Tripicchio, P.; Unetti, M. Particle swarm optimization in SAR-based

method enabling real-time 3D positioning of UHF-RFID tags. IEEE J. Radio Freq. Identif. 2020, 4, 300–313. [CrossRef]
11. Xia, J.; Li, S.; Wang, Y.; Jiang, B. Research on UWB/BLE-Based Fusion Indoor Positioning Algorithm and System Application. In

Proceedings of the 2021 International Symposium on Computer Technology and Information Science (ISCTIS), Guilin, China, 4–6
June 2021; pp. 50–54.

12. Yu, K.; Wen, K.; Li, Y.; Zhang, S.; Zhang, K. A Novel NLOS mitigation algorithm for UWB localization in harsh indoor
environments. IEEE Trans. Veh. Technol. 2019, 68, 686–699. [CrossRef]

13. Molina, B.; Olivares, E.; Palau, C.E.; Esteve, M. A multimodal fingerprint-based indoor positioning system for airports. IEEE
Access 2018, 6, 10092–10106. [CrossRef]

14. Phutcharoen, K.; Chamchoy, M.; Supanakoon, P. Accuracy Study of Indoor Positioning with Bluetooth Low Energy Beacons.
In Proceedings of the 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section
Conference on Electrical, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Electronics, Pattaya, Thailand,
11–14 March 2020; pp. 24–27.

15. Harter, A.; Hopper, A.; Steggles, P.; Ward, A.; Webster, P. The anatomy of a context-aware application. Wireless Netw. 2002, 8,
187–197. [CrossRef]

16. Yelkovan, Y.; Güneren, H.; Akgöz, A.; Eybek, F.; Türk, A.; Göl, İ.; Çetin, Ö. Infrared Beacon Based Sub-Meter Indoor Localization.
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