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Abstract: This paper refers to research based on tests completed on the adsorption of heavy metal
ions (Pb2+, Cu2+, Cd2+) from selected natural liquid samples such as apple, tomato, and potato juices
using surface-functionalized Mn ferrite nanoparticles (Mn0.2Fe2.8O4). To determine the most efficient
adsorption conditions of these heavy metals, the nanoparticles’ surfaces were modified with five
different ligands (phthalic anhydride, succinic anhydride, acetic anhydride, 3-phosphonopropionic
acid, and 16-phosphonohexadecanoic acid). To evaluate the success of the adsorption process, the
resultant liquid samples were examined for the amount of residuals using the flame atomic absorption
spectroscopy method. The Mn ferrite particles selected for these tests were first characterized
physicochemically by the following methods: transmission electron microscopy, scanning electron
microscopy, X-ray diffraction, IR spectroscopy, Mössbauer spectroscopy.

Keywords: ferrite nanoparticles; heavy metal detection; food; pollution; particles functionalization

1. Introduction

At present, environmental contamination from heavy metals is a highly urgent subject
for scientists. Heavy metals are toxic to plants, animals, and humans [1]. Ubiquitous heavy
metals cause a threat to human health and life. For this reason, it is important to effectively
detect them and prevent poisoning [2]. Properly modified nanoparticles can capture many
substances (ions or compounds) from various types of solutions (natural or artificial) and
be successfully used as detectors or removal centers for these substances [3]. Especially
effective in such instances are surface-functionalized magnetic nanoparticles which can be
easily manipulated by external magnetic field [4].

Therefore, it is crucial to remove dangerous impurities from the human diet and
environment [5,6] or, at minimum, have information about their contribution values. Heavy
metals occur as contaminants in food because of their prevalence in the environment,
resulting from human activities. People can be exposed to these metals, for example,
through the consumption of contaminated food or water. Their accumulation in the
body leads to harmful effects over time [7]. The major heavy metals present in food are
lead, cadmium, and copper [8,9]. Both the International Agency for Research on Cancer
and the National Toxicology Program have recognized cadmium as a classified Group 1
carcinogen [10]. Cd accumulates in the circulatory system, heart, kidneys, and lungs.
Additionally, it is very toxic to bones [8]. In contrast, lead (Pb) damages the respiratory
and immune systems. This metal is very toxic, especially for children, because it damages
their nervous system. In children’s bodies, no organ system is immune to the effects of lead
poisoning [8]. Poisoning with copper can cause nausea and central nervous system injury,
as well as renal insufficiency [11].
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The threat of heavy metals is a direct result of their movement through the trophic
chain from soil–plant–animal–human, potentially resulting in their accumulation in the
human body [12,13].

The largest sources of heavy metals in soil comes from bedrock, industrial emis-
sions, communications, and agriculture (Figure 1). The mining, metallurgy, and chemical
industries are among the largest anthropogenic sources of soil pollution [12,13].
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Figure 1. Schematic presentation of the possible transport of heavy metals in the environment.

Magnetic nanoparticles can potentially be used to cleanse food of heavy metals due
to their easy manipulation based on an external magnetic field. Moreover, a short contact
time can ensure optimal conditions. In aqueous solutions, one of the important parameters
is the pH of the contaminated mixture because of the formation of a thin layer of Fe-OH
bonds on the surface of magnetite nanoparticles. This, in turn, can be protonated or
deprotonated regardless of the pH. For easier removal of heavy metal ions, the surface of
nanoparticles should be slightly negative, which can be obtained (most often reported) in
solutions with a pH higher than six [14,15]. Nowadays, magnetic nanoparticles are used
to treat water contaminated with heavy metals [14,16–18]. Suitable modification of the
nanoparticles may result in a higher adsorption efficiency of heavy metals or an increase in
the effects of the selected ion adsorption [19]. This can be achieved using magnesium–zinc
ferrite, which successfully improves the removal of Cr(VI) and Ni(II) from solution [20],
or calcium-doped ferrite which is most effective in the adsorption of Pd in comparison to
other substances [21].

Summarizing the scattered data presented in the literature regarding the metal detec-
tors based on nanoparticles, the most important are: the pH of the solution (its optimal
value depends on the adsorbed ion) [22], the particles’ core composition (which is related
to the size, shape, and surface morphology of the singular objects) [22,23], and the surfac-
tant [24]. In this case, surfactants play roles not only as surface stabilizers, which prevent
the aggregation of especially magnetic nanoparticles, but also in changing the surface
characteristics to allow physical or chemical interactions. Additionally, surfactants separate
the magnetic cores to a sufficient distance to prevent unfavorable magnetic attraction which
reduces the effective surface area [25,26].

In this paper, we present research on the removal of selected heavy metal ions (Cd,
Cu, Pb) from contaminated natural liquid samples (fruit and vegetables juices) by surface-
modified (acetic anhydride, phthalic anhydride, succinic anhydride, 3-phosphonopropionic
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acid, and 16-phosphonohexadecanoic acid) Mn ferrite nanoparticles (Mn0.2Fe2.8O4). This
study is a continuation of our previously obtained results and conclusions [27]. Therefore,
similar experimental protocols were employed.

2. Materials and Methods
2.1. Reagents and Solutions

All chemicals used in this work were analytical grade and were used without any purifi-
cation. FeCl2·4H2O, FeCl3·6H2O, tetrabutylammonium hydroxide (TBAOH) (40% in water),
NH3 (25%), MnCl2 (anhydrous), CuSO4 (anhydrous), PbCl2 (anhydrous), Cd(NO3)2·4H2O,
and acetic anhydride (AA C4H6O3) were purchased from Polish Chemical Reagents. Ph-
thalic anhydride (PA C8H4O3), succinic anhydride (SA C4H4O3), 3-phosphonopropionic
acid (3-PPA C3H7O5P), 16-phosphonohexadecanoic acid (16-PHDA C16H33O5P), and PBS
(phosphate buffer sulfate) were received from Sigma–Aldrich. All chemicals were of
ACS purity.

2.2. Apparatus

Nanoparticles used in the experiments were analyzed structurally, in terms of chemical
composition, and magnetically by:

(i) X-ray diffractometry (XRD) (Agilent Technologies SuperNova diffractometer with a
Mo micro-focused source (Kα2 = 0.713067 Å))—placing a small amount of powder on
a nylon loop using a high viscosity oil—to determine the crystal structure;

(ii) Transmission electron microscopy (TEM) (FEI Tecnai G2 X-TWIN 200 kV microscope—
prefixing a drop of nanoparticle solution, on a carbon-covered 400 mesh Cu grid—to
control particle morphology, shape, and size;

(iii) Infrared spectroscopy (IR) in the spectral range between 500 and 4000 cm−1 (using
a Nicolet 6700 spectrometer working in transmission mode)—positioning a small
amount of particle powder on a diamond window and squeezing via a stamp—to
confirm surface functionalization;

(iv) Scanning electron microscope (INSPEC 60)—placing a small amount of particle pow-
der on the microscopic table via conducting carbon tape—to examine the morphology
of the obtained particle film;

(v) Mössbauer spectroscopy with a spectrometer working in constant acceleration mode
with a 57Co in Rh matrix radioactive source—mixing the particle powder with BN
and forming a disc—to establish the magnetic state of particles. The spectra were
calibrated using α-Fe as a reference foil at room temperature (RT).

The amounts of Pb, Cu, and Cd elements in the tested solutions were measured
using flame atomic absorption spectrometry (FAAS). Experiments were performed in a
high-resolution continuum source atomic absorption spectrometer ContrAA 700 (Analytik
Jena AG, Jena, Germany) equipped with a continuum light source—xenon short-arc lamp
XBO 301 (GLE, Berlin, Germany) with the arc in a hot spot mode suitable for all elements’
determination. A double monochromator consisting of a prism pre-monochromator and
a high-resolution echelle grating monochromator, along with a charge-coupled device
(CCD) array detector with 588 pixels equipped with an air-acetylene flame was used for the
determination of Pb, Cd, and Cu under optimized conditions of (a) Pb: burner height 7 mm,
burner length 100 mm, air–C2H2 flow rate 75 L h−1; (b) Cu: burner height 4 mm, burner
length 100 mm, air–C2H2 flow rate 65 L h−1; and (c) Cd: burner height 5 mm, burner length
100 mm, air–C2H2 flow rate 55 L h−1.

2.3. Synthesis of Mn2+ Doped Ferrite Nanoparticles

Magnetite nanoparticles doped with manganese were synthesized by co-precipitation
of Fe(II), Mn(II), and Fe(III) chlorides in a 0.5% ammonia solution. As a surfactant, a water
solution of TBAOH was used. In this case, about 20% of the iron (II) was replaced by
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Mn(II) [28,29]. The exact synthesis has been described in our previous papers [27]. The
final sample was dried by rotary evaporation until a powder was obtained.

2.4. Modification of Nanoparticles PA, SA, AA, 3-PPA, and 16-PHDA

After synthesis, nanoparticles were modified with selected anhydrides (PA, SA, AA),
and organophosphorus acids (3-PPA, 16-PHDA). Every step of the modification was con-
ducted at room temperature. The attachment of anhydrides was conducted as follows: the
respective anhydrous solutions were prepared in ethanol with a concentration of 0.14 M.
Then, a solution of the corresponding anhydride was mixed with about 80 mg of nanoparti-
cles (in powder form) and stirred for 4 h [24]. After this time, the solution was removed
(with the assistance of an external magnetic field), and the powder was washed 3 times
with ethanol and dried at RT (room temperature).

The modification with organophosphorus acids involved a different procedure. First,
the nanoparticles were washed with acetone and ethanol. Then, 10 mg of nanoparticles
(in powder form) was mixed with a 1mM solution of 3-PPA or 16-PHDA for 18 h. In the
next step, a mixture of nanoparticles and organophosphorus acid solution was placed in
an ultrasonic bath for 1 min, and then the solution was removed with the assistance of an
external magnetic field. In the end, nanoparticles were washed 3 times with PBS solution
and dried [30]. Modified nanoparticles were characterized using IR spectroscopy.

2.5. Preparation of Food Samples Solution for FAAS

In these studies, three types of vegetable/fruit juices were tested: tomato, apple, and
potato, respectively. Squeezed juices from fresh fruits/vegetables were initially separated
from the parenchyma with the use of a centrifuge, and the precipitate was separated from
the solutions. The pH values of the respective solutions were: apple juice (2.07), tomato
juice (4.98), potato juice (6.20). Then, the respective solutions were contaminated with
each heavy metal ion at a concentration of 100 ppm. Then, the prepared juice samples
were added to 2 mg of modified Mn-doped ferrite nanoparticles. The whole mixture
of nanoparticles was stirred for 10 min. Afterward, the liquid was separated from the
solid phase via the assistance of an external magnetic field. In the obtained solutions, the
concentrations of Pb, Cu, and Cd ions were measured using the FAAS method.

3. Results
3.1. Physicochemical Characterization of Pristine and Modified Ferrite Nanoparticles

The morphology of the fabricated pristine nanoparticles was characterized using
TEM. As shown in Figure 2A, the obtained nanoparticles have round shapes and well-
defined sizes with a narrow size distribution. The calculated nanoparticles’ diameter is
about 15 ± 2 nm. Moreover, surfactant (TBAOH) shells can be also seen in the TEM image.
Therefore, primary surface modification is confirmed [27].

The IR spectrum (Figure 2B) of Mn0.2Fe2.8O4 nanoparticles show only bands typical
for the procedure used. The intensive signals present below 600 cm−1 originate from the
Fe-O bonds in magnetite [31]. Bands around 1400–1600 cm−1 and below 3000 cm−1 are
characteristic of O–H [32].

Depicted in Figure 2C, the X-ray diffractograms show a set of patterns that are typical
for magnetite (or maghemite) structure without the reflections typical for other Mn or Fe
oxide phases. These signals can be assigned Miller indexes of (220), (311), (400), (422), (511),
and (440) [33]. The lattice constant calculated from the diffractograms (8.38 ± 0.02 Å) is
consistent with the literature value of magnetite (8.39 ± 0.01 Å) [34]. The EDX measure-
ments also showed that the percentage of Mn was 15%. This proves the substitution of Fe
atoms by Mn2+ in the magnetite. Such a result confirms the successful incorporation of Mn
into the primary structure [28].
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The Mössbauer spectrum depicted in Figure 2D shows that Mn0.2Fe2.8O4 nanoparticles
are in a different magnetic state than typical Fe3O4 at RT (room temperature) [27,35]. Such
changes can be expected from dipole–dipole interactions between Mn2+ and Fe2+, Fe3+,
when Mn2+ is incorporated into the structure [28]. At RT, Mn-doped particles are closer
to a superparamagnetic blocking temperature in comparison to magnetite [28]. This fact
weakens the interparticle interaction between separate nanoparticles and helps in their
integration with third objects due to providing easier access to their surface [27].

3.2. Adsorption Tests

In this section, the results of the adsorption of heavy metals on the tested nanoparticles
after the physicochemical characterization of the inorganic cores are presented. For this
purpose, SEM images and IR spectra of the nanoparticles with proper surface functionaliza-
tion after exposure to heavy metals are presented. Food samples contaminated with heavy
metals before and after contact with the tested nanocomposites were analyzed by FAAS.
The results of the percentage of value adsorbed are presented in Table 1.

Table 1. Percentage identification of elements in respective juices (columns) and selected modifiers
(rows) (LOD—detection limit [36]).

Sample Type

% Adsorbed ± 0.05

Apple Potato Tomato

I II III

Pb

Mn0.2Fe2.8O4 NP’s 7.98 62.53 13.80

Mn0.2Fe2.8O4 + PA 3.84 9.19 12.82

Mn0.2Fe2.8O4 + SA 2.22 44.80 4.38

Mn0.2Fe2.8O4 + AA 3.62 48.00 <LOD
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Table 1. Cont.

Sample Type

% Adsorbed ± 0.05

Apple Potato Tomato

I II III

Mn0.2Fe2.8O4 + 3-PPA 5.83 46.22 37.01

Mn0.2Fe2.8O4 + 16-PHDA 11.52 75.02 23.38

Cu

Mn0.2Fe2.8O4 NP’s 2.98 <LOD 0.50

Mn0.2Fe2.8O4 + PA 3.04 7.89 3.76

Mn0.2Fe2.8O4 + SA 5.32 3.72 4.21

Mn0.2Fe2.8O4 + AA 3.64 10.31 4.38

Mn0.2Fe2.8O4 + 3-PPA 5.66 1.97 6.89

Mn0.2Fe2.8O4 + 16-PHDA 4.33 1.69 3.98

Cd

Mn0.2Fe2.8O4 NP’s 0.01 13.38 1.33

Mn0.2Fe2.8O4 + PA 0.02 14.3 13.13

Mn0.2Fe2.8O4 + SA 0.02 10.56 9.75

Mn0.2Fe2.8O4 + AA 0.03 14.93 11.47

Mn0.2Fe2.8O4 + 3-PPA 0.01 12.75 8.64

Mn0.2Fe2.8O4 + 16-PHDA <LOD 16.89 0.21

3.3. Scanning Electron Microscopy

The morphology of the tested samples was imaged using SEM. The use of differ-
ent juices caused significant changes in the particles’ film appearance resulting from the
presence of variable organic matrixes that can be loosely adsorbed on the particles. To-
gether with surfactants and juice constituents, the dried particles formed a relatively even
film. However, in the solution, nanostructures were separated enough to have free and
prolonged access to pollutants.

The film of pristine Mn0.2Fe2.8O4 particles (Figure 3A) was very rough because the
surfactants used did not appear in large amounts as compared to the particles. Surface
functionalization (Figure 3B) already causes the smoothing of the film because it increases
the organic over the inorganic contribution. When the amount of surfactants and functional
species dominates the system, particles can organize in a more relaxed manner because the
interparticle magnetic interaction is weaker in this case. The bathing of particles in juice
more strongly influenced the roughness/smoothing of the presented films. It was seen
that the particles immersed in tomato and potato juices created a smooth film, while apple
juice had the opposite effect regardless of the heavy metal tested. This was caused by the
different compositions of the organic matrix of juices used.

3.4. Infrared Spectroscopy

In Figure 2B, the IR spectrum of pristine Mn0.2Fe2.8O4 nanoparticles is presented. After
surface modification and Pb, Cd, or Cu adsorption (selected spectra—Figure 4), spectra are
richer. The more intensive bands at 1640 cm−1 originate from N-H bonds from primary
amines, and bands around 1380 cm−1 which respond to C-H deformational vibrations are
present [32]. Wide bonds around 3330 cm−1 are typical for O-H bonds in water, which is
adsorbed on the nanoparticles’ surface since the organic matrix causes the presence of a
very spongy surface coverage where water can be trapped. These bands are clearly related
to the residues of the juice samples adsorbed on the surface of nanoparticles. As can be
found in the literature, the modification of the IR spectra in the range 1300–1600 cm−1 can
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be related to the interaction of modified particles with heavy metals [24]. Therefore, the
origin of signals in that range is most probably due to heavy ion adsorption.
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Figure 4. IR spectra of ferrite nanoparticles modified by SA after heavy metal detection from
tested juices.

3.5. Flame Atomic Absorption Spectroscopy

Juice solutions purposely contaminated with the respective elements were tested using
the FAAS method. For this, each kind of solution was properly diluted and then expanded
in flame. The adsorption data shows the following presence of detected ions in the samples
(see Table 1 and Figure 5).
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Figure 5. Graphical presentation of FAAS data: (A) juice dependence, (B) element dependence.

The data presented in Table 1 clearly indicate the juices in which certain heavy metal
detection is the most effective. It is clear that Pb is much more efficiently adsorbed from
potato juice in comparison to the other juices used (see Table 1 and Figure 5B). This is
clearly connected with the pH value of the potato juice (6.02). The effect of pH on the
adsorption of Pb2+ has been studied elsewhere, and it was estimated to be around 6–8 [24].
This is also in alignment with our previous studies, where the detection of heavy metals
was tested in model water solutions [27]. Moreover, in this case, the most promising surface
functionalization is connected with the presence of SA, 3-PPA, and 16-PHDA (due to its
universality). The potato pure organic matrix also allows for the detection of a high number
of Pb ions by pristine Mn0.2Fe2.8O4 NPs (almost 63%) and that modified by AA or SA
(besides the most effective 16-PHDA). These results also confirm that the most universal
functionalization for Pb detection was obtained by 16-PHDA. The situation is different
in the case of Cu. Here, adsorption is much lower and the best linker cannot be clearly
determined because its efficiency is not much different from the one used. Additionally, the
pH effect does not play an equally important role for Pb2+. The general conclusion that can
be made is that nanoparticles’ surfaces have to be functionalized, otherwise adsorption will
not take place at all. For Cu in each juice (and pH), a different linker is the most active. The
case of Cd adsorption is also very clear then; Cd2+ ions cannot be detected at all for a low
pH, as is the case for apple juice (around 2) [36]. Similarly to Pb2+, the highest values were
obtained in potato juice at pH 6, regardless of surface functionalization. The adsorption of
Cd2+ is similar in the case of potato and tomato juices except for unmodified particles and
16-PHDA. The results show that in potato juice, Cd is detected regardless of the modifier
used with almost equal efficiency. In this matrix, pristine NPs are also effective, but are
very ineffective in tomato juice.

All these results suggest that many parameters must be taken into account when proper
detectors are planned. All this is important in the interpretation of the adsorption effect.
On the contrary, in the model water-based solutions, clear conclusions were obtained [24].
Therefore, a selective but not universal linker has been described. For future studies,
the detection of a universal linker is required. Moreover, more studies on the pH effect
are needed.

Figure 5 shows a graphical presentation of the FAAS results with respect to the
identified element (A) or juice (B).
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In Figure 5B, it is clear that pH strongly governs the adsorption capability of the
presented elements more so than linkers. In apple juice, Cu adsorption is equally effective
regardless of the linkers used. In contrast, for Pb, it evidently works much better as ‘naked’
particles or coated with 16-PHDA. The least effective is SA. In this environment, Cd is not
detectable at all. In potato juice, Pb adsorption is very high, with some Cd adsorption
as well. Cu is detected only on modified particles. Tomato juice is the most complex,
whereby the adsorption of elements very strongly depends on the linkers present on the
particles’ surface.

4. Conclusions

Detailed qualitative and quantitative studies show that detection from real matrixes
(contaminated fruit extracts) is not an easy task. It is clear that that the analyzed elements,
linkers used, organic matrix composition, and pH for detection are all important factors.
All this leads to the conclusion that more studies on this subject are necessary, where the
step-by-step process of the mentioned parameters are examined. In the studied series, the
effective detection of Cd in potato and tomato juices by PA, SA, AA, and 3-PPA was evident.
A high efficiency of AA in potato juice for each studied element was seen as well. The
selectivity of adsorption related to the extracts and tested elements was also observed.
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