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Abstract: With the exponential growth of data, solving classification or regression tasks by mining
time series data has become a research hotspot. Commonly used methods include machine learning,
artificial neural networks, and so on. However, these methods only extract the continuous or discrete
features of sequences, which have the drawbacks of low information utilization, poor robustness,
and computational complexity. To solve these problems, this paper innovatively uses Wasserstein
distance instead of Kullback–Leibler divergence and uses it to construct an autoencoder to learn
discrete features of time series. Then, a hidden Markov model is used to learn the continuous features
of the sequence. Finally, stacking is used to ensemble the two models to obtain the final model. This
paper experimentally verifies that the ensemble model has lower computational complexity and is
close to state-of-the-art classification accuracy.

Keywords: time series analysis; ensemble learning; Wasserstein distance; hidden Markov model;
conditional variance autoencoder

1. Introduction

Time series data analysis [1] is often used to solve two types of tasks, one is regression
tasks, which generate new series based on existing data, and the other is classification tasks,
which determine a given series class [2]. In this paper, we focus on processing time series
similarity to solve the classification task [3,4]. Classical classification methods include the
following three. First, methods based on distance metrics. Second, methods based on the
distribution metrics. Third, neural network-based methods. Although the above methods
have achieved some success, they all have shortcomings. For example, sensitivity to noise,
strict data normality requirements, and long training time. We believe that the main reason
for these problems is the low utilization of time series data information. Time series data
features include discrete features and continuous features. Learning both types of features
in one model naturally improves the efficiency of information utilization. Based on this,
we design an ensemble model. The model has a low computational complexity while
maximizing information mining.

As mentioned earlier, time series data features have two properties. We first address
the learning of continuous features. The features are implicitly represented in the data.
Therefore, we use hidden Markov model (HMM) [5] to learn the continuum features of the
series. HMM is a traditional time series analysis model based on likelihood probabilities
that can mine hidden state sequences.

To obtain the dispersion characteristics of a time series, we consider using conditional
variance autoencoder (CVAE) [6]. CVAE is a method for learning data distribution, but it
has drawbacks. CVAE uses Kullback–Leibler Divergence (KL Divergence) [7] to measure
the distance of a distribution. However, KL Divergence has two drawbacks. 1. KL
Divergence does not conform to symmetry, so it is not a measurement function. 2. KL
Divergence cannot measure two distributions that do not have overlapping parts. As time
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series data can be viewed as a high-dimensional information space mapped in a low-
dimensional manifold, the probability of their support set overlapping part measure being
0 approaches 1 [8]. Based on this, we choose to use Wassersteins distance [9] to measure
the distance of the time series. Therefore, we designed conditional variance autoencoder
based on Wassersteins distance (CVAEWD).

Having solved the problem of how to obtain sequence features of different nature,
the challenge is to ensemble and utilize these features effectively. Through the analysis, we
choose to ensemble HMM and CVAEWD with stacking [10] to obtain the HMM-CVAEWD
ensemble model (HCW), which ensures the full utilization of the data. We also design
experiments to compare HCW with some advanced methods. The following are the main
contributions of this paper.

(1) Wassersteins distance is introduced into CVAE as a time series difference measure-
ment function, which makes the judgment of different series differences more accurate;

(2) Find a suitable ensemble learning algorithm through experiments, and merge the
data information (continuity) and distribution information (discreteness) of the time series
to obtain the HCW ensemble model;

(3) Comparative experiments prove that the ensemble algorithm proposed in this
paper has higher accuracy and learning efficiency.

The paper is organized as follows: Section 2 presents the related work. Section 3
focuses on the construction process of the HMM classifier and the CVAEWD classifier.
Section 4 proposes the method to optimize HCW; Section 5 shows the experimental frame-
work and experimental results. The last section covers the analysis and research conclusions.

2. Related Work

This paper attempts to solve the classification problem of time series analysis. The ap-
proach to solving this problem is roughly two steps, which are (1) choosing a suitable
metric. (2) mining the hidden information of the sequences. The first step can start with
local metric and global metric.

The idea of the distance-based approach is straightforward: as long as we find a way
to measure the distance of different sequences [11], we can determine the similarity of the
sequences. Dynamic Time Warping (DTW) [12] is the most classical distance metric, which
can be used to locally scale the sequences on the time axis, which overcomes the problem
that unequal sequences cannot be matched one by one [13]. However, the drawbacks of
DTW are obvious: it is sensitive to noise and has high computational complexity. To solve
the drawbacks of DTW, String-Edit distance [14] is proposed. The well-known algorithm is
Longest Common Subsequence (LCSS) [15,16], which is more adaptable to different data in
a short time, such as breakpoints, and thus has stronger noise immunity. However, LCSS
cannot solve displacement noise. Based on this, Edit Distance on Real Sequence (EDR) was
born [17], and EDR has stronger robustness than LCSS. In summary, the advantages and
disadvantages of distance metrics are obvious. For today’s time series data, the longer
data length and greater complexity make the computational complexity of these methods
steeper. Therefore, better methods need to be explored.

The distance metric of a time series can be seen as a measure of local variability,
and then the distribution metric is a measure of overall variability. The most commonly
used method is Kullback–Leibler Divergence (KL Divergence). Attias et al. started KL
Divergence as a similarity metric function in 2000 [18]. The objective function of the varia-
tional autoencoder (VAE) proposed by Diederik et al. in 2013 consists of KL Divergence [19].
In 2018, Shuai Wang et al. improved the KL Divergence to make it more suitable as the
loss function of neural networks [20]. Although KL Divergence has a wide range of ap-
plications, KL Divergence is not concerned with the geometric properties of the sample
space and is not computationally generalizable to all types of sample spaces. Therefore,
another distribution metric, Optimal Transport (OT), started to develop. The one that is
now widely used is Wasserstein distance. In 2017, Arjovsky et al. used Wasserstein distance
(W-Distance) [21] to construct Generative Adversarial Network (GAN) to obtain better
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stability. In the same year, Eric Xing et al. linked GAN and VAE to explore the discrepancy
between KL Divergence and W-Distance [22].

After selecting the appropriate measurement function, the maximum utilization of
hidden information of the time series has become another research hotspot. In 2000,
Oates et al. combined DTW and HMM. Subsequently, more research focused on using
machine learning or neural network methods to mine hidden information. In 2015, Lv et al.
applied Artificial Neural Network (ANN) to time series mining [23], and established a
prediction model based on intelligent theory [24]. In 2021, Sosiawan et al. combined
Genetic Algorithm and HMM to solve the problem of time series data mining [25]. In the
same year, Ilhan et al. used Recurrent neural network (RNN) [26] and HMM to build an
adaptive time series forecasting model [27]. Therefore, this paper uses HMM to solve the
hidden information mining problem.

3. Time Series Data Classification Algorithm Based on HCW

According to the description in the first part, we first construct the HMM classifier
and CVAEWD classifier separately, and then ensemble them with stacking to obtain the
HCW ensemble model. Figure 1 shows the overall structure of the HCW model and
ensemble structure.
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Figure 1. Schematic diagram of HCW overall structure and stacking structure.

The left half of Figure 1 shows the overall structure of the HCW model, integrating
the results of two weak classifiers and sending them to the meta learner. The right half
shows the ensemble structure, where the HMM classifier and the CVAEWD classifier are
each classified and their results are ensemble and output. Next, the two weak classifiers
and stacking method are elaborated.

3.1. HMM Classifier

HMM is based on the Markov model, which is used to describe a Markov process with
hidden unknown parameters, and is a kind of dynamic state space model. The observation
state sequence of time series data has a certain probability relationship with the hidden
process, and the HMM model includes Markov process and the observable state related to
the hidden state [28], as the Markov process changes with time. Therefore, the time series
data and the HMM model can be adapted. The HMM model learning and training classifier
and the discrimination process are shown in Figure 2.
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Figure 2. HMM classifier structure diagram.

The HMM classifier needs to train and learn n classifiers, λ1, λ2, . . . , λn, for each type
of data. Next, we input the time series into the classifiers of all categories and get the
corresponding probabilities p1, p2, . . . , pn. For a single HMM model, we take the category
label of the maximum value of all results as the final classification result.

3.2. CVAEWD Classifier

CVAEWD is derived from Variational Autoencoder (VAE) [29], so it has some of the
characteristics of VAE, including stable learning and training, encoder-decoder architecture
mode, good latent manifold structure, etc. [30].

3.2.1. Comparison of KL Divergence and W-Distance

When two distributions have no overlapping parts, KL Divergence cannot be mea-
sured, while W-Distance can give continuous values. As shown in Figure 3, we consider
two distributions p1 and p2 in two dimensions, with p1 uniformly distributed on line
AB and p2 uniformly distributed on line CD, and control the distance between the two
distributions through the θ. KL Divergence is calculated as Equation (1), and the W distance
is calculated as Equation (2)

DKL(p(x)||q(x)) = ∑
x

p(x)log
p(x)
q(x)

(1)

W[p(x), q(x)] = in f
γ∈Γ(p(x),q(x))

E(x,y)∼γ[c(x, y)] (2)

DKL(p1||p2) =
{
+∞ θ 6= 0

0 θ = 0

W(p1, p2) = |θ|
(3)

where p(x) and q(x) denote the expressions of the two distributions. (x, y) ∼ γ is any
binary distribution about with marginal distributions p(x) and q(x). c(x, y) is the cost
function, and for any x value under the p and any y value under the q, c(x, y) ≥ 0 and
c(x, x) = 0 are guaranteed. Bringing the two distributions into the calculation, the final
result is obtained as Equation (3).
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Figure 3. Schematic diagram of the two different distributions.

From the calculation results, it can be seen that if the two distributions do not intersect,
and if KL Divergence is used as the Loss function of CVAEWD, the algorithm will not
converge because there is no gradient. In contrast, W-Distance is a continuous value and
can be learned. Therefore, to improve the robustness of the ensemble model, we choose W
distance instead of KL Divergence.

3.2.2. Structure of CVAEWD

CVAEWD is a variation from Variational Autoencoder (VAE). VAE provides a proba-
bilistic way of describing hidden space observations. Therefore, an encoder is constructed
to describe the probability distribution of each hidden attribute. CVAEWD replaces the KL
Divergence in loss function of VAE with the W-Distance. In addition to that, the encoder
needs to ensure that sufficient information in the hidden variables is maintained in the
learned training samples for reconstruction. The reconstruction structure of CVAEWD is
shown in Figure 4.

Figure 4. Reconstruction diagram of CVAEWD.
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As can be seen from the figure, the reconstruction process is such that the expec-
tation Qz of the hidden variable z under the px distribution goes to match the prior Pz
to get PG(X|Z), which allows different samples to keep distance from other samples.
Also, CVAEWD does not need to construct a distribution for each data due to the advan-
tage of W-Distance and can use deterministic encoders. In contrast, VAE can only use
Gaussian encoders.

Since this paper aims to solve the classification problem using sequence similarity,
the CVAEWD generation model is to be transformed into a basic classifier model. The gen-
erative model constructs the data x from the label y, and the classification model obtains
the label y from the data x. Therefore, the data x and label y in the CVAEWD formula can
be swapped, and the likelihood function is obtained as Equation (4).

log pθ(y | x) = diswa(qφ(z | x, y) ‖ pθ(z | x, y))

+ Γ(θ, φ; x, y)
(4)

Among them, θ and φ denote the generated data and labels. diswa denotes W-
Distance of the generated data and raw data. The definition of Γ(θ, φ; x, y) is expressed as
Equation (5):

Γ(θ, φ; x, y) = −diswa(qφ(z | x, y) ‖ pθ(z))

+ Eqφ(z|x,y) log pθ(x|y,z)
(5)

We reparameterize qφ(z | x, y) as z = gφ(x, y, ε), ε ∼ N(0, 1), and set an appropriate
distribution in the model. After the learning and training are completed, the model can
be used as a classifier to predict the label of the input x. The prediction process can be
expressed as Equation (6). At this point, the CVAEWD classifier has been constructed.

y∗ = arg maxpθ(y | x, z∗), z∗ = E[z | x] (6)

3.3. Ensemble Strategy

The reasons why ensemble learning is effective are discussed in terms of statistics,
computation, and representation, respectively. Statistically speaking, a learning algorithm
can be understood as finding the best hypothesis in the hypothesis space. However, when
the amount of data in the training sample is too small to be used to learn the target
hypothesis accurately, the learning algorithm can find many classifiers that satisfy the
training sample. Therefore, the learning algorithm faces some risk of misclassification
when selecting any classifier but can reduce the risk of selecting the wrong classifier by
fusing multiple hypotheses through an ensemble strategy. Computationally speaking, many
learning algorithms are likely to fall into the error of local optimality when performing an
optimization search, so it is not easy to obtain a globally optimal hypothesis for learning
algorithms. Artificial neural networks and decision trees are an NP problem. Ensemble
algorithms can perform local searches from multiple starting points, thus reducing the
risk of falling into bad local minima. In most application scenarios, no hypothesis in
the hypothesis space can represent (or approximately represent) the true classification
function f. Therefore, the hypothesis space can be expanded by a weighted form for
different hypothesis conditions. The learning algorithm can find an approximation to the
function f in a hypothesis space that cannot represent or approximately represent the true
classification function f . With the above ensemble idea, the ensemble strategy is designed
based on both weighting method and learning strategy.

3.3.1. Weighting Method

The first way of the weighting method is the simple averaging method, assuming that
the prediction categories are c1, c2, . . . , cn, and for any prediction sample x, the prediction
results of T weak learners are h1(x), h2(x), . . . , hn(x). Then the prediction results of the
T weak learners for sample x according to the category ci with the highest number of
prediction results is the final classification category. If more than one category receives
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the highest votes, one is randomly selected as the final category. Based on this, the simple
averaging system is based on the maximum results of the HMM classifier and the CWAE
classifier, respectively, as the final decision. The mathematical expression is shown in
Equation (7).

classHMM−CVAEWD(seq) =

cargmaxi (
M

∑
i

classHMMi (seq) + classCVAEWDi (seq)
2

)
(7)

where the subscript i is the category and the range belongs to [1, M], and M is the total
number of categories.

The second way is the weighted average [31], which can also be understood as a
weighted voting method, that is, the result of each base learner is multiplied by the cor-
responding weight, and the weighted votes sum the results of all categories. The sum of
the weights of the classifier should be equal to 1, and the category corresponding to the
maximum value of the result is the final category. The calculation formula is shown in
Equation (8).

classHMM−CWAE(seq) = cargmaxi (
M

∑
i

αiclassHMMi (seq)

+ βiclassCWAEi (seq))

(8)

Among them, the parameters α and β are both greater than 0 and satisfy Equation (9).

M

∑
i
(αi + βi) = 1 (9)

The parameter values will be further determined by the neural network learning and
training fitting results.

3.3.2. Learning Strategy

Stacking is an ensemble learning algorithm where a meta-classifier aggregates multiple
classifications. First, the base-level model is trained based on the complete learning training
set, and then the meta-model is trained based on the output of the base-level model.
The base-level model is usually composed of different learning algorithms, so stacking is
usually heterogeneous, and the stacking algorithm is divided into two layers. The first
layer is to form T weak classifiers with different algorithms, generate a new dataset of the
same size as the original dataset, and then use this new dataset and fuse the weak classifiers
to form the second layer of classifiers.

The second layer model needs to be further fitted to the output results of the first layer
model to achieve classification. Ensemble learning itself has a certain risk of overfitting.
Therefore, one direction of the second-layer classifier in this algorithm uses a simpler
nonlinear model to support vector machines (SVM) [32,33]. The other direction is to use a
deep neural network (DNN) [34] for optimization experiments.

In summary, we obtained four methods to ensemble the HMM classifier and CVAEWD
classifier: 1. simple average ensemble method, 2. weighted average ensemble method,
3. SVM classifier ensemble method, and 4. DNN classifier ensemble method. The next
chapter will find the most suitable ensemble method strategy through experiments.

4. Experiment and Analysis

To verify the effectiveness of the HCM learning algorithm proposed in this paper,
the Mixed Shapes Small Train dataset [35] is used for learning and classification. The dataset
is a time series dataset with a length of 2525 and a width of 1024. The categories are divided
into five categories with different trends. The example is shown in Figure 5.
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Figure 5. Comparison chart of different data classes.

This algorithm uses predictive label accuracy and ROC curve as the model evaluation
criteria. This is because it needs to be an index that can be accurately evaluated even if
the sample is unbalanced. All experiments are done on a computer with a CPU model of
i7-7700k, two GPU models of NVIDIA GeForce GTX 1080, 32 g RAM, and an operating
system of Ubuntu 20.04.2.

The data quality can affect the quality of the learning and training results. Due to
the complex network structure and a large number of parameters, to make the cohesion
between the classes as high as possible, the Locality Sensitive Hash (LSH) algorithm is
used to delete part of the data [36]. For five types of data, we determine the LSH similarity
threshold, and calculate the result of the proportion of saved data. The threshold is shown
in Table 1. Experiments were conducted using the processed data.

Table 1. LSH threshold and save data ratio information.

Class 1 2 3 4 5

Threshold 0.20 0.29 0.20 0.28 0.29
Save 90.76% 90.05% 94.06% 90.18% 94.61%

4.1. Weak Classifier Performance Experiments

The preliminary training aims to train the model in the optimal state of the HMM
classifier and CVAEWD classifier. The results are shown in Figure 6. Figure 6a plots the
Loss decline curves during the training of CVAEWD, and two curves in each of the two
plots are shown as labeled: the results on the training set and the test set, respectively.
Figure 6b shows the accuracy curves of the CVAEWD model, and Figure 6c shows the ROC
curves of the HMM model. For comparison, the five categories are drawn under the same
coordinate system.

From Figure 6, it can be seen that the model performs significantly better than the test
set on the training set. The CVAEWD classification model has a prediction accuracy of
83.36% with a high loss value and the HMM model has a prediction accuracy of 82.82%. Fur-
ther observation can be judged, as the model appears to show the overfitting phenomenon.
From the AUC curve, it can be seen that the model has deviations in the judgment of the
classified data, and the difference in the AUC difference between the best classification
result and the worst classification result is 0.0228. This indicates that the classification
performance of the weak classifier alone is not high, and it needs to be used after integrating
two models.
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(a) (b)

(c)

Figure 6. Training results of CVAEWD classifier and HMM classifier. (a) The loss trend graph of the
CVAEWD model in the training set and the test set. (b) The accuracy trend graph of the CVAEWD
model on the training set and the validation set. (c) HMM model ROC curve.

4.2. Ensemble Strategy Experiments

According to the optimization scheme proposed in Section 3, the experiments were
carried out respectively, and the ROC curve was used to evaluate the model. Among them,
the fusion method of the weighting method adopts the strategy of 0.1, 0.01, and 0.001 as the
interval, greedy parameter adjustment, and finally for the five types of data, the optimal
weight results obtained are shown in Table 2:

Table 2. Weight distribution in the fusion of the weighted method.

Weight Class

1 2 3 4 5
α 0.392 0.566 0.492 0.503 0.431
β 0.608 0.434 0.508 0.497 0.569

After going through the process of adjusting parameters including HMM, CVAEWD,
SVM, and DNN, the ROC curve of the model prediction results under the final four fusion
schemes is shown in Figure 7.

Figure 7a,b are the simple average and weighted average of weight methods. Figure 7c,d
are the SVM classifier and the DNN classifier of the second-layer learner in learning strategy.
As can be seen from Figure 7, the sensitivity of different fusion strategies to the classification
of categories is the same, and the hierarchical distinction between categories is slightly
different. Therefore, based on the results of five classifications, the second-level classifier
selected as the SVM classification model has the best effect on the final classification.
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(a) (b)

(c) (d)

Figure 7. Training results of the CVAEWD and HMM classifier. (a) ROC curve of the simple average.
(b) ROC curve of the weighted average. (c) ROC curve of SVM. (d) ROC curve of DNN.

4.3. Optimization Experiments

The experiments in Section 4.1 reveal that the weak classifier appears to be overfitted.
According to the experiments in Section 4.2, the SVM learning strategy is chosen for the
ensemble strategy, and the SVM method is also prone to overfitting. Therefore, some
methods must be used to stop model overfitting. This paper conducts experiments on the
lateralization and dropout layers [37], respectively, to find the most suitable optimization
method. The structure and parameters of CVAEWD after adding the dropout layer are
shown in Table 3.

Table 3. CVAEWD hidden parameter variable classifier parameters and structure.

Layer (Type) Output Shape Param

Linear [64, 80] 5200
ReLU [64, 80] 0

Dropout [64, 80] 0
Linear [64, 20] 1620
ReLU [64, 20] 0

Dropout [64, 20] 0
Linear [64, 5] 105

The results of the regularization [38] penalty term and dropout layer experiments are
shown in Figure 8. In Figure 8, Figure 8a is the effect picture after adding the regularization
penalty item, and Figure 8b is the effect picture after adding the dropout layer. Compared
with Figure 6a, it is found that, compared with the regularization penalty, adding the
dropout layer weakens the risk of overfitting to a certain extent.
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(a) (b)

Figure 8. Training results of the CVAEWD and HMM classifier. (a) Loss curve after adding the
regularization penalty term. (b) Loss curve after adding the dropout layer.

4.4. Comparison Experiments

We have constructed the HCW ensemble model optimized by the dropout layer
through the above experiments. The performance of the optimized model on the dataset
is shown in Figure 9. Compared with the initial experimental results, the classification
accuracy and the AUC value have improved. The comparison results can be seen in Table 4,
comparing the complexity of several models and their accuracy on the test set, composed of
mainly three types. The first is the classic time series data series prediction model, including
KShape and LSTM. The second is a hybrid model that combines classic models, including
KNN-DTW hybrid model with KL divergence measurement and the Gaussian mixture
model (GMM). The last one is the partial HMM model, CWAE generation model, and HCM
ensemble model after fusion optimization.

(a) (b)

Figure 9. Model accuracy and ROC curve after optimization. (a) Accuracy of the optimized model.
(b) ROC curve of the optimized model.

The optimized HCW model has higher accuracy than before optimization, which
indicates that the dropout layer effectively prevents overfitting. The accuracy of the
ensemble model is more effective than the classifier alone, which validates the previous
analysis of the effectiveness of the ensemble strategy. Meanwhile, compared with the
classical RNN models LSTM and GRU, the optimized HCW is slightly more accurate.
Furthermore, the number of parameters of HCW model is much smaller than that of LSTM,
because LSTM model has three gates and two states. In contrast, the HMM model in HCW
has a simple structure with only one state and no gate, so the number of parameters is
much lower than that of LSTM. Similarly, GRU has only two gates and one state compared
to LSTM, and the structure of GRU is relatively simple and requires fewer parameters
for training. Therefore, compared with LightGBM based on other ensemble strategies,
the stacking ensemble strategy can perform the classification task better.
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Table 4. Comparison of the results of different algorithms.

Algorithms Parameter Highest Accuracy

KShpae — 91.652%
LSTM 22,548,033 92.237%
GRU 13,765,473 91.714%

KNN-DTW — 86.851%
GMM — 83.830%
HMM — 84.397%

CVAEWD 3,790,753 86.386%
CVAE 3,790,753 84.071%
HCW 3,790,753 91.052%

HCW (optimized) 3,895,968 92.714%
LightGBM 3,790,753 88.415%

5. Conclusions

The main purpose of this work is to analyze the characteristics of existing supervised
learning algorithms in detail, use hidden variables to extract features of time series data,
and design an HCW ensemble model based on HMM mining continuous information
and CVAEWD mining discrete information, which solves shortcomings of existing time
series data mining algorithms that only rely on time series data continuity information for
analysis. The HCM ensemble model improves the accuracy and efficiency of time series
analysis. At the same time, when using CVAEWD to extract data distribution characteristics,
Wasserstein distance is used instead of KL divergence. W-distance can better measure the
similarity characteristics of two sequence distributions and has stronger generalization
than KL divergence. Due to the characteristics of ensemble learning, the HCM model is
more conducive to parallelism and can improve the operating efficiency.
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16. Bozkaya, T.; Yazdani, N.; Özsoyoğlu, M. Matching and Indexing Sequences of Different Lengths. In Proceedings of the Sixth

International Conference on Information and Knowledge Management, Las Vegas, NV, USA, 10–14 November 1997; pp. 128–135.
17. Chen, L.; Ng, R. On the Marriage of Lp-norms and Edit Distance. In Proceedings of the Thirtieth International Conference on

Very Large Data Bases-Volume 30, Toronto, ON, Canada, 31 August–3 September 2004; pp. 792–803.
18. Attias, H. A Variational Baysian Framework for Graphical Models. Neural Inf. Process. Syst. 1999, 12, 209–215.
19. Kingma, D.P.; Welling, M. Auto-encoding Variational Bayes. arXiv 2013, arXiv:1312.6114.
20. Wang, S.; Qian, Y.; Yu, K. Focal KL-divergence Based Dilated Convolutional Neural Networks for Co-channel Speaker Identifica-

tion. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary,
AB, Canada, 15–20 April 2018; pp. 5339–5343.

21. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In International Conference on Machine
Learning; PMLR: Sydney, Australia, 2017; pp. 214–223.

22. Hu, Z.; Yang, Z.; Salakhutdinov, R.; Xing, E.P. On Unifying Deep Generative Models. arXiv 2017, arXiv:1706.00550.
23. Ardizzone, L.; Kruse, J.; Wirkert, S.; Rahner, D.; Pellegrini, E.W.; Klessen, R.S.; Maier-Hein, L.; Rother, C.; Köthe, U. Analyzing

Inverse Problems with Invertible Neural Networks. arXiv 2018, arXiv:1808.04730.
24. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic Flow Prediction with Big Data: A deep learning approach. IEEE Trans. Intell.

Transp. Syst. 2014, 16, 865–873. [CrossRef]
25. Sosiawan, A.Y.; Nooraeni, R.; Sari, L.K. Implementation of Using HMM-GA in Time Series Data. Procedia Comput. Sci. 2021, 179,

713–720. [CrossRef]
26. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991.
27. Ilhan, F.; Karaahmetoglu, O.; Balaban, I.; Kozat, S.S. Markovian RNN: An Adaptive Time Series Prediction Network with

HMM-based Switching for Nonstationary Environments. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–14. [CrossRef]
28. Minami, Y.; Furui, S. A Maximum Likelihood Procedure for a Universal Adaptation Method Based on HMM Composition. In

Proceedings of the 1995 International Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA, 9–12 May 1995;
Volume 1, pp. 129–132.

29. Kusner, M.J.; Paige, B.; Hernández-Lobato, J.M. Grammar Variational Autoencoder. In International Conference on Machine Learning;
PMLR: Sydney, Australia, 2017; pp. 1945–1954.

30. Dai, B.; Wipf, D. Diagnosing and Enhancing VAE Models. arXiv 2019, arXiv:1903.05789.
31. Liou, T.-S.; Wang, M.-J.J. Fuzzy Weighted Average: An Improved Algorithm. Fuzzy Sets Syst. 1992, 49, 7–315. [CrossRef]
32. Ma, Y.; Guo, G. Support Vector Machines Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 649.
33. Biau, G.; Scornet, E. A Random Forest Guided Tour. Test 2016, 25, 197–227. [CrossRef]
34. Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N.; et al.

Evolving Deep Neural Networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 293–312.

35. Keogh, E. MixedShapesSmallTrain. Available online: http://www.timeseriesclassification.com/description.php?Dataset=
MixedShapesSmallTrain (accessed on 22 February 2022).

36. Datar, M.; Immorlica, N.; Indyk, P. Locality-sensitive Hashing Scheme Based on P-stable Distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry, Brooklyn, NY, USA, 8–11 June 2004; pp. 253–262.

37. Phaisangittisagul, E. An Analysis of the Regularization Between l2 and Dropout in Single Hidden Layer Neural Network.
In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok,
Thailand, 25–27 January 2016; pp. 174–179.

38. Grasmair, M.; Haltmeier, M.; Scherzer, O. Sparse Regularization with LQ Penalty Term. Inverse Probl. 2008, 24, 055020. [CrossRef]

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1007/BF00532240
http://dx.doi.org/10.1109/TASSP.1975.1162641
http://dx.doi.org/10.1090/S0002-9939-1984-0749908-9
http://dx.doi.org/10.1109/34.682181
http://dx.doi.org/10.1145/322033.322044
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1016/j.procs.2021.01.060
http://dx.doi.org/10.1109/TNNLS.2021.3100528
http://dx.doi.org/10.1016/0165-0114(92)90282-9
http://dx.doi.org/10.1007/s11749-016-0481-7
http://www.timeseriesclassification.com/description.php?Dataset=MixedShapesSmallTrain
http://www.timeseriesclassification.com/description.php?Dataset=MixedShapesSmallTrain
http://dx.doi.org/10.1088/0266-5611/24/5/055020

	Introduction
	Related Work
	Time Series Data Classification Algorithm Based on HCW
	HMM Classifier
	CVAEWD Classifier
	Comparison of KL Divergence and W-Distance
	Structure of CVAEWD

	Ensemble Strategy
	Weighting Method
	Learning Strategy


	Experiment and Analysis
	Weak Classifier Performance Experiments
	Ensemble Strategy Experiments
	Optimization Experiments
	Comparison Experiments

	Conclusions
	References

