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Abstract: Network traffic prediction is an important tool for the management and control of IoT, and
timely and accurate traffic prediction models play a crucial role in improving the IoT service quality.
The degree of burstiness in intelligent network traffic is high, which creates problems for prediction.
To address the problem faced by traditional statistical models, which cannot effectively extract traffic
features when dealing with inadequate sample data, in addition to the poor interpretability of deep
models, this paper proposes a prediction model (fusion prior knowledge network) that incorporates
prior knowledge into the neural network training process. The model takes the self-similarity of
network traffic as a priori knowledge, incorporates it into the gating mechanism of the long short-
term memory neural network, and combines a one-dimensional convolutional neural network with
an attention mechanism to extract the temporal features of the traffic sequence. The experiments
show that the model can better recover the characteristics of the original data. Compared with the
traditional prediction model, the proposed model can better describe the trend of network traffic. In
addition, the model produces an interpretable prediction result with an absolute correction factor of
76.4%, which is at least 10% better than the traditional statistical model.

Keywords: network traffic prediction; self-similarity; Hurst exponent; a priori knowledge; intelli-
gent networks

1. Introduction

With the spark of Industry 4.0, the IoT has witnessed huge development in recent years
in our daily life, such as smart homes, smart cities, smart stores, and smart buildings. The
IoT makes our lives easier; however, ubiquitous IoT devices, such as smart phones, create
a huge amount of data every day, which requires large computing resources for analysis,
creating significant challenges. Rapid technological development, the increasing number
of terminals, the richness of multimedia applications, and the continuous expansion of
network capacity are continually increasing consumer demand for Internet resources;
however, the service quality of the network is facing significant challenges in meeting this
demand. Unlike traditional networks, intelligent networks are green and ubiquitous. Key
nodes in such networks are equipped with computing and storage capabilities, and the
characteristics of the network traffic change before and after the network traffic passes
through these key nodes. In an intelligent network, accurate and effective prediction can
allow for an understanding of the network traffic characteristics in advance, which can
be used to improve network resource utilization and prevent network congestion [1,2].
Therefore, it is especially important to establish an efficient and reliable prediction model
for network traffic.

The essence of network traffic prediction is time-series forecasting (i.e., to build a func-
tion of the characteristics of the nodes to be predicted, concerning time variation, based on
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historical data). Common network traffic prediction models can be divided into two major
categories: linear prediction and non-linear prediction. Linear prediction methods mainly
use a polynomial fitting function to approximate the actual network traffic, and the fitting
effect is improved when there are a large number of parameter adjustments. The traditional
linear forecasting models are the historical average model [3], autoregressive model, autore-
gressive sliding average (also known as the autoregressive moving average model), and
modified models based on these [4,5]. However, linear prediction methods have difficulty
in capturing non-linear features, such as rapid fluctuations, and the time-dependence of
network traffic. Non-linear prediction techniques have emerged with the introduction of
artificial neural networks [6–8], for example, data-driven deep learning models, such as
convolutional neural networks (CNNs) [9] and recurrent neural networks (RNNs) [10,11],
in addition to machine learning algorithms, such as support vector regression (SVR) [12]
and Transformer [13].

Although neural network-based models have demonstrated impressive predictive
performances, deep learning models are often treated as black-box models. Compared
with traditional statistical models, the learning process of deep learning algorithms is
intricate and less interpretable. Existing studies have shown that the network traffic flow
has obvious self-similarity [14]. In other words, the local and overall time-series have a
certain connection, in which the shape of a part of the series is very similar to the overall
series, and the network traffic time-series shows similar abrupt changes at different time
scales over a long period. Figure 1 depicts the obvious self-similarity of network traffic. It
shows the change in the traffic within a week while the magnified inset shows the change
in the traffic within one day, from which it can be seen that the trend of the network traffic
change in a week is roughly the same as that in a day; that is to say, the historical traffic
data and the data to be predicted have the same characteristics and, thus, this similarity
can be used to enhance the accuracy and interpretability of network traffic prediction.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 16 
 

 

The essence of network traffic prediction is time-series forecasting (i.e., to build a 
function of the characteristics of the nodes to be predicted, concerning time variation, 
based on historical data). Common network traffic prediction models can be divided into 
two major categories: linear prediction and non-linear prediction. Linear prediction meth-
ods mainly use a polynomial fitting function to approximate the actual network traffic, 
and the fitting effect is improved when there are a large number of parameter adjust-
ments. The traditional linear forecasting models are the historical average model [3], au-
toregressive model, autoregressive sliding average (also known as the autoregressive 
moving average model), and modified models based on these [4,5]. However, linear pre-
diction methods have difficulty in capturing non-linear features, such as rapid fluctua-
tions, and the time-dependence of network traffic. Non-linear prediction techniques have 
emerged with the introduction of artificial neural networks [6–8], for example, data-
driven deep learning models, such as convolutional neural networks (CNNs) [9] and re-
current neural networks (RNNs) [10,11], in addition to machine learning algorithms, such 
as support vector regression (SVR) [12] and Transformer [13]. 

Although neural network-based models have demonstrated impressive predictive 
performances, deep learning models are often treated as black-box models. Compared 
with traditional statistical models, the learning process of deep learning algorithms is in-
tricate and less interpretable. Existing studies have shown that the network traffic flow 
has obvious self-similarity [14]. In other words, the local and overall time-series have a 
certain connection, in which the shape of a part of the series is very similar to the overall 
series, and the network traffic time-series shows similar abrupt changes at different time 
scales over a long period. Figure 1 depicts the obvious self-similarity of network traffic. It 
shows the change in the traffic within a week while the magnified inset shows the change 
in the traffic within one day, from which it can be seen that the trend of the network traffic 
change in a week is roughly the same as that in a day; that is to say, the historical traffic 
data and the data to be predicted have the same characteristics and, thus, this similarity 
can be used to enhance the accuracy and interpretability of network traffic prediction. 

To explore the accuracy and interpretability deeply, this paper proposes a network 
traffic prediction model, named FPK-Net (Fusion Prior Knowledge Network), which in-
corporates prior knowledge. The self-similar characteristics of traffic are considered as 
prior knowledge for prediction, which is added to the learning process of the neural net-
work model, thus increasing the interpretability of the model. The main contributions of 
this paper are summarized as follows.  

 
Figure 1. Self-similarity of network traffic. Figure 1. Self-similarity of network traffic.

To explore the accuracy and interpretability deeply, this paper proposes a network
traffic prediction model, named FPK-Net (Fusion Prior Knowledge Network), which
incorporates prior knowledge. The self-similar characteristics of traffic are considered
as prior knowledge for prediction, which is added to the learning process of the neural
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network model, thus increasing the interpretability of the model. The main contributions
of this paper are summarized as follows.

1. FPK-Net consists of a CNN and an LSTM based on an attention mechanism. The
self-similarity property is incorporated into the training model before model training,
which results in improvements in the extraction of traffic features and in the prediction
accuracy when dealing with insufficient sample data.

2. The model incorporates the self-similarity property of network traffic as a priori
knowledge into the intermediate structure of the deep network; namely, the Hurst
exponent is added into the gating of the long short-term memory neural network
(LSTM) as a bias term to increase the model’s interpretability.

3. Experiments on publicly available datasets verified that the proposed model is con-
sistent with the existing empirical evidence, and has better predictive power than
other existing prediction methods. The accumulation of prior knowledge during
training meaningfully guides the network traffic prediction, thus significantly im-
proving the performance of the training model. In terms of the absolute coefficient
of correction, the proposed model achieved values at least 10% higher than those of
traditional statistical models. Thus, the reliability and superiority of the proposed
model were illustrated in the article while the results demonstrated that the model is
also interpretable.

2. Related Work

Existing time-series forecasting models can be divided into two main categories: linear
forecasting models and non-linear forecasting models. Of these, linear forecasting uses
traditional statistical methods and can be applied to the prediction of smooth series. Com-
mon linear forecasting models are the historical average (HA) [3], autoregressive moving
average [4] (ARMA), and autoregressive integrated moving average model (ARIMA) mod-
els [5]. The historical average (HA) model uses historical averages as predictions [15] while
the ARMA model, developed by P.H. Zou et al., can be used to predict the feasibility of
exceeding the threshold of network traffic. Rishabh et al. [16] decomposed the network
traffic data into linear and non-linear components based on a discrete wavelet transform
(DWT), and then used the autoregressive integrated moving average (ARIMA) for the
prediction of non-linear components. At present, however, the burstiness of smart network
traffic is high and traditional models, such as Poisson distribution modeling, are only
suitable for predicting small network traffic sequences, being unable to effectively extract
the characteristics of network traffic at different scales in different times. Thus, they cannot
meet the characteristics of smart network traffic.

With the development of artificial intelligence, many machine learning and deep
learning models have been used to predict network traffic, and such non-linear prediction
models have shown good prediction results on non-stationary sequences. For example,
Lei et al. [17] proposed the use of wavelet neural networks and artificial neural networks
to predict decomposed traffic sequences; however, this approach relies on the selection of
wavelet basis functions and the initialization of parameters. Z. Yang et al. [18] proposed a
multi-stage prediction model using the grey wolf optimization algorithm and a support
vector machine (GWO-SVR), but this approach generally relies on the selection of a kernel
function. Extreme learning machine (ELM) [19] and ELM combined with a decomposed
fruit-fly optimization algorithm (FOA-ELM) have been used to predict the low- and high-
frequency components after traffic decomposition; however, ELM models are generally
less stable and improvement of their accuracy depends on an increase in the number of
hidden nodes in the network. Num et al. proposed a long short-term memory (LSTM)
model to predict network traffic sequences. LSTM is a variant of RNN, which can overcome
the disadvantage of gradient disappearance inherent to RNN models, and which has
exhibited an efficient non-linear time-series modeling capability; however, as the length of
the prediction sequence increases, it is difficult for a single LSTM network to converge to
the global optimum, and the learning process of deep learning algorithms is opaque and
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less interpretable, compared to traditional statistical models. Wu N et al. [13] proposed the
prediction of network traffic with Transformer. However, such deep learning models lack
interpretability, and the Transformer is poor at establishing long-term dependency capture
when long time series need to be predicted.

At present, there are two mainstream algorithms for fusing prior knowledge: Adarsh
P. [20] proposed the model-driven approach using prior knowledge for pre-processing
to improve machine learning algorithms; however, this approach is overly reliant on
artificially determined hyper-parameters and is prone to missing information during
conversion. It is not wise to completely disregard prior knowledge when extracting features
from deep learning models. Xie Y [21] proposed the model-driven approach using prior
knowledge as the intermediate structure in deep networks [22], which can effectively fuse
prior knowledge and data by using the prior knowledge to change part of the structure of
the network. For example, R. Ramachandran [23] proposed the fractional autoregressive
integrated moving average (FARIMA) model, whereby the parameter d in FARIMA(p,d,q)
can be obtained. When using FARIMA for prediction, the Hurst exponent of the time-series
must first be identified. Furthermore, to predict the future network traffic size, the Hurst
exponent, which portrays the self-similarity property, is introduced into the prediction
algorithm; however, the ARIMA model itself has limitations, and its prediction effect is
poor and not suitable for non-linear prediction.

3. A Network Traffic Prediction Framework Incorporating Prior Knowledge
3.1. Problem Definition

The problem of predicting network traffic in a single-feature time-series scenario can
be described as follows:

• A time series is a node v, which only has one feature Xt at a given moment t.
• The prediction problem refers to the information that is used to predict the next mo-

ment Xt+1 from historical data (X1, X2, . . . , Xt), where S1,...,t is the relevant character-
istic obtained from the historical data (X1, X2, . . . , Xt); that is, to find the information
F(.) that satisfies:

Xt+1 = F(X1, X2, . . . , Xt|S1,...,t) (1)

3.2. Prediction Framework

The network traffic prediction model with fused prior knowledge, which we call
FPK-Net, consists of three main components: a traffic characterization module, a traffic
feature extraction module, and a fused prior knowledge module. Among them, the flow
characterization module consists of an R/S analysis to calculate the Hurst exponent, which
is used to measure the self-similarity of flow sequences with different step sizes. The flow
feature extraction module consists of one-dimensional convolution to extract the features of
the flow sequences, and the fused prior knowledge module takes the parameters derived in
the flow characterization module and incorporates them into the long short-term memory
gating mechanism. The LSTM extracts coarse-grained features from the fine-grained
features extracted from the front-end, refines the processing of different dimensional
features to a certain extent, and can avoid memory loss and gradient dispersion caused
by an excessively long step length. When the CNN is combined with LSTM, the short-
term features of the time-series are ignored; thus, an attention mechanism is added to the
CNN–LSTM model to expand the perceptual field of the input and perceive information
before and after the time-series comprehensively. The attention mechanism improves the
influence of the temporal features while reducing the influence of unimportant features
in the model. The CNN–LSTM model based on the attention mechanism is used to fuse
coarse- and fine-grained features to comprehensively portray the temporal data. Figure 2
illustrates the general framework of the fused prior knowledge network traffic prediction
model (FPK-Net) proposed in this paper.
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4. Predictive Models
4.1. Flow Characterization Module

Realistic network traffic series are usually non-stationary, although these traffic series
tend to have obvious self-similarity. The self-similarity property is reflected in the fact that
the local and overall time-series are related. Traditional network traffic models are only
applicable to small-scale bursty traffic, but the variation characteristics of network traffic
data have some similarities under large-scale conditions. Self-similar traffic characteristics
differ from short correlated traffic characteristics in that they can reflect similar abrupt
changes in the network traffic time-series at different time scales over long periods. The
Hurst exponent is based on the asymptotic process of a rescaling range, defined as a
function of the period of the time-series, and is used to describe the self-similarity of time-
series with long correlation properties, defined as follows: For a given series of length n,
the sample mean is, the sample variance is, and we have:

R
S
(n) =

1
s(n)

[max(0, W1, W2, . . . , Wn)−min(0, W1, W2, . . . , Wn)] (2)

As n→ ∞ , we have E( R
S (n)) = cnH , where c is a constant, and the above equation

yields the Hurst exponent H. In particular, R refers to the range of the deviations from the
mean, S to the sum of standard deviations or variances over the sequence, and W to the
cumulative sums.

After calculation of the Hurst exponent, it can be seen that the time-series shows
trends of averaging, regression, aggregation, and so on. The Hurst exponent can be used
to measure the long-term memory and fractality of the time-series. As few assumptions
are made about the underlying system, the Hurst exponent has wide applicability in time-
series. The value of the Hurst exponent can be used to classify time-series trends according
to three features: The higher the value, the smoother, less volatile, and less rough the
time-series. When its value is between 0 and 1, the time-series has different properties.

When 0 < H < 0.5, the time-series shows a negative correlation trend, and the time
series has violent fluctuations.

When 0.5 < H < 1, the time-series shows correlation over a long period, which
indicates that the network business flow is correlated over time.
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When H = 0.5, the time-series shows the process of Brownian motion, and the
correlation coefficients between the series are 0 and independent of each other.

There are several methods for calculating the Hurst exponent and, in this paper, we
choose the rescaling range analysis method to measure the network traffic data. Let a time-
series {X1, X2, X3, . . . , XN} of length N be divided equally into several shorter time-series,
with length on the order of n = N, N/2, N/4. The average readjustment range for each
sub-sequence is then calculated as follows:

• Calculate the average value of each subsequence m = 1
n

n
∑

i=1
Xi.

• Create mean-adjusted series Yt = Xt −m, t = 1, 2, . . . , n.

• Generate cumulative deviation series zt =
t

∑
i=1

Yi, t = 1, 2, . . . , n

• Calculation range Rt = max(Z1, Z2, . . . , Zt)−min(Z1, Z2, . . . , Zt), t = 1, 2, . . . , n

• Calculation range St =

√
1
t

t
∑

i=1
(Xi − u)2, t = 1, 2, . . . , n

• Calculating the rescaling range (R/S)t = Rt/St, t = 1, 2, . . . , n

By taking the logarithm of both sides of the equation, we can obtain the relationship
(R/S)t = log c + H log t, where c is a constant. By plotting the relationship (R/S) with t on
the logarithmic axis and depicting the points, all points (log t, log(R/S)) can be found to
lie on an almost straight line; therefore, the slope of the regression line can be approximated
by the Hurst exponent.

4.2. Flow Feature Extraction Module

Traffic feature extraction is one of the key steps in network traffic prediction. A
traditional neural network consists of a three-layer structure with input, hidden, and
output layers and, although it can extract features and map from features to values, it
faces the problem of requiring a large number of parameters. In this paper, we use a multi-
layer feed-forward neural network structure (i.e., a CNN), which adds a feature learning
part to the traditional neural network and selects features by means of the network itself.
Convolutional neural networks are characterized by weight sharing, translation invariance,
and local connectivity, allowing for a higher level and more abstract representation of the
raw data. By removing noise and unstable components from the data, the local features
of the network traffic can be effectively captured. Although CNNs have achieved great
success in the field of image processing (i.e., considering two-dimensional data), one-
dimensional (1D) data are suitable for processing time-series, such as time series for speech
recognition [24], stock prediction [25], etc.

Network traffic size is a one-dimensional sequence that varies over time and can
be represented using a 1× N matrix. One-dimensional convolutional neural networks
have a convolutional kernel size of 1× K and use M convolutional kernels to compute
sliding over 1× N data, mapping the original traffic data 1× N to a high-dimensional
feature space (M× N) and providing a good feature embedding for subsequent capture of
temporal features. Traditional neural networks use spatial relativity to reduce the number
of parameters and solve the problem of a large number of neural network parameters.
Figure 3 shows the 1D convolution process for the hth feature of the lth layer and the gth
feature of the layer, where, for the 1D convolution kernel, L is the feature length, and the
gth feature of the (l − 1)th layer can be expressed as:

Xl−1
g = (Xl−1

g1 , . . . , Xl−1
gm , . . . , Xl−1

gL ) (3)

where ∗ is the convolution operation, bl is the bias, and k is the size of the convolution
kernel, which can be obtained by nonlinear activation:

xl
hm
′ = f (W l ∗ Xl−1

g(m,m+k−1) + bl) (4)
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If s is the number of convolution kernels, the lth feature of the hth layer can be
written as:

xl
h = (xl

h1
′, . . . , xl

hm
′, . . . , xl

hs
′) (5)

4.3. Integration of Prior Knowledge Modules

The LSTM model consists of an input layer, a recursive layer (with memory blocks,
instead of traditional neuron nodes, as the basic units), and an output layer. A memory
block is a set of cyclically connected subnets, each containing one or more self-connected
memory cells and three multiplication units—input gates it, output gates ot, and forget
gates ft—which perform continuous simulation of write, read, and reset operations for the
cells. The main purpose of the LSTM is to model long-term dependencies and to determine
the optimal input length through the use of the three multiplication units. The implicit state
of the LSTM is a tuple consisting of two states (ci−1, hi−1). In the initialization state, the
tuple is an all-zero tensor, the input tensor at each time is xt, and the output tensor is yt. As
shown in Figure 4, the forget gate ft controls what information needs to be discarded from
state ct−1 of the previous moment. Thus, it ignores irrelevant features and automatically
determines the best input. The input gate it determines the state that the unit needs to
update and, therefore, has a long-term memory capability. The output gate it filters the
output based on the state of the unit. In Figure 4, the LSTM network forward propagation
is calculated as follows:

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f ) (6)

it = σ(Wiixt + bii + Whiht−1 + bhi) (7)

gt = tanh(Wigxt + big + Whght−1 + bhg) (8)

ot = σ(Wioxt + bio + Whoht−1 + bho) (9)

where ht denotes the output vector; w denotes the weight matrix before the linear trans-
formation; gt updates the new information; the symbols ⊗ and ⊕ denote element-level
multiplication and element-level concatenation, respectively; σ is the sigmoid function; and
tanh is the hyperbolic tangent function.
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The traditional LSTM requires the value ft calculated by the sigmoid function to
control the flow of the implied state from the previous step ci−1 into the next step before
calculating the next implied state ci. FPK-Net adds the Hurst exponent of the input
sequence before the function transformation to improve the forget and input gates of the
LSTM. The specific forget and retention values of the LSTM are controlled by the current
input and the previous implicit state through the sigmoid function, such that this improved
gating mechanism can be considered reasonable. From Equation (6) above, we can see that
both the forget gate and input gate finally need to go through the sigmoid function output,
and the output takes values between 0 and 1. When the output tends to 1, it indicates
a memory state and, vice versa, when it tends to 0, it indicates a forget state. The Hurst
exponent reflects the local and overall scale invariance of the traffic sequence; that is, when
0.5 < H < 1, the trend of the traffic sequence in the future time peri-od can be predicted.
The larger the Hurst exponent, the higher the degree of self-similarity, which is positively
correlated with the operation mechanism of the forget and input gates. Therefore, if the
Hurst exponent is added before the linear transformation, it can meaningfully learn the
linear transformation weights and, thus, guide traffic sequence prediction. The improved
forget gate and input gate equations are as follows:

ft = σ[(Wi f xt + bi f + Wh f ht−1 + bh f + Hurst)] (10)

it = σ(Wiixt + bii + Whiht−1 + bhi + Hurst) (11)

ct = ft × ct−1 + it × gt (12)

yt = ht = ot × tanhct (13)

While introducing the information of the previous step, it is also necessary to calculate
the information of the current time step gt, which is a linear transformation of the tanh
activation function combined with the current input tensor xt and the implicit state of the
previous step ht−1. The amount of information flowing to the neural network needs to be
controlled during the calculation, which is obtained by combining the linear transformation
of the input tensor and the implied state of the previous step by the product of it and gt,
then combining the implied information of the previous step to obtain the information of
the new implied state ct, as shown above. Finally, the new implied state, ht, is calculated
using the activation function. The result, ot, is obtained by multiplying the sigmoid function
with the linear transformation of the input tensor xt and the implied state ht−1 from the
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previous step, and combining the new implied state ct with the output result yt. The weight
coefficients for the linear transformations vary throughout the computation process.

The attention mechanism is a weighting of global input features over a space or
channel by weights trained by a neural network, so that attention can be obtained for the
purpose of focusing on a specific region or channel. The most central operation of the
attention mechanism is to train a string of weight parameters, i.e., the importance of each
element, through the neural network, and then assign attention to the elements according
to their importance. When the CNN is combined with LSTM, the short-term features of
the time-series are ignored; thus, an attention mechanism is added to the CNN–LSTM
model to expand the perceptual field of the input and perceive information before and
after the time-series comprehensively. The attention mechanism improves the influence of
the temporal features while reducing the influence of unimportant features in the model.
The CNN–LSTM model based on the attention mechanism is used to fuse coarse- and fine-
grained features to comprehensively portray the temporal data and improve the accuracy
of prediction.

For the final hidden output ht of the long short-term memory neural network, which
will be used as the input of the attention layer and requires calculation of the scores
corresponding to the different outputs according to their weights, the calculation formula
is as follows, where the so f tmax function is used to calculate a score for the output of the
hidden layer to obtain a normalized weight:

score = so f tmax(wht + b) (14)

Aout = score� ht (15)

5. Experiments and Analysis of Results
5.1. Experimental Data

The dataset used in this paper is the traffic generated by the transit link of the Japanese
WIDE network (AS2500) since February 2013, generated through a monitoring tool called
Agurim [26]. Agurim is a network traffic monitor based on flexible multidimensional traffic
aggregation, which allows users to dynamically switch views at different temporal and
spatial granularities depending on the number of flows and packets, addresses, or protocol
attributes. The views are dynamically switched, and the supported data sources are pcap,
sFlow, and netFlow [27], making the dataset real-time and self-similar.

The main view in Agurim contains two plots, the first based on BPS (bits per second,
i.e., how many bits are sent per second) as shown in Figure 5 and the second based on
PPS (packet per second, i.e., how many packets are sent per second). By default, each
graph shows seven significant aggregated flows, with the legend labels showing the main
attributes of each aggregated flow and their proportion of the total traffic, and the sub-
attributes of the aggregated flow and their proportion. In this experiment, the total network
flow is aggregated using seven aggregated flows, which are located in the last column of
the dataset and therefore do not distinguish between the primary and secondary attributes
of the address and protocol. The output data format is a text format based on the BPS
pivot view.
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In this paper, a total of 52,493 data units were sampled from this data set between 1
January 2020, and 31 December 2020, with a sampling interval of 10 min. For uncontrollable
reasons, the sampled data set contained some missing values. As such, we used the zero-fill
method to fill in the gaps. The first 70% of the processed data were classified as the training
set, 20% as the validation set, and the last 10% as the test set.

5.2. Experimental Parameters and Evaluation Metrics

In this experiment, a deep learning server was used to configure the experimental
environment, where the CPU production type was AMDRyzen 52,600 and the memory
size was 16 GB. In addition, Pytorch was used to build the network framework and Python
was the programming environment. In the experiments, the optimizer was selected as the
SGD optimizer, with outstanding speed in late iteration. The learning rate was set to 0.001,
hidden_size was set to 128, batch_size was set to 64, and the number of training epochs
was 20. The detailed model structure parameters were configured as shown in Figure 6.
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When training the model, the L2 norm was used as the loss function, and a regulariza-
tion term was added to prevent overfitting. The formula is as follows:

loss =
∣∣∣∣Yi − Ŷi

∣∣∣∣2 + λLreg (16)

where Yi denotes the true value, Ŷi denotes the predicted value, λ is the hyper-parameter,
and Lreg is the canonical term. To verify the validity of the model, common methods used
in the field of traffic prediction were selected for experimental comparison, including four
algorithms: historical average (HA), autoregressive integrated moving average (ARIMA),
support vector machine (SVM), and long short-term memory (LSTM). These were evaluated
using four common serial predictors, with yi denoting the true value and yi denoting the
predicted value.

(1) Squared absolute error (MAE): This indicator measures the mean absolute error
between the error and the true value, taking values in the range of [0,+∞); the closer
the MAE is to 0, the better the performance of the model:

MAE =
1
m

m

∑
i=1
|yi − yi| (17)

(2) Mean square error (MSE): This indicator reflects the prediction error of the model,
taking a value in a range of [0,+∞); the smaller the error, the better the model
performance:

MSE =
1
m

m

∑
i=1

(yi − yi)
2 (18)

(3) The root mean square error (RMSE): This indicator reflects the prediction error of
the model, taking a value in the range of [0,+∞); the smaller the error, the better the
model performance:

RMSE =

√
1
m

m

∑
i=1

(yi − yi)
2 (19)

(4) The absolute coefficient of correction (R2
adapted): This indicator reflects the quality of

the model fit, taking values in the range [0, 1]; the closer to 1, the better the model
performance. Here, m is the total number of samples and p is the number of features:

R2
adapted = 1− (1− R2)(m− 1)

m− p− 1
(20)

5.3. Experimental Results and Analysis
5.3.1. Results of the FPK-Net Model Compared with Other Baseline Models

FPK-Net was compared with the above five methods on the experimental data set.
Table 1 shows the results of predicting the network traffic in a future time period.

Table 1. Performance comparison of different methods on the dataset.

Models MAE MSE RMSE R2
adapted

HA 0.447 0.341 0.584 0.604
ARIMA 0.615 0.573 0.757 0.509

SVM 0.391 0.339 0.583 0.677
LSTM 0.420 0.297 0.545 0.745

CNN-LSTM-
Attention 0.387 0.286 0.535 0.750

Transformer 0.412 0.319 0.565 0.711
FPK-Net 0.369 0.259 0.509 0.769
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From the evaluation indicators of each model in Figure 7, Table 1, it can be seen that:

(1) The historical average model (HA) uses the average historical value for forecasting
and, in this paper, the average value of the last eight steps was used to forecast the
next step. For this method, the forecast error was large.

(2) Due to the limitations of model building, traditional time-series models do not have
satisfactory prediction results. Among them, the ARIMA model had the largest
prediction error among the above 6 types of models, with MAE and RMSE of 0.615
and 0.757, respectively, and the smallest prediction accuracy, with an R2

adapted value of
0.509. As the essence of the ARIMA model is to capture the linear relationship of the
flow series without considering the influence of other factors, the ARIMA model had
a lesser effective prediction effect.

(3) The support vector machine model (SVM) had the advantages of using fewer training
parameters and producing more accurate results. The prediction results were 0.391 for
MAE, 0.583 for RMSE, and 0.677 for R2

adapted. Its prediction results were more accurate
than those of traditional statistical methods.

(4) The R2
adapted of the LSTM model was 0.750, which indicates that it produced more

accurate results than the linear prediction methods. Although the LSTM-based predic-
tion was good and it has a certain degree of feature mining ability for long time-series,
as the input series contained more information, it was difficult for the LSTM model to
converge to the global optimum during training, which led to poor prediction results.

(5) The transformer model uses a self-focus mechanism to model traffic sequences. The
prediction results were 0.412 for MAE, 0.565 for RMSE, and 0.711 for R2

adapted. Its
prediction results were more accurate than other linear prediction methods. Although
the transformer forecasts are good, the transformer is less capable of establishing
long-term dependence capturing when long time series need to be predicted.

(6) Compared with the other 5 models, the proposed FPK-Net model achieved the best
results, in terms of all 4 evaluation indices, and the absolute coefficient of correction
of the FPK-Net model reached 76.9% while the root-mean-square error reached 0.509.
Compared with the ARIMA model, the RMSE and R2

adapted were decreased by 0.248
and improved by 26.0% through the use of FPK-Net, respectively. Meanwhile, com-
pared with the SVM, FPK-Net improved the R2

adapted value by 9.2%; the SVM was less
effective in prediction as it used a linear kernel function.
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Figure 7. Comparison of prediction results and true values: (a) Prediction results of traditional
prediction methods vs. true values; (b) Prediction results of deep learning models vs. true values.

Overall, the analysis indicated the poor fitting ability of HA and ARIMA for unstable
data and long time-series while the neural network models fit the non-linear data better.
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5.3.2. Ablation Experiments

To verify the advanced nature of the FPK-Net model, this section compares the 2 meth-
ods CNN + LSTM + Attention and the fused prior knowledge (FPK-Net model) through
ablation experiments, where the prediction time step is varied from 50 to 150 min, and the
prediction results are shown in Figure 8 below.
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From the above Table 2, it can be seen that:

(1) After adding the Hurst module into the LSTM network, the change trend of the four
measures on the two models was consistent. Along with a gradual increase in the size
of the prediction step, all three error indicators decreased to a minimum value and
then increased while the absolute coefficient of correction increased to a maximum
value and then decreased, and the prediction accuracy gradually increased. The
error curve presented a concave function while the absolute coefficient of correction
presented a convex function.

(2) When the prediction time step reached 130 min, the prediction accuracy reached
its peak, and the error was the lowest. At this time, the FPK-Net model had the
best prediction effect, with an MAE of 0.369 and MSE of 0.259. When the prediction
time step exceeded 130 min and continued to increase, the performance of both
models decreased.

(3) From Figure 6 above, it can be seen that the performance of the FPK-Net model
proposed in this paper was always better than that of the baseline model, regardless of
the time step. In particular, the FPK-Net model, which incorporates prior knowledge,
showed the most significant improvement when the step size reached 70 min, with a
1.9% reduction in the MAE measure and a 2.1% improvement in the R2

adapted measure.
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Table 2. FPK-Net model prediction measures under different sliding window lengths.

Step MAE MSE RMSE R2
adapted

50 0.390 0.284 0.533 0.753
60 0.388 0.282 0.531 0.758
70 0.384 0.275 0.525 0.763
80 0.382 0.274 0.524 0.765
90 0.382 0.274 0.524 0.765

100 0.372 0.269 0.519 0.768
130 0.369 0.259 0.509 0.769
150 0.373 0.261 0.510 0.764

5.3.3. Interpretability Analysis

As the Hurst exponent provides a measure of predictability, the self-similarity of the
time-series corresponding to different time steps varies. The larger the Hurst exponent,
the more the value of mapping on the sigmoid function tends to 1. The specific forget and
retention values of the LSTM are controlled by the current input and the implicit state of
the previous step through the sigmoid function, and the forget gate is in the memory state.
As shown in Figure 8 above, when the step size was 70, the output value of the forget gate
was 0.46, which is the corresponding value in the figure, and the value of the sequence
was 0.67. With the Hurst exponent was added before the linear transformation, the value
after linear transformation was closer to 1 (which is the corresponding point in Figure 9).
From the above, it can be seen that, when using this value to guide the model training
before prediction, the FPK-Net model had the best prediction when the step size was 70.
Therefore, we believe that, at this time, by incorporating prior knowledge, the LSTM can
efficiently and meaningfully forget some input information from the previous step, and
the network traffic sequence with larger exponents can be calculated before attempting to
build the prediction model. In addition, one can also focus on sequences with large Hurst
exponents, as network traffic with long time scales has self-similarities that can be regularly
found, which can save time and effort while allowing for more accurate predictions.
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6. Conclusions

In this paper, we proposed a traffic prediction method, called FPK-Net, which utilizes
fused prior knowledge; namely, the self-similarity properties of network traffic. To increase
the interpretability of the deep learning model, the temporal features of traffic sequences are
extracted by FPK-Net through the combination of a one-dimensional convolutional neural
network and an attention mechanism. In addition, the traffic self-similarity and attention-
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based long-short memory neural network are adapted to guide the prediction under
various traffic sizes in future time periods. The accumulation of prior knowledge during
training meaningfully guides the network traffic prediction, thus significantly improving
the performance of the training model. In terms of the absolute coefficient of correction,
the proposed model achieved values at least 10% higher than those of traditional statistical
models. Thus, the reliability and superiority of the proposed model were illustrated in the
article while the results demonstrated that the model is also interpretable.
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