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Abstract: The recent trend toward the development of IoT architectures has entailed the transfor-
mation of the standard camera networks into smart multi-device systems capable of acquiring,
elaborating, and exchanging data and, often, dynamically adapting to the environment. Along this
line, this work proposes a novel distributed solution that guarantees the real-time monitoring of
3D indoor structured areas and also the tracking of multiple targets, by employing a heterogeneous
visual sensor network composed of both fixed and Pan-Tilt-Zoom (PTZ) cameras. The fulfillment of
the twofold mentioned goal was ensured through the implementation of a distributed game-theory-
based algorithm, aiming at optimizing the controllable parameters of the PTZ devices. The proposed
solution is able to deal with the possible conflicting requirements of high tracking precision and
maximum coverage of the surveilled area. Extensive numerical simulations in realistic scenarios
validated the effectiveness of the outlined strategy.

Keywords: smart cameras; heterogeneous camera network; distributed approach; Kalman filter;
tracking; pose optimization; game theory

1. Introduction

A Visual Sensor Network (VSN) is a multi-agent system constituted of a collection of
spatially distributed smart cameras. In recent years, due to the ever-improving sensing
and computational capabilities and the reduced cost of visual sensors, such architectures
have gained popularity and are currently employed in many tasks, ranging from the more
traditional surveillance and security scenarios to the cutting-edge IoT applications, e.g., in
environmental monitoring, sports, and education contexts [1–3].

The ongoing IoT-driven incentive towards the development of cooperative distributed
solutions leads to the progressive substitution of the traditional centralized VSNs made up
of static devices, namely cameras having a fixed pose (i.e., position and orientation), in favor
of more flexible, decentralized, and intelligent systems [4–6]. The modern VSNs do not
generally envisage a central computing unit, but accomplish the assigned task by relying on
a distributed approach. Moreover, they often include PTZ cameras, namely visual sensors
having controllable pan and tilt angles and zoom parameters and, thus, characterized
by variable orientations and fields of view. The introduction of these new visual sensors
enhances the VSNs’ scalability and robustness and, at the same time, allows reducing
both the number of cameras needed to cover a given area and the communication and
computational burden imposed by data exchange. On the other hand, to take full advantage
of the PTZ cameras, it is necessary to dynamically optimize their parameters depending
on some external factors, including their (fixed) position, the potential occlusions, the
occurrence of failures, and/or targets to follow.

In this work, the attention is focused on a VSN made up of both fixed and PTZ cameras,
required to monitor a given area with the purpose of detecting and tracking one or more
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targets. To this aim, a decentralized solution is proposed: it entails the optimization of the
PTZ parameters through the exploitation of both the network/environment topology and
the tracking information shared among the same cameras.

1.1. Related Works

The monitoring performance of the traditional VSNs, composed exclusively of fixed
cameras, uniquely depends on the device number and positioning in the considered
environment (see, e.g., [7–9]). On the contrary, when accounting for VSNs involving also
PTZ cameras, several parameters can be dynamically selected and actively controlled in
order to optimize the surveillance task’s fulfillment.

As in the existing literature, the selection of the PTZ parameters can be performed in
different fashions, as for instance exploiting the notions of control theory, decision theory,
game theory, or resting upon learning algorithms or suitable heuristics [5,10,11]. More
in detail, the parameter selection strategies based on control theory exploit a feedback
mechanism to minimize the difference between the observed and desired system state. In
this direction, in [12], a PID controller was designed to perform the real-time tracking of a
target by means of a single PTZ camera. In [13], each movement of the pan and tilt servo
camera was controlled by some signals calculated by adopting the model predictive control
approach. Nonetheless, although the employment of control-based methods appears
to be efficient and sound, their use may lack flexibility. The PTZ parameter selection
methods based on decision theory entail the possibility of choosing among different actions
even if their consequences are not perfectly known. Specifically, the Markov Decision
Process (MDP) and Partially Observable MDP (POMDP) models are employed in many
VSN control solutions. For example, in [14], both the MDP and POMDP approaches
were adopted in the determination of the optimal configuration of several active cameras,
required to maximize the number of observed targets, while guaranteeing a minimum
view resolution. A particularly interesting branch of decision theory is game theory,
wherein the decisions are assumed to be independent in the selection process. For this
reason, this approach results in being a valuable technique when coping with real-time
constraints. Indeed, it permits solving cooperative and competitive problems and dealing
with non-convex and discontinuous utility functions [15]. Along this line, a game theoretic
approach was presented in [16] to address the distributed pose optimization of a group of
PTZ cameras. The proposed solution relies on the maximization of various performance
metrics (including tracking accuracy and image resolution), with the purpose of finding
the best multi-camera system configuration. Such a strategy was further developed in [4],
wherein the presence of groups of targets, capable of merging and dividing, was assumed.
More recently, PTZ parameter selection procedures relying on Reinforcement Learning
(RL) techniques have gained popularity. For instance, a Q-learning-based solution was
presented in [17] for smoothly controlling a PTZ camera. A soft actor–critic RL system was,
instead, designed in [18] to perform the decentralized reconfiguration of a camera network
involving PTZ sensors and devices mounted on flying platforms. The main issue related
to the RL solutions consists of their intrinsic black box nature: in some contexts, it is not
possible or safe to rely upon such controllers, whose performance may not be completely
predictable. Finally, the adoption of some heuristics turns out to be a valid option, especially
in case of real-time control requirements. In [19], for instance, a scheduling heuristic was
taken into account for dealing with the cooperative monitoring of an object through a PTZ
camera network. Nonetheless, the general drawback of heuristics is that they strongly rely
on the experience of the users and often on lengthy and tiring tuning procedures.

Despite the specific method adopted to select the PTZ parameters, some general
observations are due when accounting for VSNs composed also of dynamic cameras and
required to perform both the real-time area surveillance and the targets’ tracking. First,
ensuring the cameras’ field of view (FOV) overlap turns out to be advantageous in the
surveillance activities, especially when also target detection and tracking are required. This
is motivated by the fact that, without the full coverage of the environment, the positions
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of the targets need to be estimated in correspondence with the blind spots [1]. Then, the
presence of multiple targets entails a tradeoff between the surveilled area coverage and the
target view image resolution.

To conclude this non-exhaustive survey of the related works, many approaches to
address target tracking are described in the literature. Most of them envisage the exploita-
tion of filtering and prediction tools, as, for example particle filters, Bayesian estimation
techniques, and (extended) Kalman Filters (KFs) [1]. In detail, the approaches based on
the KF are extensively used when dealing with real-time applications and often require
distributed computations [20,21]. For instance, in [22], a distributed KF was studied for sen-
sor networks with a limited sensing range, and an extended version of the same approach
was investigated in [16] to perform 2D tracking employing a PTZ camera network. In [23],
instead, a solution based on particle filters was considered for decentralized tracking of
groups of people or individuals. Finally, in [24], a decentralized framework was presented
for cooperative self-localization and multi-target tracking via Gaussian filters.

1.2. Contributions

Accounting for a heterogeneous VSN made up of both fixed and PTZ cameras, this
work presents a strategy aiming at ensuring the real-time surveillance of a structured
indoor environment, as well as multi-target tracking. The outlined procedure envisages
the (optimal) selection of the adjustable parameters of the dynamic devices composing the
network, resting on the game theory approach proposed in [16].

With respect to [16], the novel aspects of this work derive from the focus on real-world
scenarios, wherein it is desirable to limit both the costs (in terms of employed devices)
and the task execution time. In [16], the study case consisted of a unique unstructured
2D environment monitored by a broad set of PTZ cameras capable of performing both
the distributed multi-target tracking and the iterative optimization of their parameters. In
particular, the proposed target tracking method is based on an Extended Kalman Filter
(EKF), while the parameter selection rests on the iterative solution of a computationally
demanding optimization problem. In this work, instead, great attention is devoted to the
real-world environment. The twofold mentioned goal is, indeed, faced by accounting for a
3D scenario consisting of a structured area composed of multiple connected rooms, and the
available a priori information on the physical space partition is exploited in the solution
process. In addition, the considered VSN involves a limited number of (highly expensive)
PTZ cameras, while including also (low-cost) static devices. Specifically, these permit still
efficiently managing the transitions between different areas, thus streamlining the PTZ
parameter selection. In this direction, their presence favors also network scalability since
the dynamic devices’ reconfiguration can be accomplished in a parallel manner in the
different rooms.

More in detail, in this work, the double monitoring and tracking problem is addressed
by modeling the targets as 3D point particles whose position is characterized by a non-null
uncertainty and overcoming the concept of a planar occupancy grid. The selection of the
PTZ parameters implies the identification of the optimal values for both the pan and tilt
angle, jointly with the zoom (when accounting for the 2D context only, the pan angle is
generally considered in the PTZ parameter selection) Inspired by the game theory approach
proposed in [16], we propose an update procedure for the orientation of the PTZ cameras
based on the optimization of a certain utility function. In particular, this latter is defined
accounting for some criteria that are new and original with respect to [16] since the intent
is to reduce the computational complexity of the parameter selection process because of
the real-time constraints on the task’s execution. The utility function is maximized in a
distributed manner via an iterative negotiation mechanism among some PTZ devices. In
particular, different from [16], the set of PTZ cameras involved in the mentioned negotiation
procedure is determined based on the a priori knowledge of the environment in terms of
structure and devices’ placement. Such information is further exploited to allow for the
parallelization of the parameter selection by multiple independent groups of PTZ cameras.
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The principal advantage of the solution proposed in this work consists of its versatility
and flexibility. Indeed, by conveniently choosing the weights that regulate the contributions
in the utility function, it is possible to prioritize the monitoring task with respect to the
tracking task, or vice versa. Along this line, the results of the conducted simulative
campaign demonstrated its effectiveness in handling the tradeoff between the tracking
precision and the image resolution, especially in the critical scenarios. Moreover, the
heterogeneous nature of the network and the outlined distributed approach allow the
parallelization of the parameter selection and tracking tasks, resulting in a framework that
can be easily scaled up to larger and more complex environments.

As a final remark, we emphasize that, although the problems related to targets’ de-
tection and partial/complete loss are not directly taken into account in this work, some
possible actions to face these issues are discussed.

1.3. Paper Structure

This paper is organized as follows. In Section 2, after the problem statement, the
application scenario is described and modeled. In Section 3, the elements necessary to
perform real-time multi-target tracking are outlined. In particular, Section 3.1 illustrates
the distributed tracking algorithm based on the EKF solution, while Section 3.2 discusses
the PTZ parameter selection. After that, Section 4 presents the application environment
employed to validate the strategy outlined in the previous sections, and Section 5 reports
the results of the multiple test scenarios considered. In Section 5.6, a discussion is provided
about interesting aspects revealed from the simulation results, together with possible future
improvements. Finally, Section 7 reports a summary of the study and contains some
final considerations.

2. Problem Statement, Models, and Assumptions

This section aims at illustrating the application scenario taken into account in this
work: a structured and cluttered indoor environment monitored by a heterogeneous VSN.
We highlight the considered twofold goal, stating the problem and discussing the models
and the assumptions adopted in the design of the proposed solution.

2.1. Problem Statement

In this work, the attention is focused on a structured indoor 3D environment E ∈ R3

composed of nR ≥ 1 rooms and characterized by nA ≥ 1 access points. This is supposed
to be monitored by a VSN made up of nC ≥ 2 cameras, divided into nS ≥ 1 static visual
sensors, i.e., fixed cameras, and nD ≥ 1 dynamic visual sensors, namely PTZ cameras. In
turn, the fixed cameras are split into nSHR ≥ 0 high-resolution visual sensors and nSWA ≥ 0
wide-angle visual sensors.

In this context, we aimed at proposing an effective strategy to fulfill a twofold goal:
to ensure the real-time surveillance of the described environment and to guarantee the
efficient tracking of nT ≥ 1 targets, free to move in the supervised area.

2.2. Environment Modeling

To cope with the aforementioned goal, we define the following sets:

• The environment access points set A = {A1 . . . AnA}, consisting of a single element in
the currently considered setup where nA = 1;

• The physical environment partitions setR = {R1 . . .RnR} withRh ⊂ R3 denoting the
h-th room composing the considered environment,

• The high-resolution and wide-angle static visual sensors set CSHR = {CSHR
1 . . . CSHR

nSHR
} and

CSWA = {CSWA
1 . . . CSWA

nSWA
}, respectively;

• The dynamic and static visual sensors set CD = {CD
1 . . . CD

nD
} and CS = {CS

1 . . . CS
nS
},

respectively, of which this last one is the direct sum of CSHR and CSWA;
• The visual sensors set C = {C1 . . . CnC} resulting from the direct sum of CD and CS;
• The targets set T = {T1 . . . TnT}.
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In addition, we also introduce the virtual environment partitions set P = {P1 . . .PnP}
and the handout zones set H = {H1 . . .HnH}. The former set consists of nP ≥ nR virtual
partitions of the supervised environment; formally, we have that Pk ⊂ R3,

⋃nP
k=1 Pk =⋃nR

h=1Rh = E , and Pk ∩ Pκ = ∅ (disjoint sets) with k, κ ∈ {1 . . . nP}, k 6= κ. We emphasize
that each element of P can either correspond to a physical room (nP = nR) or a part of a
physical room (nP > nR). On the other side, the handout zones set is composed of nH ≥ nP
environment portions corresponding to the transition areas between two adjacent virtual
partitions. From a mathematical perspective, it thus holds thatHp ⊂ R3,Hp ∩Hρ = ∅ with
p, ρ ∈ {1 . . . nH}, p 6= ρ and Hp ⊆ (Pk ∪ Pκ) being Pk,Pκ adjacent virtual partitions. In
particular, hereafter, we use the notationHkκ(= Hp) to indicate the handout zone between
the k-th and the κ-th virtual partition; more specifically, we have that Hkκ = Hk

kκ ⊕Hκ
kκ ,

beingHk
kκ = Hkκ ∩ Pk andHκ

kκ = Hκ
kκ ∩ Pκ with k, κ ∈ {1 . . . nP}, k 6= κ.

All the introduced sets are listed in Table 1, where we also report the assumptions
about their cardinality, many of which derive from the following statements regarding the
considered scenario.

a. The high-resolution fixed cameras were used only to monitor the access points in
order to guarantee the quick and effective target detection when they enter in the
environment, thanks to their increased performance, but also because of their cost.
Thus, it holds that nSHR = nA;

b. Characterized by ample FOVs at the cost of low resolution, the wide-angle fixed
cameras were instead exploited to ensure the best coverage. Hence, we assumed that
at least a visual sensor in the set CSWA is placed in each virtual partition, and in
particular, this is located in order to monitor the related handout zones. Consequently,
it follows that nSWA ≥ nP;

c. Finally, the PTZ cameras were employed to enhance the VSN target tracking capabilities.
Therefore, it is reasonable to assume that nD ≥ nP.

At the same time, we highlight that any assumption is stated as regards the specific
camera’s placement within the environment: several existing algorithms allow determining
the best sensor location [9,25–27].

Table 1. Principal sets and main assumptions considered in this work.

Sets Assumptions

environment access points A = {A1 . . . AnA} nA ≥ 1

physical environment partitions R = {R1 . . .RnR} nR ≥ 1

virtual environment partitions P = {P1 . . .PnP} nP ≥ nR

handout zones H = {H1 . . .HnH} = {Hkκ = Hk
kκ ⊕Hκ

kκ , } nH ≥ nP

static high-resolution visual sensors CSHR = {CSHR
1 . . . CSHR

nSHR
} nSHR ≥ nA

static wide-angle visual sensors CSWA = {CSWA
1 . . . CSWA

nSWA
} nSWA ≥ nP

static visual sensors CS = {CS
1 . . . CS

nS
} = CSWA ⊕ CSHR nS = nSHR + nSWA ≥ nP + nA

dynamic visual sensors CD = {CD
1 . . . CD

nD
} nD ≥ nP

visual sensors C = {C1 . . . CnC} = CD ⊕ CS nC = nD + nS ≥ 2nP + nA

targets T = {T1 . . . TnT} nT ≥ 1

2.3. Targets’ Modeling

Adopting a control system approach, we modeled any target as a point particle acting
in 3D space, thus characterized by a (time-varying) position in the global inertial frame FW ,
hereafter termed the world frame. Formally, the position of any j-th target, j ∈ {1 . . . nT}, at
time t is identified by the vector pj(t) ∈ R3.

Assuming then a first-order dynamics for all the targets, we have that the j-th target
state at time t is described by the vector xj(t) =

[
pj(t) ṗj(t)

]> ∈ R6, stacking its position
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and velocity in FW . Moreover, inspired by [16], we assumed that the introduced state
evolves according to the following discrete-time dynamics with sampling time T ∈ R+:

xj(t + 1) = Ajxj(t) + wj(t), Aj =
[

I3×3 TI3×3
03×3 I3×3

]
∈ R6×6 (1)

where 03×3 ∈ R3×3 and I3×3 ∈ R3×3 denote the square null and identity matrix, respec-
tively. The vector wj(t) ∈ R6 in (1) represents an additive Gaussian noise; in particular,
we assumed that wj(t) ∼ N (06, Wj) with 06 ∈ R6 identifying the zero mean vector and
Wj ∈ R6×6 representing the j-th target (known) covariance matrix. The point particle
modeling assumption, even if it appears simplistic, allows capturing the basic behavior of
a moving subject and focusing on other aspects of interest such as the coordination and
cooperation among the VSN devices. We further emphasize that, although depending
on the specific case, it is generally possible to relate the output of any object detection
algorithm to the assumed representation. For example, if a detected object is modeled by a
bounding box, then the center of such a box can be exploited in the point particle model.
The uncertainty characterizing this operation can be included in a comprehensive error
term affecting the cameras’ observations.

2.4. Cameras Modeling

In this work, every camera composing the given VSN was modeled as a rigid body
having (possibly time-varying) position and orientation, i.e., a pose, in the world frame.
Note that these quantities are often referred to as camera extrinsic parameters in the literature.
In detail, we denote by FB the local frame in-built with the device so that the x-axis
points upward, the y-axis points to the right, the z-axis points forward, and it is aligned
with the device optical axis. Then, the i-th camera (time-invariant) position in FW is
identified by the vector tW,i ∈ R3, while its orientation with respect to the world frame is
represented by the rotation matrix RW2B,i(t) ∈ SO(3), (potentially) depending on the time t.
In particular, we assumed that RW2B,i(t) results from the composition of three subsequent
rotations around the axes of FB, namely RW2B,i(t) = Rz(γi(t))Ry(βi(t))Rx(αi(t)) with
αi(t), βi(t), γi(t) ∈ [−π, π].

For all the static visual sensors, the orientation is fixed and constant over time, namely
RW2B,i(t) = RW2B,i, ∀i ∈ {1 . . . nS}. On the other hand, the dynamic visual sensors are
characterized by a partially time-varying orientation. Indeed, a PTZ camera can modify its
orientation through a pan and/or a tilt movement, namely through a rotation around the
x-axis and/or the y-axis of its FB of a certain controllable pan and/or tilt angle, respectively.
From a mathematical perspective, we have that RW,i(t) = RW,i(αi(t), βi(t)), ∀i ∈ {1 . . . nD},
with αi(t) and βi(t) hereafter referred to as the i-th camera pan and tilt angle, respectively.

Without loss of generality, some standard assumptions were made also on the intrinsic
parameters of all the considered visual sensors: for any camera, the focal length f was
assumed to be unitary; no distortion was taken into account; the FOV is defined by a pair of
angles affecting its height and width. We remark that the PTZ cameras can also dynamically
vary their zoom settings; hence, these are characterized by three controllable degrees of
freedom. Hereafter, the zoom parameter of the i-th dynamic visual sensor, i ∈ {1 . . . nD}, is
referred to as ζi ≥ 0. In addition, we took into account the maximum distance at which a
target can be detected with a satisfying quality level. Hereafter, this is associated with a
minimum pixel density value. More in detail, for any camera, we assumed computing the
pixel density characterizing the FOV at the distance (along the optical axis) of a certain
target: when such a density is lower than a minimum threshold, the considered target is
considered as not visible.

Then, when the j-th target, j ∈ {1 . . . nT}, is observed by the i-th visual sensor,
i ∈ {1 . . . nC}, at time t, its position is projected on the camera image plane. Formally, intro-
ducing the (nonlinear) function h(·) : R3 7→ R2 mapping any vector x = [x1 x2 x3]

> ∈ R3
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into its projection onto the 2D plane h(x) = [x1/x3 x2/x3]
> ∈ R2, we have that the position

zij(t) ∈ R2 of the j-th target into the i-th camera image plane evolves as follows:

zij(t) = h
(
RW2B,i(t)

(
[I3×3 03×3]xj(t)− tW,i)

))
+ vij(t) (2)

where the vector vij(t) ∈ R2 represents the addictive noise deriving from the projection
and measurement errors for the i-th camera. We assumed that vij(t) ∼ N (02, Vi(t)) with
02 ∈ R2 and Vi(t) ∈ R2×2; in particular, the covariance matrix was modeled as a diagonal
matrix whose trace decreases proportionally to the zoom magnitude when considering
PTZ cameras. Note that the camera orientation RW2B,i in (2) is reported as a time-varying
quantity since the provided observation model is valid both for the static and dynamic
visual sensors.

2.5. VSN Modeling

Motivated by the intent of proposing a distributed solution, we assumed that any
i-th visual sensor, i ∈ {1 . . . nC}, composing the given VSN can communicate with the
set of cameras placed in the same partition and in the adjacent ones. Formally, defining
CS
Pk

and CD
Pk

as the sets of static and dynamic visual sensors located in the k-th partition,
respectively, we have that all the devices placed in Pk constitute the set CPk = CS

Pk
⊕ CD

Pk
,

k ∈ {1 . . . nP}. Then, assuming that Ci ∈ CPk , we have that the cameras interacting with
the i-th one at time t correspond to the set Ci(t) ⊆ CPk ∪ CPκ

, Pk and Pκ being adjacent
partitions, k, κ ∈ {1 . . . nP}, k 6= κ. Note that we implicitly made the assumption that all
cameras in the network are aware of the partition wherein they are located and also of the
related handout zones.

Figure 1 aims at clarifying the introduced communication setup through a toy example
fulfilling all the assumptions of the scenario taken into account in this work. In the
following, the 3D simulation environment is shown using its projection on the 2D floor.
One can, indeed, observe that the reported example envisages a structured environment
having a single access point, composed of nR = 4 rooms (corresponding to the blue, red,
green, and orange areas) and virtually divided into nP = 5 partitions connected by nH = 5
handout zones (dashed portions). We emphasize that the partitions P2 and P3 jointly cover
the area associated with the orange room. The VSN is made up of nSHR = 1 high-resolution
fixed camera (represented by the magenta square) monitoring the unique access point,
nSWA = 5 wide-angle static visual sensors placed in the environment in order to guarantee
the maximum area coverage (identified by the cyan squares), and nD = 8 PTZ cameras
located with the purpose of entailing the network tracking capabilities (denoted by the
gray circles). We point out that the FOV of the visual sensor CSWA

2 can cover a portion
of both the partitions P2 and P3; in addition, we remark that all the handout zones are
potentially monitored by at least a dynamic visual sensor. On the right panel of Figure 1,
we highlight the devices’ interaction in terms of information exchange: as illustrated, the
cameras physically placed in the same partition can communicate among themselves, and
these can also share data with the visual sensors located in the adjacent partitions. To
conclude, we emphasize that the communication graph is imposed by the considered VSN
structure. Similar graph-based descriptions, but with different connection roles among
nodes were employed in [28,29] to characterize the environment structure.
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Figure 1. Environment example: colors distinguish the physical environment partitions; dashed lines
identify the handout zones among virtual environment partitions; cameras are indicated with round
and square markers.

3. Real-Time Surveillance and Multi-Target Tracking

Accounting for the scenario described in the previous section, we present here a
distributed strategy aiming at ensuring the efficient real-time surveillance of the considered
environment and the tracking of the nT targets, by means of the given VSN.

The designed procedure involves three principal actions:

• The targets’ detection, executed by both the static and dynamic visual sensors with the
intent of extracting information regarding the presence of one or more targets;

• The targets’ position estimation and prediction performed by all the fixed and PTZ cameras
having detected one or more targets, mainly to identify the devices involved in the
tracking task in the near future;

• The PTZ parameter selection, carried out by all the dynamic visual sensors that are
already or soon engaged in the tracking task, with the purpose of optimizing the
real-time performance.

We specify that the first and second actions were performed at a frequency of 1/T,
while the PTZ parameters were optimized every ` ≥ 1 steps of duration T, namely at
a slower frequency of 1/(`T) with respect to the previous ones. The parameter ` was
selected in order to respect the computational limits of the system while guaranteeing its
promptness in reacting to tracking requirements.

In the rest of the section, the attention is focused on the outlined methods for the
estimation and prediction of the targets’ position and for the determination of the more
suited parameters for the PTZ cameras. Conversely, we do not explicitly account for
the targets’ detection, assuming that this action is accurately performed by resting upon
one of the existing and well-proven techniques. On the other hand, we remark that the
designed solution permits the computations’ parallelization. In detail, observing that both
the targets’ detection and the PTZ parameter selection require a high computational burden,
these two operations can be concurrently executed by distributing the workload between
two computing cores, if possible. Indeed, the optimization process depends only on the
information gathered at every `-th step about the predicted target state.

3.1. Targets’ Position Estimation and Prediction

To efficiently fulfill the tracking task, it is well known that a fundamental step consists
of the accurate estimation of the current position of the targets and also of their future
trajectory. In the proposed strategy, we address this issue by suitably extending the
distributed consensus-based EKF approach presented in [16] to the case of targets moving
in 3D space (rather than 2D).
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To better clarify the adopted approach, summarized in Algorithm 1, we focus on a
generic j-th target, j ∈ {1 . . . nT}, assuming that this is detected by a set CTj(t) ⊂ C of cam-
eras in the network. Observe that, according to (2), any i-th device in the aforementioned
set can retrieve the projection zij(t) of the target position onto its image plane jointly with
the corresponding covariance Vi (Line 2). This allows then computing the quantities rij and
Uij introduced in [16] (Lines 4–5). These are subsequently communicated to the devices set
C̄i(t) ⊆ C distinguishing between the following situations (lines 6–8).

Assuming that Ci ∈ CPk , k ∈ {1 . . . nP}, we have that:

• If the target is in Pk \ Hk,κ , ∀Hk,κ ∈ H, then the i-th device communicates with all the
other cameras in the same partition, namely C̄i(t) = CPk ;

• If the target is inHk
k,κ for any κ ∈ {1 . . . nH}, then the i-th device communicates with

all the cameras in the same and in the adjacent partition Pκ , i.e., C̄i(t) = CPk ⊕ CPκ
.

Algorithm 1 DISTRIBUTED CONSENSUS-BASED EKF

1: for any detected target Tj do
2: compute zij(t) as in (2) and the corresponding Vi

3: compute Hij(t) ∈ R2×6 as Hij(t) = ∇x̄ij(t)h
(

RW2B,i(t)
(
[I3×3 03×3]x̄ij(t)

)
− tW,i)

)
4: compute rij(t) = H>ij (t)V

−1
i zij(t)−H>ij (t)V

−1
i hi(x̄ij(t)) as in [16]

5: compute Uij(t) = H>ij (t)V
−1
i Hij(t) as in [16]

6: data exchange
7: transmit mij(t) = (rij(t), Uij(t), x̄ij(t)) to any Cι ∈ C̄i(t)
8: receive mιj(t) = (rιj(t), Uιj(t), x̄ιj(t)) from any Cι ∈ CTj (t)
9: information fusion

10: compute yij(t) = ∑Cι∈Ci(t) rιj(t)
11: compute Sij(t) = ∑Cι∈Ci(t) Uιj(t)
12: EKF - a posteriori estimation
13: compute Mij(t) = (P−1

ij (t) + Sij(t))−1 (error covarince matrix)

14: compute x̂ij(t) = x̄ij(t)+Mij(t)yij(t)+ (‖Mij(t)‖+1)−1 Mij(t)∑Cι∈CTj (t)
(x̄ιj(t) − x̄ij(t))

. (target state estimate)
15: EKF - a priori estimation
16: update Pij(t) = Aj Mij(t)AT

j + Wj (error covariance matrix)
17: update x̄ij(t) = Aj x̂ij(t) (target state estimate)
18: end for

The exchanged data are required by all the cameras in CTj(t) to initialize and/or
update an EKF needed to retrieve a suitable estimation x̄ij(t) ∈ R6 of the j-th target state at
time t (Lines 12–17). Note that the filter initialization can be performed exploiting either the
received information or the environment knowledge, as, for instance, the size and position
of the rooms’ access points. It is straightforward that the accuracy of such an estimation is
affected by the number of cameras in CTj(t). Moreover, it is possible to prove that, relying
on the consensus approach, it holds that x̄ij(t) = x̄j(t) for any Ci ∈ CTj(t), namely the
target state estimation converges to the same value for all the devices detecting Tj. For this
reason, hereafter, we drop out the dependence on the i-th camera when referring to the
EKF target state estimation.

Our solution entails the exploitation of the computed target state estimation to deter-
mine (even roughly) a prediction of its evolution after ` > 1 time steps. Indeed, exploiting
the target dynamics (1), we obtain:

x̄`j (t) =

{
x̄j(t) if p̄`

j (t) /∈ E or
(

p̄j(t) /∈ Hkκ & p̄`
j (t) ∈ Pκ

)
x̄j(t + `) = A` x̂j(t) otherwise

, (3)
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where x̄`j (t) =
[
p̄`

j (t) ˙̄p`
j (t)

]> ∈ R6 is the `-steps ahead j-th target state prediction. Note

that if the predicted target position p̄`
j (t) ∈ R3 exits from the surveilled environment or if it

changes partition without being in the corresponding handout zone, then the prediction is
considered not valid and is substituted by the actual estimated position.

To conclude, we point out that the tracking performance is affected by the selected
sampling time. Indeed, small values of T might imply extremely high computational
burden, whereas large values of T might compromise the system promptness in the case of
fast-moving targets. A good choice is to select the sampling time taking into account the
average speed of the targets.

3.2. PTZ Parameter Selection

One of the most original aspects of the proposed surveillance and tracking solution
rests upon the use of a heterogeneous VSN, through a smart exploitation of the adjustable
parameters of the PTZ cameras. Hereafter, we illustrate the PTZ parameter selection
procedure designed to determine both the orientation and the zoom value of the dynamic
visual sensors in the network, with the purpose of improving the tracking capability of
the whole camera group. In detail, inspired by [16], we tackled the selection of the PTZ
cameras’ parameters through the iterative solution of a suitable maximization problem.
Clearly, it is convenient to consider only a finite discrete number of PTZ parameters values
since small changes do not yield relevant differences in the cameras’ FOV.

3.2.1. PTZ Parameter Selection Procedure

To provide a clearer explanation, we first focus on the generic single j-th target,
j ∈ {1 . . . nT}. Based on the computed prediction (3) and exploiting the information on the
network topology, it is possible to identify the set of both fixed and PTZ cameras that could
potentially detect the considered target at the following `-th time step. We indicate such
a set as C`Tj

(t) = C`,S
Tj

(t)⊕ C`,D
Tj

(t), distinguishing between the static and dynamic visual

sensors subsets. In particular, we specify that if the target predicted position p̄`
j (t) is in

Pk \ Hk,κ , ∀Hk,κ ∈ H, k, κ ∈ {1 . . . nP}, k 6= κ, then the set C`Tj
(t) includes only cameras

placed in the partition Pk. Instead, if after ` time steps, the target is estimated to be in
Hk

k,κ , then the set C`Tj
(t) contains all visual sensors located in Pk and only the static ones

of Pκ . Formally, in the former scenario, we have that C`Tj
(t) ⊆ CPk , while in the latter one,

C`Tj
(t) ⊆ CPk ∪ CS

Pκ
.

The PTZ parameter selection process initially requires the communication among
all the cameras in C`Tj

(t). The involved devices share information about their position,
orientation, as well as zoom value in the case of PTZ cameras. Subsequently, all the PTZ
cameras in C`,D

Tj
(t) compute a certain utility function depending on the received information.

Then, for a fixed number m ≥ 1 of consecutive iterations, a single dynamic visual sensor at
a time, randomly selected from a uniform distribution over the set C`,D

Tj
(t), computes the

optimal values for its PTZ parameters (maximizing the utility function) and broadcasts
this information to the other cameras in C`,D

Tj
(t), which correspondingly update their utility

function. The whole iterative procedure can be interpreted as a negotiation phase.
For sufficiently large values of m, such a negotiation phase allows the selection process

to converge at least towards a local maximum. In particular, as proven in [16], the con-
vergence is ensured by the game theory results on the Nash equilibrium. When both the
number of cameras in a partition and the number of PTZ parameters to select are high, it
could be advantageous to rely on a stochastic method for the PTZ parameter selection (for
example, in [16], at each negotiation step, a softmax function and a temperature variable
were used to generate a probability distribution over the utilities of the selected camera
available configurations). This allows avoiding the local maxima, but turns out to be
computational demanding. On the contrary, when both the number of visual sensors and
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the number of PTZ parameters to select is low (and therefore, the risk of incurring a local
maximum is low) or when a sub-optimal solution is accepted to the benefit of a faster
convergence, then a greedy choice method could be preferred.

Note also that, for the PTZ parameter selection, the dynamic visual sensors do not
exchange data with the PTZ cameras placed in other partitions. This implies that the
negotiation phase can be simultaneously performed in more than one partition, coping
with the presence of multiple targets.

Finally, we emphasize that the selection process’s performance is conditioned by the
value assigned to `: the number of prediction time steps needs to be compatible with the
value of m and the cameras’ computational and actuation time.

3.2.2. Utility Function Definition

The determination of the PTZ parameters from any dynamic camera in C`,D
Tj

(t) relies
on the evaluation of the aforementioned utility function. Such a function is computed
tacking into account all the targets that the device is supposed to detect at the following
`-th time step. Denoting this targets set as iT (t) ⊆ T , we define the i-th camera utility
function as:

fi(αi(t), βi(t), ζi(t)) = ∑
Tj∈iT (t)

qj f j
i (αi(t), βi(t), ζi(t)) (4)

where the triplet (αi(t), βi(t), ζi(t)) summarizes the PTZ camera parameters, the scalar
qj ≥ 0 constitutes the weight assigned to the j-th target in order to prioritize (or less) its

tracking and the function f j
i (αi(t), βi(t), ζi(t)) depends only on the j-th target and on the

position, orientation, and eventually, zoom value of the visual sensors belonging to the
set C`Tj

(t). More in detail, f j
i (αi(t), βi(t), ζi(t)) is defined as the weighted sum of the terms

deriving from the adoption of l ≥ 0 different criteria, namely:

f j
i (αi(t), βi(t), ζi(t)) = ∑

l
rl gl(αi(t), βi(t), ζi(t)) (5)

with rl ≥ 1 and gl(αi(t), βi(t), ζi(t)) inferred as explained in the following.
In addition to those proposed in [16], in this work, we account for these criteria:

1. Distance from the center: This criterion implies the evaluation of the distance of the
predicted position of the target from the center of the camera image plane. As a
consequence, in this case, we have that:

g1(αi(t), βi(t), ζi(t)) = −
1

|C`Tj
(t)| ∑

Cι∈C`Tj
(t)

χι p + ad(αι(t), βι(t), ζι(t))

with d(·) = ‖[I2×2 02×1]RW2B,ι(αι(t), βι(t))(x̄`j − tW,ι)‖.
(6)

In (6), the scalar a ∈ [0, 1] permits weighting the importance given to the distance d(·),
and it is set to one when the i-th camera can detect the target without modifying its
PTZ parameters (Case a). On the other hand, the condition a < 1 is in place when the
i-th camera needs to modify its current orientation and/or zoom parameter in order
to detect the target (Case b). Note that in this last scenario, a penalty p > 0 is also
assigned to the device thanks to the introduction of the indicator function χι, which
takes a value of one in correspondence to Case b and zero to Case a;

2. View quality: This criterion intends to favor zoomed frames up to a minimum FOV
height hmin > 0, which is measured on the plane orthogonal to the optical axis and
intersecting the j-th target position. Hence, we account for:
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g2(αi(t), βi(t), ζi(t)) = ∑
Cι∈C`Tj

(t)

χιhι(αι(t), βι(t), ζι(t))

with

hι(·) =


(
[0 0 2]RW2B,ι(αι(t), βι(t))(x̄`j − tW,ι) tan

(
1
2 βι(t)

))−1
if hι(·) > hmin

0 otherwise;

(7)

3. Number of cameras per target: This criterion aims at assigning a penalty p > 0 when
the j-th target is estimated to be detected by less than nmin cameras or more than nmax
cameras. Hence, we have that:

g3(αi(t), βi(t), ζi(t)) =

{
0 if nmin ≤ |C`Tj

(t)| ≤ nmax

−p otherwise;
(8)

4. Minimum parameter adjustments: According to this criterion, the minimum parameter
adjustments with respect to the previous update step are advisable. Introducing the
vector [α?i β?

i ζ?i ]
> stacking the PTZ parameters of the i-th camera obtained at the

previous selection step, it follows that:

g3(αi(t), βi(t), ζi(t)) = −
∥∥∥[αi βi ζi]

> − [α?i β?
i ζ?i ]

>
∥∥∥. (9)

To conclude, we remark that, when accounting for different rooms, only static visual
sensors are allowed to communicate. For this reason, it is possible to perform the selection
of the PTZ cameras in separate partitions simultaneously.

4. Application Scenario

We note that the framework proposed in this work allows coping with a wide range
of different (and potentially conflicting) objectives. This is possible through a convenient
choice of the utility function terms and of the corresponding weights. Nonetheless, in
this section, the attention is focused on the description of a specific application scenario.
This is motivated by the intent of investigating the performance of the designed solution.
In detail, we considered an application case wherein the necessary tradeoff between the
high-resolution and high-precision tracking requirements emerges.

We considered the indoor environment depicted in Figure 1. This is physically divided
into nR = 4 portions, namely a corridor (where the main entrance to the surveilled area is
located) and three rooms accessible from the corridor. However, nP = 5 virtual partitions
were taken into account. Indeed, two virtual partitions are associated with the environment
portion physically corresponding to the corridor; this choice was motivated by the space
geometry and by the intent of preventing camera view occlusions.

Figure 1 reports also the assumed cameras’ placement in the environment. We high-
light that the outlined framework allows verifying the simultaneous PTZ parameter selec-
tion for dynamic devices associated with different partitions.

4.1. VSN Insights

We emphasize that partitions P1,P2, and P3 are populated by the minimum number
of visual sensors to guarantee multi-target tracking; partition P4 is surveilled only by a
(wide-angle) static and a dynamic device; four cameras are located in correspondence
to partition P5. Note that P4 and P5 represent the most critical and the most favorable
situations in the considered framework, respectively.

More in detail, one can observe that, as highlighted in Figure 2a, the static visual
sensors were placed in order to guarantee the monitoring of the whole environment.
Nonetheless, different features were assumed for these cameras, as reported in Table 2.
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Observe that the high-resolution device aimed at monitoring the environment access point
is characterized by a limited FOV. Concerning the PTZ cameras, instead, these are supposed
to be located so as to ensure that the volume of each partition can be approximately entirely
covered by at least a couple of these devices, except for partitionP4, as depicted in Figure 2b.
The considered PTZ cameras were not all identical and differ, as reported in Table 3, where
the pan and tilt ranges identify the extreme achievable angles when moving with respect to
the initial configuration. Note that the sensors placed in the corridor are characterized by a
smaller pan range as compared to the ones in the other rooms, which can span a larger area.

In the simulation, the FOV of each camera is also characterized by a maximum distance
at which a target can be seen. This value can be computed starting from each camera
resolution, horizontal and vertical FOV angles and the minimum pixel density at which a
target is considered to be detectable. Clearly, for dynamic cameras, this maximum distance
changes depending on the zoom magnitude. The minimum density considered by us was
3 pixel per cm2 (ppcm).

5

3

2

4

1
1
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P4

P3
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P1

(a)
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P2

P1

(b)

Figure 2. Simulation framework: cameras’ position. (a) Fixed cameras’ position. (b) PTZ cameras’ position.

Table 2. Simulation framework: fixed cameras’ features.

Camera
FOV (deg) Resolution

horiz. vert. (pixel/deg)

CSHR
1 60 40 100

CSWA
1 120 80 50

CSWA
2 120 80 50

CSWA
3 90 60 50

CSWA
4 120 80 50

CSWA
5 120 80 50

Taking into account a maximum velocity of 4 m/s for the targets, we assume that all
the cameras composing the VSN acquire new data every T = 50 ms. In addition, for any
i-th static sensor, i ∈ {1 . . . nS}, we select the covariance matrix of its observation error in (2)
as a diagonal matrix Vi(t) = 10−3I3×3. In doing this, when projecting the target position
on the camera image plane, we have that the maximum error is approximately 9.5 cm
for a target at a distance of 1 m. Conversely, for any ι-th PTZ camera, ι ∈ {1 . . . nD}, the
covariance matrix depends on the value of its zoom parameter as Vι(t) = (10−3/ζι(t)I3×3).
Note that we suppose that the zoom parameter can vary in the range [1, 3] with unitary
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step for all the dynamic devices (Table 3). The pan and tilt angles, instead, can be updated
in different ranges for the various cameras, although the update step is fixed to 7.5 degrees
for all the devices. We also assume that such angular movements are achieved in 0.5 s per
step: this constitutes an arbitrary choice, even though, in the following, it is shown that
reasonably longer movement time do not affect considerably the tracking performance.

Table 3. Simulation framework: PTZ cameras’ features.

Camera
FOV [deg] Resolution Tilt Range Pan Range Pan/Tilt Step Zoom Range Zoom Step

horiz. vert. (pixel/deg) (deg) (deg) (deg) (deg) (deg)

CD
1 60 40 50 ±15 ±15 7.5 1÷ 3 1

CD
2 60 40 50 ±15 ±45 7.5 1÷ 3 1

CD
3 60 40 50 ±15 ±45 7.5 1÷ 3 1

CD
4 60 40 50 ±15 ±30 7.5 1÷ 3 1

CD
5 60 40 50 ±15 ±30 7.5 1÷ 3 1

CD
6 60 40 50 ±15 ±15 7.5 1÷ 3 1

CD
7 60 40 50 ±15 ±30 7.5 1÷ 3 1

CD
8 60 40 50 ±15 ±30 7.5 1÷ 3 1

4.2. PTZ Parameter Selection Insights

In the following, the PTZ parameter selection is performed by relying only on two of the
criteria presented in Section 3.2, namely the distance from the center and the quality view criterion.
This choice was motivated by the results of a preliminary comparison of all the proposed
criteria, jointly with those described in [16]: the two selected ones constitute the best tradeoff
in terms of both effectiveness and computational burden. We remark that the tracking criterion
introduced in [16] and the outlined distance from the center criterion serve the same purpose.
Nonetheless, the former requires complex computations to minimize the covariance matrix of
the target state estimate, while the latter ensures good tracking performance just by trying to
keep the targets as centered as possible in the image plane, only involving the computation
of the distance from the optical axis through a norm. As regards the distance from the center
criterion, the penalty term and the weight factor introduced in (6) were set to p = 103 and
a = 0.5, respectively. As far as the quality view criterion is concerned, instead, the parameter
hmin in (7) was fixed to 1 m. We highlight that the purpose of the studied scenario was to
obtain high-resolution shots of the targets while maintaining a good tracking performance
for all of them. Since the quality view criterion favors zoomed framings of the targets and the
distance from the center criterion improves the tracking precision, just by combining these two
simple rules, it is possible to obtain the desired network behavior.

In light of the given premises, the utility function computed by any i-th PTZ camera,
i ∈ {1 . . . nD}, in correspondence to the generic j-th target, j ∈ {1 . . . nT}, results in being:

f j
i (αi(t), βi(t), ζi(t)) = r1 g1(αi(t), βi(t), ζi(t)) + r2 g2(αi(t), βi(t), ζi(t)) (10)

with g1(αi(t), βi(t), ζi(t)) and g2(αi(t), βi(t), ζi(t)) defined as in (6) and (7), respectively,
and r1 = r2 = 1, namely without prioritizing any of the two selected criteria. The utility
function that the i-th PTZ camera is required to maximize in order to determine its next PTZ
parameter is thus fi(αi(t), βi(t), ζi(t)) defined in (4). In particular, hereafter, we assume
qj = 1 for any j ∈ {1 . . . nT}.

We remark that the PTZ parameter selection can be simultaneously performed by devices
corresponding to different partitions. Moreover, since in our simulation framework, at
most three dynamic visual sensors are placed in each partition, for the reasons explained in
Section 3.2.1, a greedy selection policy over the PTZ parameters was employed. Therefore,
it is possible to use a relatively small number of negotiation steps, i.e., m = 6. Observe that
partitions P1, P2, and P4 are all monitored by a single dynamic sensor: in these cases, the
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optimal PTZ parameters are directly determined and the negotiating process is not required. To
conclude, we highlight that the computational time for parameter selection is proportional to
the number of targets inside a partition. Observing also that the network tracking capabilities
are strongly influenced by the PTZ parameter selection time, we made the following design
choices as regards the heterogeneous network. First, the dynamic devices are supposed to
be able to perform a discrete pan and/or tilt movement in 0.5 s. In addition to this time, we
need to consider also a small time interval during which the cameras stand still in order to
acquire images without motion blur. We chose this interval to be of at least 0.5 s, during which
we also computed the new PTZ parameters for the dynamic cameras. It follows that, if the
computational time exceeds this value, the mentioned time interval needs to be longer. As a
consequence, it turns out to be convenient to predict the targets state at least 1 s in the future.
Having assumed T = 0.05 s, this leads to selecting ` ≥ 20 prediction time steps, 10 steps of
which are introduced to cover the camera movement time.

4.3. Targets’ Insights

In the designed simulation framework, we accounted for multiple possible targets
moving in the environment according to (1). In detail, we selected the j-th target state noise
covariance matrix, j ∈ {1 . . . nT}, as:

W = ‖p̄j‖
[

0.25I3×3 03×3
03×3 2.5I3×3

]
(11)

where we indicate with ‖p̄j‖ ≥ 0 the average target velocity expressed in m/s.
In addition, we took into account three main possible trajectories for all the targets:

these are reported in Figure 3, neglecting the hypothesis of additional noise. The path in
Figure 3a, i.e., Trajectory T1, refers to a non-elusive target going through partitions P1, P2,
and P3, i.e., the environment portion characterized by a minimum number of cameras
to properly ensure the target tracking. The trajectories in Figure 3b,c, namely T2 and T3,
respectively, account for the behavior of a non-elusive and an elusive target, respectively,
crossing partitions P4 and P5. We recall that these two partitions represent the most critical
and favorable scenario in terms of cameras to guarantee the target tracking. In all three
cases, targets were generally assumed to move at a constant speed of 1 m/s, although
variations up to 4 m/s were also studied for the trajectory in Figure 3a. In addition, in
the following, we considered scenarios wherein 4, 8, and 12 targets were simultaneously
present in the environment. In these cases, the distance among them was reduced in order
to have all of subjects concurrently present in P1 at some point during the simulation.
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Figure 3. Possible target trajectories (without noise). (a) Trajectory T1, (b) Trajectory T2, (c) Trajectory T3.
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5. Simulation Results

Accounting for the simulation framework outlined in the previous section, hereafter,
we investigate the performance of the solution designed, by studying different scenarios.

5.1. Performance Evaluation Criteria

To do this, the following performance indexes were taken into account:

• The target state estimation error (precision) and the tracking confidence (accuracy). For
any j-th target, j ∈ {1 . . . nT}, at time t, the former is simply the difference between
the true and the estimated state. The latter is computed from the elements on the main
diagonal of the covariance matrix Pj(t). Formally, we distinguish between the position
estimation accuracy δp(t) =

√
3(p1,1(t) + p2,2(t) + p3,3) ∈ R and the velocity estima-

tion accuracy δv(t) =
√

3(p4,4 + p5,5 + p6,6) ∈ R. Note that the accuracy indexes δp(t)
and δv(t) correspond to the 3σ C.I., where σ is the square root of the average variances
of the position and velocity components of the target state, respectively;

• The (maximum, minimum, mean, and 75th percentile) resolution at which any target
is observed. This is expressed in pixel per cm2 (ppcm) and computed evaluating the
pixel density per 1 m2 on the plane orthogonal to the optical axis and intersecting the
estimated target position;

• The number of cameras detecting any target at each time step T;
• The time required for the PTZ parameter selection depending on the number of targets

in the partition.

Note that only the last mentioned performance index involves a temporal quantity
and, specifically, refers to the computational time employed in the PTZ parameter selection.
This choice was motivated by the fact that the workload associated with all the other
operations, as, e.g., the EKF target state estimation, is negligible with respect to the PTZ
parameter selection process.

Furthermore, to better highlight the advantages of heterogeneous VSNs including also
PTZ cameras, we introduce the so-called static simulation framework (SSF). This differs from
the simulation framework described in Section 4, hereafter termed the dynamic simulation
framework (DSF), since we assumed substituting all the dynamic visual sensors with static
devices. In particular, in the SSF, we fixed the orientation of the (substituted) cameras in
order to have at least a couple of sensors monitoring the whole volume of each partition,
except for partition P4, as depicted in Figure 4.

Figure 4. Static Simulation Framework (SSF).
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Since we did not deal with occlusions, one can realize that in the SSF, the network
tracking performance does not scale with the number of targets. For this reason, in the
following, we investigate the performance of the SSF by accounting only for a single
target moving in the environment. Nonetheless, the achieved results were then used
as a benchmark for comparing the performance of the designed solution in the given
DSF, specifically addressing also the multi-target case. All the simulations were run on a
Windows laptop equipped with an Intel core i7-6700HQ.

To conclude, we emphasize that, to provide a fair evaluation of the designed solution
performance, 10 independent trials were run for each testing scenario and the average of
all the aforementioned metrics was computed.

5.2. Single Target

The first intent is to remark about the advantages deriving from the use of a heteroge-
neous VSN. In doing this, we focus on the network tracking capabilities both in the SSF
and in the DSF, by considering a single target that follows the trajectories described in
Section 4.3 with a constant speed equal to 1 m/s.

First, note that in this case, the choice of ` = 20 prediction steps (Section 4.2) is suffi-
cient. Indeed, as shown in Table 4, the computational time required for the PTZ parameter
selection in the case of a single target following the trajectory T3 (in Figure 3c) never ex-
ceeded 0.5 s. We remark that the PTZ parameter selection procedure took into account not
only the visible targets, but also the ones potentially visible in the near future. For this
reason, the computation time turned out to be strongly affected also by the environment
structure: a PTZ camera located in a room having a complex geometry in terms of walls
and obstacles is penalized.

Table 4. PTZ parameter selection computational time: 1 target following trajectory T3.

Case Study Computational Time (s)

1 target
mean 0.043

std 0.036
max 0.136

Focusing on the target tracking of trajectory T3 (the most challenging one for the
camera network), in Figure 5, we report the performance indexes in correspondence to both
the SSF and the DSF. However, we also summarize the performance in correspondence to
all the target trajectories that are depicted in Figure 3 and Table 5.

It is possible to notice that the estimation error and tracking confidence, namely the
position and velocity precision and accuracy, are comparable for all the trajectories, with
a slight improvement when considering the DSF. This improvement can be explained by
observing the mean number of cameras on the target. Indeed, accounting for Figure 5b,
related to the case of a target following trajectory T3, we note that in several steps of the
path, the number of cameras framing the target was larger for the DSF, as compared to the
SSF. Moreover, the use of PTZ cameras allows considerably improving the resolution at
which the target is seen (see Table 5 and Figure 5b). Observing also Figure 6, one can realize
that the frame distribution in terms of ppcm is higher in DSF.

We observed that some spikes affected the trend of the estimation error reported
in Figure 5a: this fact can be motivated by the changes of direction in the considered
trajectory, approximated with instantaneous variations. However, the overall performance
was not compromised by this behavior: the maximum value of the tracking precision and
accuracy was, indeed, bigger than its 75th percentile. We emphasize that in real-world
scenarios, this issue is less remarkable, since usually, changes of direction happen more
smoothly; nonetheless, the proposed approach is useful to test the robustness of the network
tracking capability.



Sensors 2022, 22, 2661 18 of 28

0 200 400 600 800 1000

time step

100

101

102

[c
m

]

Position estimation error (solid)
and tracking confidence (dashed)

SSF

SSF

DSF

DSF

0 200 400 600 800 1000

time step

101

102

[c
m

/s
]

Velocity estimation error (solid)
and tracking confidence (dashed)

SSF

SSF

DSF

DSF

0 200 400 600 800 1000

time step

0

2

[p
ix

el
/c

m
2
]

⇥103 PPCM

SSF

DSF

0 200 400 600 800 1000

time step

2.5

5.0

#
ca

m
er

as

Number of cameras on target

SSF

DSF

(a)

0 200 400 600 800 1000

time step

100

101

102

[c
m

]

Position estimation error (solid)
and tracking confidence (dashed)

SSF

SSF

DSF

DSF

0 200 400 600 800 1000

time step

101

102

[c
m

/s
]

Velocity estimation error (solid)
and tracking confidence (dashed)

SSF

SSF

DSF

DSF

0 200 400 600 800 1000

time step

0

2

[p
ix

el
/c

m
2
]

⇥103 PPCM

SSF

DSF

0 200 400 600 800 1000

time step

2.5

5.0

#
ca

m
er

as

Number of cameras on target

SSF

DSF

(b)

Figure 5. SSF vs. DSF performance comparison: 1 target following trajectory T3. (a) Position and
velocity estimation error and tracking confidence. (b) PPCM and num. cameras on target evolution.
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Figure 6. SSF vs. DSF frame distribution: 1 and 4 targets following trajectory T1.

In the elusive target scenario corresponding to trajectory T3 (Figure 5), we highlight
that the target tries to exploit the blind areas of the VSN, and this turns out to be particularly
problematic in partition P4, where the visual sensors are not capable of ensuring the
tracking over the entire environment portion. This fact can be noticed in Figure 5a: in
correspondence to the part of the trajectory associated with partition P4, namely between
the 350th and the 650th time step, the accuracy and precision are compromised, especially
when considering the SSF, since the target is framed by only a single camera for a long time
(Figure 5b). In the DSF, the presence of dynamic devices allows partially counteracting this
problem, with the limiting factor given by the movement capabilities of the PTZ cameras.

To conclude, to test the robustness inherited from the distributed approach, two
scenarios were analyzed where cameras CD

7 and CD
8 were respectively considered as not

working and a target was following trajectory T2. In both cases, thanks to the negotiation
among the remaining cameras, the VSN was able to autonomously adapt to the new
situation and to limit the loss of performance to a slight decrease in the quality of view
performance (mean resolution values), as can be observed by comparing the data in Table 5
(DSF, T2) and Table 6.
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Table 5. SSF vs. DSF performance comparison: 1 target following trajectories T1, T2, and T3.

Case Study
Position Position Velocity Velocity Resolution Cameras
Precision Accuracy Precision Accuracy on

(cm) (cm) (cm/s) (cm/s) (ppcm) Target

SSF, T1

mean 6.22 34.93 11.08 147.11 252.44 2.64
std 14.20 9.63 21.21 8.04 354.72 0.71
min 0.53 20.91 2.41 56.12 24.06 2
75% 3.20 42.74 6.48 152.49 247.40 3.00
max 100.06 58.98 155.81 162.32 2595.25 4

DSF, T1

mean 6.20 30.81 11.23 144.05 640.93 2.68
std 13.61 7.84 20.61 6.95 360.19 0.63
min 0.52 20.34 2.84 56.12 26.74 1
75% 3.50 36.98 6.59 148.74 777.13 3.00
max 101.00 58.72 152.40 159.04 2932.68 4

SSF, T2

mean 5.52 43.99 11.22 151.41 212.74 2.68
std 12.71 22.46 22.46 11.30 342.32 0.84
min 0.47 20.33 2.06 56.12 25.25 2
75% 3.15 47.70 6.40 155.23 189.48 3.00
max 100.30 146.31 162.78 188.54 2557.83 5

DSF, T2

mean 5.53 37.92 11.02 148.11 515.59 2.70
std 12.27 15.86 21.32 9.49 386.28 0.84
min 0.51 20.02 2.31 56.12 26.99 1
75% 3.29 42.00 6.44 151.53 690.15 3.20
max 101.30 107.76 164.31 177.72 2587.40 5

SSF, T3

mean 12.48 55.74 19.56 155.09 219.22 2.48
std 23.89 54.56 30.89 18.54 302.08 0.92
min 0.51 20.29 2.36 56.12 48.32 1
75% 7.72 49.88 15.67 158.08 243.49 3.00
max 110.71 373.64 142.82 234.54 2451.09 5

DSF, T3

mean 9.11 35.37 14.33 146.87 506.88 2.57
std 18.20 14.12 25.07 8.97 378.46 0.78
min 0.61 19.75 2.41 56.12 11.21 1
75% 4.44 40.39 7.68 150.60 710.26 3.00
max 108.46 100.77 142.88 176.90 2528.80 5

Table 6. DSF performance: CD
7 or CD

8 not-working, 1 target following trajectory T2.

Case Study
Position Position Velocity Velocity Resolution Cameras
Precision Accuracy Precision Accuracy on

(cm) (cm) (cm/s) (cm/s) (ppcm) Target

DSF, T2
without CD

7

mean 5.69 38.94 11.19 148.78 487.20 2.49
std 12.99 15.53 21.88 9.34 373.27 0.61
min 0.46 20.02 2.38 56.12 27.74 1
75% 3.04 42.06 6.31 151.54 663.70 3.00
max 98.70 107.67 162.16 177.71 2598.42 4

DSF, T2
without CD

8

mean 5.45 38.23 10.87 148.41 471.25 2.50
std 12.21 15.75 21.34 9.42 365.58 0.65
min 0.43 20.03 2.35 56.12 9.55 1
75% 3.15 42.06 6.45 151.56 614.89 3.00
max 99.41 107.63 162.61 177.69 2620.06 4

5.3. Single Target vs. Four Targets

Accounting for the DSF, in Figure 7, we compare the single-target case discussed in the
previous subsection with the case in which four targets move in the environment following
trajectory T1 and thus crossing partitions P1, P2, and P3. The intent, here, is to evaluate
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the heterogeneous VSN performance in a scenario wherein the number of cameras is the
minimum to guarantee a successful target tracking over the entire area.

First of all, from Table 7, it is possible to notice that also with four targets, the compu-
tational time necessary to perform the PTZ parameter selection did not exceed 0.5 s, thus
the assumption on the target state prediction ` = 20 is again valuable.
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Figure 7. DSF performance: 1 and 4 targets following trajectory T1.

Table 7. PTZ parameter selection computational time: 4 targets following trajectory T1.

Case Study Computational Time (s)

4 targets
mean 0.229

std 0.067
max 0.330

Based on the accuracy and precision values reported in Table 8, we point out that
the increase in the number of targets did not affect the network tracking performance.
However, when multiple targets were simultaneously present in the same partition, the
PTZ cameras leaned toward the reduction of their zoom value in order to frame as many
targets as possible, consequently compromising the (mean) resolution at which the targets
were observed. This was due to the fact that the utility function (4) was designed so that all
the dynamic devices tend to keep all targets at the maximum possible resolution, but also
centered in their camera image plane. The described situation is more probable in larger
partitions, as can be noticed from the ppcm trend in Figure 7: between the 400th and the
700th time step, we detected the highest discrepancy between the single- and multi-target
case, and this corresponds to the part of the target trajectory in P3. We also observed that
the utility function maximization sometimes led the PTZ cameras to focus on a single target
(thus, increasing their zoom value), rather than framing more targets, especially when these
were already monitored by other visual sensors. This fact explains why the mean number
of cameras on the targets was slightly lower in the DSF when accounting for four targets as
compared both to the one-target case and to the SSF (see Table 8). In general, it is possible
to balance the amount of zoomed PTZ configurations with a good tracking performance by
tuning the weights of the target utility function.

To conclude, we highlight that Figure 6 and Tables 5 and 8 show that, even when four
targets are assumed to be present in the environment, the use of PTZ cameras brings a
benefit in terms of target resolution. In fact, the average pixel density on the target was
higher with respect to the one obtained in SSF.
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Table 8. DSF performance: 1 and 4 targets following trajectory T1.

Case Study
Position Position Velocity Velocity Resolution Cameras
Precision Accuracy Precision Accuracy on

(cm) (cm) (cm/s) (cm/s) (ppcm) Target

DSF, T1

mean 6.20 30.81 11.23 144.05 640.93 2.68
std 13.61 7.84 20.61 6.95 360.19 0.63
min 0.52 20.34 2.84 56.12 26.74 1
75% 3.50 36.98 6.59 148.74 777.13 3.00
max 101.00 58.72 152.40 159.04 2932.68 4

DSF 4, T1

mean 6.47 33.49 11.50 146.04 448.50 2.54
std 14.60 8.70 21.67 7.50 364.33 0.67
min 0.54 20.37 2.38 56.12 16.87 1
75% 3.35 40.31 6.64 150.42 584.09 3.00
max 107.39 76.01 156.20 170.34 2718.68 4

5.4. Multiple Targets: Limit Behavior

Hereafter, we analyze how the average target resolution changes when the number
of targets increases, and in particular when the use of PTZ cameras in the VSN does
not provide any improvement with respect to the SSF. In doing this, we considered two
scenarios involving 8 and 12 targets, respectively, ensuring their simultaneous passage
through the partition P1 at some time instant. It is straightforward that the different
partitions have different tracking limits, depending on their topology and on the number
of corresponding visual sensors. To provide a fair comparison, we considered trajectory T1
as in Section 5.3.

It turned out that the tracking limit in the DSF was 12 targets. Indeed, as can be
observed comparing Tables 5 and 9, the advantage given by the exploitation of a hetero-
geneous network in this case was minimal. As a consequence, we can conjecture that for
a higher number of targets, the network performance might degenerate until the use of
PTZ devices results in not being beneficial. This happened, for instance, in partition P2
and P3 in correspondence to a lower number of targets because of the presence of a single
dynamic device. On the other hand, in partition P1, the adoption of a heterogeneous VSN
turned out to be advantageous due to the higher number of available PTZ cameras. For
the 12-target case, thus, the DSF performance in terms of mean ppcm was the same as can
be obtained by considering a network of static cameras, with higher resolution in critical
points of the surveilled environment.

Table 9. DSF performance: 8 and 12 targets following trajectory T1.

Case Study
Position Position Velocity Velocity Resolution Cameras
Precision Accuracy Precision Accuracy on

(cm) (cm) (cm/s) (cm/s) (ppcm) Target

DSF 8, T1

mean 6.34 33.57 11.31 146.05 358.64 2.65
std 14.40 9.71 21.40 7.75 374.65 0.64
min 0.46 20.46 2.37 56.12 20.89 1
75% 3.32 40.05 6.63 150.68 433.44 3.00
max 108.73 70.80 154.19 164.52 2740.93 4

DSF 12, T1

mean 6.44 34.61 11.40 146.82 316.11 2.60
std 14.61 10.02 21.62 8.10 364.13 0.66
min 0.50 20.53 2.29 56.12 17.72 1
75% 3.28 41.80 6.62 151.91 380.52 3.00
max 109.30 78.20 155.42 170.34 2782.13 4

Moreover, Figure 8a,b highlights that the computational time grew approximately
linearly with the number of targets in a partition and the trend slope changed according to
the number of devices placed in the partition. One can also observe that in these cases, the
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computational time to select the PTZ parameters of all the dynamic cameras was higher
than 0.5 s (see Tables 10 and 11). This implies that a longer time period needs to be taken
into account for computations before the cameras’ movements. In particular, we considered
intervals of 1 s for the 8-target case and of 2 s for the 12-target case, which correspond to
` = 30 and ` = 50 steps ahead prediction, respectively.
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Figure 8. PTZ parameter selection computational time trend: results for partition P3 are similar to
those of partition P2 and thus omitted. Note that the parameter selection process of PTZ cameras in
P2 depends on 4 over 8 targets (a) and 7 over 12 targets (b).

Table 10. PTZ parameter selection computational time: 8 targets following trajectory T1.

Case Study Computational Time (s)

8 targets
mean 0.472

std 0.035
max 0.567

Table 11. PTZ parameter selection computational time: 12 targets following trajectory T1.

Case Study Computational Time (s)

12 targets
mean 0.780

std 0.061
max 0.959

Finally, we noticed that, under the target velocity assumption of 1 m/s, the target
state estimation precision was not compromised (see Table 9), suggesting that the designed
solution was capable of coping with situations involving a lower number of targets and a
longer time for the camera movements.

5.5. Multiple Targets with Different Velocities

We investigate now the system performance in the presence of targets having different
(increasing) velocities. Specifically, we assumed dealing with four targets moving at the
constant speeds of 1 m/s, 2 m/s, and 4 m/s. The last case is extreme for walking targets,
but this was studied with the purpose of pushing the system performance and analyzing
the provided solution robustness. Furthermore, in this scenario, the targets were supposed
to follow trajectory T1.

In Figure 9, we report the results of the comparison of the tracking precision and
accuracy for the second of the four targets, while moving at the different velocities. We
observed that, in all the cases, the distributed EKF generally allowed estimating the target
position with a small error, except in correspondence to direction changes wherein the
tracking error grew proportionally to the velocity. In particular, we note that for higher
velocities, a longer time was required to correct the estimates. These considerations are
confirmed by the results in Table 12. Nonetheless, we also remark that abrupt changes in
direction are unlikely in a real case scenario, especially in the case of high velocities.
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Figure 9. DSF tracking precision and accuracy: multiple targets having different velocities.

Table 12. DSF performance: multiple targets having different velocities.

Case Study
Position Position Velocity Velocity Resolution Cameras
Precision Accuracy Precision Accuracy on

(cm) (cm) (cm/s) (cm/s) (ppcm) Target

DSF 4, 1 m/s

mean 6.47 33.49 11.50 146.04 448.50 2.54
std 14.60 8.70 21.67 7.50 364.33 0.67
min 0.54 20.37 2.38 56.12 16.87 1
75% 3.35 40.31 6.64 150.42 584.09 3.00
max 107.39 76.01 156.20 170.34 2718.68 4

DSF 4, 2 m/s

mean 22.38 41.31 34.85 201.40 414.55 2.46
std 39.77 11.41 57.91 12.31 408.15 0.70
min 0.66 26.39 3.30 73.48 11.82 1
75% 16.97 47.48 33.84 206.44 554.98 3.00
max 197.52 105.16 306.46 241.77 3020.25 4

DSF 4, 4 m/s

mean 83.27 54.99 128.47 279.65 330.76 2.39
std 104.94 21.08 151.46 22.80 383.58 0.76
min 1.18 35.29 4.70 99.50 18.52 1
75% 125.24 59.85 193.71 286.78 423.86 3.00
max 403.85 144.50 603.55 329.85 2492.24 4

As concerns the resolution at which the targets were observed, from Table 12, one can
observe that generally, the mean ppcm value was lower for higher target velocities. In these
cases, in fact, less zoomed PTZ configurations are preferable since the movement that any
camera can accomplish in one time step is not sufficient to follow a relatively close target
that is moving fast.

Finally, we emphasize that, as the target velocity increases, the mean number of
cameras on the target decreases. Indeed, in correspondence to faster targets, it is more
likely for the PTZ cameras to temporarily lose the target. In these cases, the target state
estimate only relies on the measurements of the static devices. In the worst case, for a brief
time interval, the target is viewed by a single fixed camera; therefore, its state estimates can
become less accurate until a PTZ camera frames it again.
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5.6. Multiple-Target Real-World Scenario

To conclude the assessment of the proposed solution, we accounted for a real-world
scenario wherein several targets access the surveilled environment with small time intervals
between each other. They are all supposed to move at 1 m/s, following different trajectories
in order to cover the whole environment and to explore also the blind areas for the VSN.
In this real-world scenario, the targets follow more natural paths with respect to the
ones considered in the previous cases; the result is a more random distribution of the
tracked subjects over the simulation area. We observed that the PTZ parameter selection
computational time here was less than 1s for the partitions of the corridor and less than
0.5 s for the other partitions; hence, the prediction time steps considered were ` = 30 in
correspondence to partitions P2 and P3 and ` = 20 for the other ones.

In this scenario also, particularly challenging from a surveillance point of view, the
designed solution based on the exploitation of a heterogeneous VSN resulted in being more
effective with respect to the SSF, especially in terms of the resolution at which targets were
seen. This fact is confirmed when comparing the SSF and DSF performances reported in
Table 13: the ppcm index almost doubled in correspondence to any partition, with the
exception of P2 and P3, where the improvement was slightly less due to the constrained
topology of the corridor.

Furthermore, we remark that when multiple targets are present in a single partition,
the number of PTZ cameras on a specific target tends to diminish. This behavior can be
explained by considering that, based on the maximization of its utility function, for some
dynamic device, it may to be more convenient to set its PTZ parameters in order to focus
on a specific target, obtain some high-resolution shots instead of framing a larger area.
The most challenging situation occurs when the maximum number of targets occupies a
single partition and, in particular, these are spread over the entire partition area, e.g., when
eight targets are present in partitions P2 and P3 and/or when five targets are present in
partitions P1, P4, and P5, as shown in Figure 10. In this case, it turns out to be preferable
to not focus on a single target for a long period, since the risk of loosing the others exists.
The results reported in Table 14 highlight how, besides the difficult situation, the solution
proposed in this work was able to improve considerably the resolution at which targets
were seen as compared to the traditional VSN characterizing the SSF.

(a) SSF (b) DSF

Figure 10. Snapshots of a real-world scenario in the DSF: (a) 5 targets are present in P4; (b) 5 targets
are present in both P3 and P5. The true position of the target is represented with a dot, its estimated
position with a cross, and the confidence interval with a grey circle around the estimated position.
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Table 13. SSF and DSF performances: real-world scenario.

Partition Number Resolution (ppcm) Cameras on Target

SSF DSF SSF DSF

mean
between
P2 & P3

mean 320.37 433.06 2.58 2.50
std 234.84 246.87 0.37 0.314
min 64.31 71.25 2 1.77
max 2147.16 2514.06 3.93 4

P1

mean 136.94 348.13 2.72 2.64
std 244.60 238.72 0.46 0.31
min 24.22 20.85 2 1.3
max 269.84 1200.11 4 3

P4

mean 74.38 157.40 2.43 2.18
std 40.78 70.01 0.61 0.37
min 26.99 36.84 1.5 1.27
max 269.17 378.41 4 3

P5

mean 143.93 335.43 3.35 3.37
std 82.02 197.68 0.62 0.37
min 29.80 39.58 2 2
max 732.08 1290.00 5 4.02

Table 14. SSF and DSF performance: most-crowded real-world scenario.

Partition Number Resolution (ppcm) Cameras on Target

SSF DSF SSF DSF

mean
between
P2 & P3

mean 253.45 320.09 2.58 2.52
std 42.53 46.89 0.14 0.06
min 179.11 208.7 2.33 2.39
max 360.30 427.27 2.85 2.64

P1

mean 174.11 271.9 2.9 2.7
std 58.28 51.59 0.15 0.12
min 101.49 150.9 2.52 2.37
max 410.27 461.92 3.14 2.97

P4

mean 124.13 293.68 2.66 2.63
std 17.89 94.03 0.17 0.1
min 99.75 150.9 2.26 2.45
max 165.76 440.27 2.95 2.85

P5

mean 146.31 251.95 2.86 2.69
std 27.98 49.9 0.16 0.14
min 101.49 150.9 2.53 2.37
max 189.61 374.65 3.14 2.97

6. Discussion

Accounting for the critical aspects of the proposed solution highlighted in the previous
sections, we discuss here some possible ruses to improve the system performance.

First of all, we observed that the parameter selection computational time linearly
depends on the number of targets, while the mean resolution at which the target is seen
results in being inversely proportional. To address the first issue, it could be convenient to
consider an adaptive rate for the PTZ parameter selection, namely to change the interval
between consecutive selection procedures. To do so, it is sufficient to estimate the duration
of the selection procedures’ process depending on the number of targets in a partition
and therefore to select an adequate number of steps ` for the prediction of the target state.
Indeed, when the partition is populated by a small number of targets, then a high PTZ
parameter update rate can be adopted, thus improving the network performance. Note
that the value of ` can be different for each partition, since the selection procedures can
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be carried out independently. Moreover, when the number of targets in the surveilled
environment is such that the mean resolution obtained on them with a heterogeneous VSN
is comparable to the one obtained with a static network, it could be useful to temporarily
switch to a predefined configuration for the PTZ cameras that allows covering the entire
area well, without trying to maximize the utility function.

Furthermore, we remark that, as the targets’ velocity increases, less zoomed configura-
tions are preferred to reduce the possibility of losing the target. An improvement rests upon
the introduction of an adaptive zoom based on the estimated velocity of the target, namely
a procedure entailing the reduction of the maximum zoom magnitude as the velocity
increases, allowing reducing the number of parameter value possibilities considered in the
selection process.

Another crucial aspect is the management of the target direction changes, constituting
the major source of error in the tracking process. To face this issue, it is possible to identify
specific zones in which these situations are more likely to occur, such as the corners of a
room or of the corridor, as well as the intersections between different rooms. When the
targets are in these zones, it could be useful to consider higher values for the variance of the
noise wj(t). This would allow dealing better with the uncertainty related to the changes of
direction, which in these areas are bound to happen with a very high probability. Another
more heuristic approach to this problem could be to consider only configurations with a
wide FOV for cameras framing targets crossing these critical zones that would therefore be
able to cover all the potential targets movements.

Finally, we emphasize that target occlusions represent still an open challenge in camera
network design and in the proposed solution. It could be possible to select the PTZ cameras’
parameters according to the potential detectable obstacles present in the environment.
Along this line, it would be sufficient to weight the contribution of each camera to a given
target utility function according to the occlusion information. In other words, once a visual
sensor realizes that a target is occluded by using its visual information jointly with the
target state estimation, it could lower its contribution to the utility function with respect to
the occluded target. In this way, the PTZ parameters of such a camera will be set by the
algorithm to focus only on the targets that are visible from its point of view.

One further possible refinement could be to optimize the number, position, and type
of cameras located inside the surveilled environment, for example by using the solutions
proposed in [7–9,27]. This would allow starting from more advantageous PTZ parameter
configurations as concerns the utility function maximization.

7. Conclusions

In this work, we proposed an original real-time surveillance and multi-target solution
for an indoor environment, based on the exploitation of a heterogeneous VSN composed
of both fixed and PTZ cameras. The environment topology was exploited to support the
implementation of a distributed approach and thus obtain a robust, flexible, and scalable
network. Indeed, the outlined structure allows separating the surveilled area into multiple
independent partitions that can be handled in parallel.

The described surveillance solution consists of two main parts: a distributed EKF
and a PTZ parameter selection algorithm that is based on a game theoretic approach. The
former aims at estimating and predicting the state of the targets moving in the surveilled
area. The latter, instead, given the predicted targets’ states, tries to maximize a utility
function with the aim of finding the best configuration for the dynamic cameras in the VSN.
Such a framework allows realizing a wide range of different and potentially conflicting
objectives by simply choosing the proper utility function terms and weights.

In the simulation part, we evaluated the performance of the designed solution consid-
ering a specific case where the objective was to obtain a tradeoff between high-resolution
views and good tracking ability. Multiple scenarios were investigated, by considering
different numbers of targets following multiple trajectories at different velocities. The
results confirmed the effectiveness of the solution in obtaining the desired tradeoff. In
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addition, it is possible to establish a linear relationships between the number of targets in a
partition and the computational times. Finally, the threshold (in terms of target number) at
which it is more convenient to temporarily switch to a static camera network configuration
was also individuated.
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