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Abstract: Most cross-domain intelligent diagnosis approaches presume that the health states in
training datasets are consistent with those in testing. However, it is usually difficult and expensive to
collect samples under all failure states during the training stage in actual engineering; this causes
the training dataset to be incomplete. These existing methods may not be favorably implemented
with an incomplete training dataset. To address this problem, a novel deep-learning-based model
called partial transfer ensemble learning framework (PT-ELF) is proposed in this paper. The major
procedures of this study consist of three steps. First, the missing health states in the training dataset
are supplemented by another dataset. Second, since the training dataset is drawn from two different
distributions, a partial transfer mechanism is explored to train a weak global classifier and two partial
domain adaptation classifiers. Third, a particular ensemble strategy combines these classifiers with
different classification ranges and capabilities to obtain the final diagnosis result. Two case studies are
used to validate our method. Results indicate that our method can provide robust diagnosis results
based on an incomplete source domain under variable working conditions.

Keywords: partial transfer learning; ensemble strategy; fault diagnosis; deep adversarial convolu-
tional neural network

1. Introduction

Rotating components play a significant role in system performance and are widely
applied in engineering machinery such as aerobat, engine, and gearbox systems [1,2]. The
failure of rotating components may cause unexpected downtime and economic losses.
Therefore, it is crucial to precisely identify and detect the fault states of rotating machin-
ery [3]. Recently, intelligent fault diagnosis has become a hotspot because it can analyze
vast amounts of measured data and provide intuitionistic diagnosis results [4].

Intelligent fault diagnosis has received a lot of attention in recent years from both
industrial engineers and academic researchers and has accomplished remarkable achieve-
ments [5]. For example, shallow machine learning techniques such as support vector
machine (SVM) [6] and random forest (RF) [7] have been studied. Deep learning methods
have been researched that can adaptively extract the fault features hidden in a collected sig-
nal, such as recurrent neural network (RNN) [8], convolutional neural network (CNN) [9],
and stack autoencoder (SAE) [10]. In addition, some variant models are being studied, such
as dilated CNN [11], CNN with capsule network [12], and multiscale CNN [13]. However,
the existing methods are developed based on statistics, which assume that adequate la-
beled samples are obtainable to train the models. In addition, these methods require the
data distribution of training and testing to be identical [14]. In actual industry settings,
obtaining a large amount of labeled data is unrealistic. Even if the labeled data can be
acquired, the aforementioned methods may fail to recognize the unlabeled data collected
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from another machine or under different working conditions due to the inconsistent data
distribution [15].

The proposal of transfer learning aims to solve this problem by promoting models
trained by labeled data from a relevant domain to the target fields [16]. The implementation
of transfer learning for machine fault diagnosis mainly includes two scenarios: (1) A few
target-domain-labeled data are available but are insufficient to support the model training.
Qian et al. [17] implemented bearing fault diagnosis under diverse working conditions
by transferring the parameters of SAE. Chen et al. [18] studied the use of transferable
CNN to recognize the fault states of rotary machinery by pre-training a 1D-CNN using
the source data and fine-tuning it with the limited labeled samples in the target domain.
(2) There are no available labeled target data to participate in the model training process.
One solution is to add a domain adaptation term to the loss function, such as the Maximum
Mean Discrepancy (MMD) [4,19,20], Wasserstein distance [21]. Another solution is to
implement the transfer learning by use of an adversarial network, in which case a feature
extractor aims to extract domain-insensitive features from the target and source domains
by adversarial training [22–24].

The existing cross-domain fault diagnosis methods can obtain superior results in the
target domain, but the precondition lies in the assumption that the health states in the
target domain are identifiable with the source domain. However, given the variation of
operations and unpredictability of the fault states, it is difficult to guarantee that the current
or future fault states have all been learned in the training phase. Therefore, the source
training dataset is usually incomplete, and there are some additional failure states in the
target domain. This causes negative transfer and misclassification in the testing stage.
These private failure state data can be collected from another component, but the working
conditions, such as speed, load, and frequency, are completely different from the source
domain and target test data. Figure 1 shows an example of such a situation. Dataset A is
collected from bearing 1 and contains five health states. However, during the test, more
fault states appeared due to the change in working conditions, resulting in seven health
states. The data for the two missing health states can be supplemented from dataset B.
Dataset B is collected from bearing 2 and includes four health states total. So, the data
source domain discrepancy between A and B also needs to be taken into consideration; this
creates some difficulties for the implementation of transfer learning diagnostic methods.
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Figure 1. Example of the situation of fault diagnosis with new health states.

This research studies a partial transfer ensemble learning framework (PT-ELF) to
solve the above problem. First, two incomplete source domain datasets collected from
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different components or under different working conditions are defined. Note that neither
of them contains all the health states present in the target domain data. They are used
to form a complete dataset in which all the health states are included. Then, a weak
global classifier based on the complete dataset and two partially strong classifiers based
on the deep adversarial network are established. Finally, since the classification ability
and classification range of classifiers differ, a particular ensemble strategy is designed to
combine these two strong partial classifiers and the weak global classifier, resulting in the
final diagnostic results. The main contributions of this research are summarized as follows:

(1) A partial transfer ensemble learning framework is designed to diagnose the fault with
incomplete training datasets under various conditions;

(2) To incorporate the classification ability of multiple classifiers into the PT-ELF model, a
particular ensemble strategy is designed to combine a weak global classifier and two
partial domain adaptation classifiers;

(3) Two case studies using rotor bearing test bench data and motor bearing data are
performed to validate and demonstrate the superiority of the proposed method.

The rest of this article is arranged as follows: Section 2 presents the basic theories. The
details of the proposed PT-ELF are given in Section 3. Section 4 validates the proposed
method and analyzes the results. Finally, the conclusion in Section 5 brings the study to a
close.

2. Basic Theory
2.1. Convolutional Neural Network

A standard CNN usually includes convolution, pooling, fully connected, and output
layers. In addition, batch normalization operation is usually used in CNN [25]. A con-
volution layer is combined with a pooling layer to form a convolution block, and a deep
architecture is built from several such blocks. A Softmax Regression layer usually serves
as the last layer and performs regression or classification [26]. In a convolutional layer,
the local receptive is adopted, in which only part of the input sample points connect to
each node. This operation rapidly decreases the number of parameters and the model
complexity. To identify the local features throughout the input sample, weights and biases
are shared between the hidden neurons in one convolutional layer [27]. The process in the
convolutional layer can be expressed as:

zl
n = ∑

k
xl−1

k ∗wl
n + bl

n (1)

where xl−1
k is the k-th node in l − 1 layer. * represents the convolution operation. wl

n and
bl

n represent the weight and the corresponding bias. Additionally, the activation function
ϕ(•) is given to transform the convolution layers nonlinearly, which can be denoted as:

cl
n = ϕ

(
zl

n

)
(2)

where cl
n represents the k-th nonlinear feature value in l − 1 layer. Sigmoid and ReLU

activation functions are commonly used in CNN. Sigmoid can normalize the input data to
between 0 and 1. ReLU can enhance the efficiency of the model training and decrease the
risk of gradient disappearance [28].

In a pooling layer, the down-sampling operation can decrease the dimension of the
features and enhance their robustness. Mathematically, a maximum pooling operation is
defined as:

poj = max{cj(i)}
i∈mj

(3)
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where cj represents the j-th location, and the poj is the output of the pooling. For classifica-
tion tasks, after several convolution blocks and fully connected layers, the Softmax function
is usually utilized to predict categories. The loss objective function can be expressed as:

H(r, p) = −∑
i

rilog(pi) (4)

where p represents the output probability, and r corresponds to the actual labels.

2.2. Deep Adversarial Convolutional Neural Network

Generally, a deep adversarial convolutional neural network (DACNN) consists of a
feature extractor Gf, a domain discriminator Gd, and a classifier Gy [29–31]. The feature
extractor, namely several convolution blocks, serves as a contestant in the DACNN. It can
be expressed as G f = G f (x, θ f ), which indicates that the features are extracted from the
input sample x with parameters θ f . In addition, a discriminator (binary classifier) is treated
as the opponent, which is expressed as Gd = Gd(G f (x), θd). Input the source and target
samples into the feature extractor, and the output features are further distinguished by the
discriminator Gd. The binary cross-entropy loss is taken as an objective function, which is
described as:

L(Gd(G f (xi)), di) = di log
1

Gd(G f (xi))
+ (1− di)× log

1
1−Gd(G f (xi))

(5)

where di denotes the binary variable for xi. Through the adversarial training between two
parts, the feature extractor Gf tends to extract the common features from the two types of
data and makes it hard to differentiate 0 or 1 as the discriminator. Hence, the model can
perform well on both the source and target datasets. The loss function is expressed as:

E(θ f , θd) =− (
1
n

n

∑
i=1

Li
d(θ f , θd) +

1
N − n

N

∑
i=n+1

Li
d(θ f , θd)) (6)

where n and N − n represent the sample number of the source and target domain.
Additionally, all of the labeled samples should be supervised during training to ensure

the accuracy of the diagnosis in the adversarial procedure. Thus, a classifier is established
and is expressed as Gy = Gy(G f (x), θy) : RD → RL with parameters θy, in which L is
the number of classes. The cross-entropy loss is applied in the Softmax function and is
described as:

L(Gy(G f (xi)), yi)= log
1

Gy(G f (xi))yi

(7)

Adding Equation (7) to the objective function (6), the optimization objective can be
expressed as:

E(θ f , θy, θd) =
1
n

n

∑
i=1

Li
y(θ f , θy)− λ(

1
n

n

∑
i=1

Li
d(θ f , θd) +

1
N − n

N

∑
i=n+1

Li
d(θ f , θd)) (8)

where Li
y(θ f , θy) = L(Gy(G f (xi)), yi) and λ is a non-negative hype-parameter trade-off

for the losses of the discriminator. In the whole training procedure of the DACNN, the
optimization parameters θ f , θy, θd can be obtained by:

(θ̂ f , θ̂y) = argmax
θ f , θy

E(θ f , θy, θ̂d) (9)

θ̂d = argmax
θd

E(θ̂ f , θ̂y, θd) (10)
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The flowchart of the DACNN is displayed in Figure 2. By optimizing Equations (9) and (10),
the DACNN tends to train a feature extractor Gf that can extract suitable representations
from input samples that can be classified accurately by the classifier Gy but weakens the
ability of the discriminator Gd to differentiate which domain this representation is from. In
the phases of testing, the domain-insensitive features are extracted by the feature extractor
Gf and fed into the health state classifier Gy to identify the states immediately.
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3. The Proposed Method

This section describes the proposed method in detail. It mainly includes problem
formulation, the training of the three classifiers, and the classifiers’ ensemble.

3.1. Problem Formulation

Before implementing the proposed method, two incomplete source domain datasets A
and B are defined as shown in Figure 3. The source dataset A= {(xA

i , yA
i )}

nA
i=1 of nA labels

instances associated with |DA| classes and is drawn from distribution PSA. The source
dataset B= {(xB

i , yB
i )}

nB
i=1 of nB labels instances associated with |DB| classes collected

from another same-type component and is drawn from distribution PSB. The class label
spaces of A and B are denoted as DA and DB, respectively. The collection of different
components results in variations in the operating conditions (such as load, speed, etc.) in a
real industrial environment; this means that PSA 6= PSB. In addition, there must be some
shared health states contained in both source dataset A and source dataset B, which are
denoted as D = DA ∩ DB and shown in Figure 3. D̂A = DA\DB denotes the private label
space of the A and D̂B = DB\DA denotes the private label sets of B.
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However, in the testing stage of the actual machine fault diagnosis scenario, all possible
health states may appear. Therefore, the target domain dataset includes all health states; it
can be expressed as T= {(xT

i )}
nT
i=1 of nT unlabeled instances associated with |DT| classes

drawn from distribution PT. The DT represents the label sets of the target domain and
DT = DA ∪DB. In addition, the target domain distribution PT is different in source domain
distributions PSA and PSB.

This paper aims to establish a fault diagnosis model to realize fault diagnosis based
on incomplete source training data under different operating conditions.
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3.2. Classifier Training

This section describes the training procedure for the three classifiers (weak classifier
CW, classifier CA, and classifier CB) concretely.

First, a complete dataset C that contains all of the classes can be formed based on the
incomplete source datasets A and B, as shown in Figure 4. In the complete dataset C, the
sample in label space D̂A is from source dataset A, and the sample in label space D̂B is from
source dataset B. For the samples in shared label space D, a portion of them come from A,
and the rest come from B. Thus, the label space of dataset C is the same as T, and it includes
|DT| health states. Second, a standard CNN classifier CW is trained using the complete
dataset C. However, since the source domain datasets A and B are collected under various
work conditions, the samples in the dataset C are drawn from two types of distributions. In
addition, the data distribution in the testing set PT is different in PSA and in PSB. Therefore,
the classifier CW has poor classification ability for the target domain data. However, the
classifier CW has the ability to classify all health states.
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After the weak classifier CW is obtained, the test samples from the target domain
T= {(xT

i )}
nT
i=1 of nT unlabeled instances associated with |DT| classes are classified, and

the result is served as a pseudo-label to participate in the subsequent training. Target
domain samples whose pseudo-label is in DA are obtained to construct the target domain
training set AT. The samples whose pseudo-label is in DB are obtained to construct the
target domain training set BT. Thus, the datasets A and AT have the same label space DA,
and the datasets B and BT have the same label space DB.

Dataset A and AT have the same health states but draw from different distributions.
So, a DACNN model can be trained using the datasets A and AT. A feature extractor and a
classifier in this DACNN are combined to form a block, which is taken as classifier CA. The
classifier CA is constructed by a DACNN using domain adaptation techniques, so that it
has a strong classification ability for the unlabeled target domain dataset. However, the
classification range of strong classifier CA is limited to |DA| classes. After the training
of classifier CA is completed, classifier CB is trained in the same way. Similarly, the
classification range of CB is limited to |DB| classes.
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In the implementation process of the DACNN, the SELU activation function is used in
convolutional layers; its mathematical expression is expressed as Equation (11):

SELU(x) =λ

{
αex − α (x ≤ 0)

x (x > 0)
(11)

where the value of α is 1.6732, and the value of λ is 1.0507. The SELU activation function
can automatically normalize the sample distribution to 0 mean value and unit variance to
avoid the gradient exploding or disappearing. The activation function used in the fully
connected layer in the state classifier and domain discriminator is ReLU, and it is expressed
as Equation (12):

ReLU(x) =
{

0 (x ≤ 0)
x (x > 0)

(12)

In this way, three well-trained classifiers are achieved, including one weak global
classifier CW, one strong partial classifier CA, and one strong partial classifier CB. The
details of the three classifiers are listed in Table 1.

Table 1. Classification range and ability of the three classifiers.

Classifiers Range of Classification Ability of Classification

CA

DA
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Weak

3.3. Classifiers’ Ensemble

After the three classifiers are obtained, this section designs a particular ensemble
strategy to combine their results. The procedure for the ensemble strategy is presented in
Figure 5.

After inputting a testing sample x into the three classifiers, the classification result yW,
yA, and yB can be output from the three classifiers, which can be expressed as:

yW = CW(x)
yA = CA(x)
yB = CB(x)

(13)

If yW = yA ‖ yW = yB ‖ yA = yB is satisfied, the final result y can be obtained by
a majority voting strategy immediately. Otherwise, it means that the results of the three
classifiers are different from each other. In such cases, because the classifier CW is a global
classifier, yW is served as the reference standard. If yW ∈ DA is satisfied, that means that
the actual label of xmay be in DA. In this range, the classifier CA has perfect classification
ability, and thus yA is served as the final result. Similarly, if yW ∈ DB is satisfied, yB is
served as the final result. However, if yW ∈ D is satisfied, both the classifiers CA and CB
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have good classification ability in this shared range. In this case, y is determined according
to the output probability p in the Softmax layer of classifiers, and it can be expressed as:

y = yA i f pA = max(pA, pB, pW)
y = yB i f pB = max(pA, pB, pW)

y = yW i f pW = max(pA, pB, pW)
(14)

where the pA, pB, and pW represent the Softmax output probability of classifiers CA, CB,
and CW; max(·) is the maximum function.
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3.4. Architecture of the Proposed Method

The architecture of our method for fault diagnosis is presented in Figure 6, and the
process is summarized below.

(1) Collect original vibration signals from different components or under different work-
ing conditions, and convert them into frequency domain signals for subsequent model
training;

(2) Construct a complete dataset by combing these incomplete datasets, and train a weak
global classifier CNN;

(3) Classify the target domain data using the weak classifier to obtain the two target
domain training sets;

(4) Train two DACNN models using two source datasets and target domain training sets
to construct two strong partial classifiers;

(5) Design a particular ensemble strategy to combine the three classifiers and obtain the
final classification results.
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4. Experimental Verification

To validate the effectiveness of the proposed PT-ELF method, rotor and rolling bearing
experiments are designed. Note that the code for the proposed method is written in Pytorch
1.2 and runs with 16G RAM and a Core I5 10400F CPU.

4.1. Case 1
4.1.1. Rotor Experiment

Case 1 adopts the rotor dataset from Northwestern Polytechnical University. As shown
in Figure 7a, the experimental system is composed of a three-phase variable frequency
motor, single-span rotor shafting, torque speed sensor, rolling bearing seat, shafting load
plate, rubbing mounting bracket, platform bottom plate, radial loading device, coupling,
system control cabinet, and fault suite. A displacement sensor is mounted on the rotor test
bench to collect vertical vibration signals under a health state and six different fault states
as shown in Figure 8, and the sample frequency is 10,240 Hz. Figure 7b depicts the sensor
and single-span rotor shaft layout. The structural components are listed in Table 2.
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Figure 8. Six different fault states: (a) full annular rub; (b) blade crack; (c) bearing fault; (d) blisk
crack; (e) Shaft coupling fault; (f) Shaft crack.

Table 2. The structural components of the single-span rotor shafting.

No Component

1 Support bearing pedestal
2 Displacement sensor bracket
3 Friction assembly and bracket
4 Shaft
5 Casing friction support and blade disc
6 Test bearing pedestal
7 Worm gear and worm

The rotor vibration data are collected under three working load conditions of 0%, 20%,
and 40%. As detailed in Table 3, for each load, data from seven health states (including a
health state and six fault states) are used. The data in each state are divided into 300 samples,
with 80 randomly selected as tests and the remaining 220 used to train. Each sample, each
consisting of 800 data points, is used to verify the method proposed in this paper. Figure 9
shows the waveform of the original displacement signal and the spectral distributions of
each health state under 0% load. The left shows the spectral signal, and the right shows the
corresponding spectrum. The signals have a large amplitude of around 10–30 Hz, showing
relatively similar characteristics, which makes it hard to recognize the health states.

Table 3. Seven health states of the rotor.

Label Health States The Number of
Training/Testing Samples

0 Health 220/80
1 Full annular rub 220/80
2 Blade crack and bearing fault 220/80
3 Blade crack 220/80
4 Blisk crack 220/80
5 Shaft coupling fault 220/80
6 Shaft crack 220/80
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4.1.2. Results and Discussion

In this case study, two incomplete source datasets are constructed, as shown in Table 4.
The source dataset A contains five kinds of health states (states 1–5), and the source dataset
B contains four kinds of health states (states 4–7).

Table 4. Distribution of health states in two source domains and one target domain.

States
Source Domain Dataset A Source Domain Dataset B Target Domain Data

Data Labels Data Labels Data Labels

1
√ √ √

2
√ √ √

3
√ √ √

4
√ √ √ √ √

5
√ √ √ √ √

6
√ √ √

7
√ √ √

First, the source domain datasets A and B are mixed to form a training set that contains
all health states, which is used to train a weak classifier CW. The classifier CW has a
classification ability for all of the health states (seven kinds of health states). Second,
according to the classification results (the pseudo-label) of the weak classifier CW on the
target domain samples, two transfer models based on a DACNN are trained. They are
transferred from source domain dataset A and source domain dataset B to the target domain.
Thus, two strong classifiers CA and CB are trained. Finally, after classifying a test sample
by the classifiers CA, CB, and CW, three results are obtained and fused by the proposed
ensemble strategy described in Section 3.3.
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To demonstrate that our method is applicable to various operating conditions, five
test scenarios (test scenarios A1–E1) are designed to test the proposed method. As listed
in Table 5, the source domain A, source domain B, and target domain are served by the
collected dataset under different loads. In source dataset A, only five kinds of labeled
samples in states 1–5 are available. Similar to source domain A, in source dataset B, only
four types of labeled samples in states 4–7 are available. The test data in the target domain
contain all seven kinds of unlabeled samples in states 1–7.

Table 5. Five different test scenarios.

Test Scenarios Source Dataset A Source Dataset B Target Data

A1 Load 0% (states 1–5) Load 20% (states 4–7) Load 40% (states 1–7)
B1 Load 0% (states 1–5) Load 40% (states 4–7) Load 20% (states 1–7)
C1 Load 40% (states 1–5) Load 20% (states 4–7) Load 0% (states 1–7)
D1 Load 20% (states 1–5) Load 0% (states 4–7) Load 40% (states 1–7)
E1 Load 40% (states 1–5) Load 0% (states 4–7) Load 20% (states 1–7)

The accuracies of the three classifiers (two strong partial classifiers and a weak global
classifier) and the proposed PT-ELF method in the five test scenarios are listed in Table 6,
and a bar diagram is shown in Figure 10a. Note that the accuracy of CA is tested by states
1–5, and the accuracy of CB is tested using states 4–7. The result of the weak classifier
CWand the ensemble result are tested using target domain test data that contain all of the
health states (states 1–7).

Table 6. Results of different classifiers.

Test Scenarios Strong
Classifier CA

Strong
Classifier CB

Weak Classifier
CW

Proposed
Method

A1 92.14% 98.58% 85.89% 91.08%
B1 95.15% 98.28% 92.14% 95.41%
C1 81.50% 99.68% 78.03% 83.75%
D1 99.50% 91.07% 89.07% 92.89%
E1 98.14% 96.56% 87.50% 90.48%

Average 93.29% 96.83% 86.52% 90.73%
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It can be seen from Table 6 that the two strong classifiers CA and CB have high accuracy
in the corresponding classification range, with averages of 93.29% and 96.83%. On the one
hand, this is because the two strong classifiers are trained by a domain adversarial network
DACNN, which can extract domain-insensitive features to classify. On the other hand, they
are just tested by partial health states. The result of the weak classifier CW is relatively
poor, with an average accuracy of 86.52%. This is because the data of the target domain and
two source domains are not uniformly distributed, leading to the decrease in classification
performance.

Out of five test scenarios, the result in scenario B1 is the highest at 95.41%; scenario C1
has the lowest accuracy at 83.75%, and the average is 90.73%. This is significantly higher
than the weak classifier CW, and maintains a high classification accuracy. This is because the
proposed ensemble strategy can cause the test sample to be classified by the corresponding
strong classifier as far as possible. It indicates that our method can still achieve good results
even under incomplete training data.

In addition, to prove the superiority of our method, relevant methods for a CNN and
a DACNN, trained by source dataset A and source dataset B, respectively, are used as
comparison methods (Method 1–4). The result is listed in Table 7, and a bar diagram of
the various methods is shown in Figure 10b. It can be observed that the average accuracies
of the CNN trained by source domains A and B are 58.87% and 55.27%, respectively. The
average accuracies of the DACNN trained by source domains A and B are 64.02% and
56.79%, respectively, which are significantly higher than the accuracy of the CNN. This is
because the DACNN can extract domain-insensitive features using adversarial training;
this restrains the model’s performance decrease caused by a distribution discrepancy and
further improves the accuracy of the model in the target domain. However, since the
source domain A is incomplete, a model (CNN or DACNN) trained by source dataset A
is unable to classify the testing samples whose actual label is in D̂B (states 6–7). Similarly,
a model (CNN or DACNN) trained by source dataset B is unable to classify the testing
samples whose actual label is in D̂A (states 1–3); therefore, the results of methods 1–4 are
poor compared to our method. The average accuracy of our method is as high as 90.73%,
which indicates that the proposed method has good classification ability for all health states
presented in the testing dataset in the target domains.

Table 7. Results of different methods.

Test
Scenarios

Method 1
(CNN

Trained by
Source A)

Method 2
(CNN

Trained by
Source B)

Method 3
(DACNN

Trained by
Source A)

Method 4
(DACNN

Trained by
Source B)

The
Proposed
Method

A1 62.86% 55.54% 64.82% 57.14% 91.08%
B1 61.43% 56.43% 65.71% 57.28% 95.41%
C1 53.04% 54.89% 55.71% 56.42% 83.75%
D1 57.86% 53.93% 70.71% 56.25% 92.89%
E1 59.14% 55.54% 63.14% 56.96% 90.48%

Average 58.87% 55.27% 64.02% 56.79% 90.73%

4.2. Case 2
4.2.1. Rolling Bearing Experiment

The rolling bearing vibration data utilized in case 2 are from Case Western Reserve
University [32]. As shown in Figure 11, the setup mainly consists of a loading motor, an
induction motor, and testing bearings. The vibration signals used in this case are collected
by an accelerometer installed near the drive end. As listed in Table 8, the vibration signals
were collected under four different loads (Load 1–Load 4). Each fault was artificially
implanted into the bearings with different severity levels from 0.007 to 0.028 inches in
diameter (1 inch = 25.4 mm). The details of the test bearing are listed in Table 9.
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Table 8. Four different loads.

Loads Values

Load 1 1797 rpm, 0 hp
Load 2 1772 rpm, 1 hp
Load 3 1750 rpm, 2 hp
Load 4 1750 rpm, 3 hp

Table 9. Details of the test bearing.

Parameters Values

Type 6205-2RS JEM SKF
The number of balls 9

Pitch diameter 1.537 inches
Ball diameter 0.3126 inches

Sampling frequency 12 (kHz)
Motor speed 1797/1772/1750/1730 rpm

The vibration data collected under four different loads are used to test the proposed
method. Each of them includes 12 health states, which include different failure locations
(shown in Figure 12), different failure orientations, and different failure severities. As
detailed in Table 10, each health state contains 300 samples, which consist of 400 continuous
data points. At random, 200 samples are selected to train, and the remaining 100 are
used to test. The raw vibration is under 1797 rpm (0 hp) (in the left column), and the
corresponding spectral distributions (in the right column) are shown in Figure 13. In terms
of raw vibration signals, the health state vibration amplitude is relatively small (Figure 13a).
The fault signals (Figure 13b–i) have an obvious impact. The spectral distribution contains
the fault frequency and the bearing natural frequency. In addition to the health signals,
the other fault vibration signals have a higher amplitude of around 3–4 kHz. It is still very
unrealizable to accurately distinguish the fault location, dimension, and orientation across
different working conditions with new fault states.
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Table 10. The details of the 12 operating states.

Labels Failure Location Failure
Orientation

Failure
Severities
(Inches)

The Number of
Testing/Training

Samples

0 Health - 0 100/200
1 Rolling element - 0.007 100/200
2 Rolling element - 0.014 100/200
3 Rolling element - 0.021 100/200
4 Inner race - 0.007 100/200
5 Inner race - 0.021 100/200
6 Inner race - 0.028 100/200
7 Outer race Center 0.007 100/200
8 Outer race Vertical 0.007 100/200
9 Outer race Center 0.014 100/200

10 Outer race Center 0.021 100/200
11 Outer race Vertical 0.021 100/200

The proposed method mainly studies the case in which only partial health state labeled
data are available in the source domain. To verify our method, we assume that source
domain dataset A only contains eight kinds of fault state labeled data, while source domain
dataset B contains seven kinds of labeled data. Among them, three categories overlap, as
shown in Table 11. In addition, all target domain data are unlabeled; these data contain
12 kinds of health states.

Table 11. Distribution of health states in source and target data.

States
Source Domain Dataset A Source Domain Dataset B Target Domain Data

Data Labels Data Labels Data Labels

1
√ √ √

2
√ √ √

3
√ √ √

4
√ √ √

5
√ √ √

6
√ √ √ √ √

7
√ √ √ √ √

8
√ √ √ √ √

9
√ √ √

10
√ √ √

11
√ √ √

12
√ √ √

4.2.2. Results and Discussion

Similar to Case 1, the source datasets A and B are first mixed to form a training set
containing all health states, and it is used to train the weak classifier CW. Thus, CW has a
classification ability for all of the health states, but the classification ability is weak.

In the following step, two DACNN models are trained based on source domain
datasets A and B to adapt target domain data. Then, two strong classifiers CA and CB can
be obtained. In each DACNN, the feature extractor Gf contains two convolution blocks.
Meanwhile, the classifier Gy contains a fully connected layer and output by a Softmax
function. The Gy(Gf (x)) in the DACNN is taken as the classifier. Finally, three well-trained
classifiers CA, CB, and CW with different classification capabilities and classification ranges
are integrated using the ensemble strategy introduced in Section 3.3 to obtain the final
diagnosis result.
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Figure 13. Waveform of raw signals and spectral distributions of the rolling bearing: (a) health;
(b) rolling element failure (0.007); (c) rolling element failure (0.014); (d) rolling element failure (0.021);
(e) inner race failure (0.007); (f) inner race failure (0.021); (g) inner race failure (0.028); (h) outer
race failure (0.007 Center); (i) outer race failure (0.007 Vertical); (j) outer race failure (0.014 Center);
(k) outer race failure (0.021 Center); (l) outer race failure (0.021 Vertical).
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To demonstrate that our method is applicable to different working conditions, five
test scenarios (test scenarios A2–E2) with incomplete data are used to test the proposed
method, as shown in Table 12. In source dataset A, eight kinds of labeled samples in states
1–8 are available, and in source dataset B, seven kinds of labeled samples in states 6–12 are
available. The target data, which contains 12 kinds of unlabeled samples in states 1–12, is
used to test. In the five test scenarios, source domain datasets A and B and the target domain
dataset are served by data collected under different loads. To indicate the superiority of our
method, two conventional deep learning methods based on CNN (method 1 and method
2) and two transfer learning methods based on DACNN (method 3 and method 4) are
used for comparison in five test scenarios; the results are listed in Table 13. Method 1 and
method 3 are trained using source dataset A, and method 2 and method 4 are trained using
source dataset B. In order to show the comparison results visually, the results bar diagram
for different methods is shown in Figure 14.

Table 12. Five different test scenarios.

Test Scenarios Source Dataset A Source Dataset B Target Data

A2 Load 1 (states 1–8) Load 2 (states 6–12) Load 3 (states 1–12)
B2 Load 3 (states 1–8) Load 4 (states 6–12) Load 1 (states 1–12)
C2 Load 2 (states 1–8) Load 3 (states 6–12) Load 4 (states 1–12)
D2 Load 1 (states 1–8) Load 2 (states 6–12) Load 4 (states 1–12)
E2 Load 2 (states 1–8) Load 3 (states 6–12) Load 1 (states 1–12)

Table 13. Results of different methods.

Test Scenarios

Method 1
(CNN Trained
Using Source

Dataset A)

Method 2
(CNN Trained
Using Source

Dataset B)

Method 3
(DACNN Trained

Using Source
Dataset A)

Method 4
(DACNN Trained

Using Source
Dataset B)

The Proposed
Method

A2 63.17% 57.13% 65.75% 58.33% 98.08%
B2 60.50% 58.25% 65.83% 58.08% 95.41%
C2 66.50% 58.08% 66.67% 58.33% 99.66%
D2 66.08% 58.14% 66.58% 58.33% 99.25%
E2 65.08% 56.08% 66.25% 57.17% 95.83%

Average 64.27% 57.53% 66.22% 58.05% 97.65%
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As shown in Table 13 and Figure 14, the average accuracies of methods 1 and 2
are 64.27% and 57.53%, respectively. The average accuracies of method 3 and method
4, based on transfer learning, are 66.22% and 58.05%, respectively. This is because the
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DACNN can solve the problem of cross-domain fault diagnosis well and enhances the
recognition accuracy in the target domain. However, since the source datasets A and B are
incomplete, neither of them contains all the health states presented in the testing data; the
fault classification accuracy is still relatively low even if the transfer strategy is used. The
accuracy of the method proposed can achieve 98.08%, 95.41%, 99.66%, 99.25%, and 95.83%
in five test scenarios, respectively. Accuracy is the lowest in test scenario B2, but it can still
remain at 95.41%. In test scenario C2, the classification accuracy is the highest at 99.66%.
The comparison results demonstrate that the proposed PT-ELF method exhibits satisfactory
cross-domain diagnostic ability with new health states.

5. Conclusions

This paper proposes a rotating machinery fault diagnosis method based on partial
transfer learning and ensemble learning. Unlike other existing cross-domain diagnostic
methods with the assumption of the same health states in the source and target domains,
the proposed method can provide a reliable diagnosis result in the target domain even
when the source domain is incomplete and only contains partial health states. As the
core of the proposed method, partial transfer learning can avoid the problem induced by
incomplete training data and train two classifiers with strong classification capabilities
for partial categories. Then, a particular ensemble strategy is designed to combine the
output of the three classifiers (a weak global classifier and two strong partial classifiers).
The effectiveness of the proposed method is validated on a rotor experiment and a bearing
experiment. After comparing with four related methods, results indicate that the proposed
method can achieve superior performance and provide a reliable diagnosis result based on
incomplete source domain under various working conditions.

In this preliminary study, the proposed method lies in the assumption that the missing
health states in the source domain training set can be obtained from another dataset or
another component. The unseen health states will be considered in our future research.
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vestigation, S.J.; Methodology, G.M.; Resources, Z.Z.; Software, S.J.; Validation, G.M. and K.N.;
Writing—original draft, G.M.; Writing—review & editing, K.N. and Y.L. All authors have read and
agreed to the published version of the manuscript.

Funding: The research is supported by the National Natural Science Foundation of China under
Grant 51805434 and 12172290 and Key Laboratory of Equipment Research Foundation under Grant
6142003190208.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that relate to the work reported in this paper.

Abbreviations

CNN convolutional neural network
DACNN deep adversarial convolutional neural network
MMD maximum mean discrepancy
PT-ELF partial transfer ensemble learning framework
RF random forest
RNN recurrent neural network
SAE stack autoencoder
SVM support vector machine
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