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Abstract: Gesture recognition plays an important role in smart homes, such as human–computer
interaction, identity authentication, etc. Most of the existing WiFi signal-based approaches exploit
a large number of channel state information (CSI) datasets to train a gestures classification model;
however, these models require a large number of human participants to train, and are not robust
to the recognition environment. To address this problem, we propose a WiFi signal-based gesture
recognition system with matched averaging federated learning (WiMA). Since there are differences in
the distribution of WiFi signal changes caused by the same gesture in different environments, the
traditional federated parameter average algorithm seriously affects the recognition accuracy of the
model. In WiMA, we exploit the neuron arrangement invariance of neural networks in parameter
aggregation, which can improve the robustness of the gesture recognition model with heterogeneous
CSI data of different training environments. We carried out experiments with seven participant
users in a distributed gesture recognition environment. Experimental results show that the average
accuracy of our proposed system is up to 90.4%, which is very close to the accuracy of state-of-the-art
approaches with centralized training models.

Keywords: IoT; federated learning; gesture recognition; CSI

1. Introduction

With the development of the respective technologies of the intelligent Internet of
Things, gesture recognition is attracting more and more attention in smart homes, such
as human–computer interaction, identity authentication, etc. Traditional gesture recogni-
tion approaches include computer vision-based technology [1–3], wearable device-based
technology [4–6], and so on. Although these approaches can realize gesture recognition
with high efficiency and low delay, they usually require special equipment, which is either
expensive or inconvenient to wear.

Recently, WiFi-based gesture sensing has been of wide interest, because it has the
advantages of low cost and easy deployment. Most of the existing approaches exploit
feature extraction from the channel state information (CSI) of WiFi signals and build a
gesture recognition model. For example, Mohammed et al. proposed a device-free WiFi-
based gesture recognition system [7], which can extract the duration of the gesture from
the CSI fluctuations generated by hand motion to recognize different gestures. TW (see [8])
removes noise from CSI by principal component analysis (PCA), and performs gesture
recognition by building a CNN model. Although these methods can perform gesture
recognition by CSI, none of them is environment robust, and the prediction accuracy will
be greatly reduced if a new user is predicted in a new environment. Zhang et al. proposed
Widar3.0, a WiFi-based zero-effort cross-domain gesture recognition system [9] which
establishes an environment-independent feature body-coordinate velocity profile (BVP).
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Due to differences in user behavior and the unbalanced distribution of user charac-
teristics, the accuracy of the model can only be guaranteed when a sufficient number of
users are involved in training. Furthermore, in a real Internet of Things (IoT) environment,
it is difficult to obtain enough user data to train a centralized model due to privacy and
transmission costs. Federated learning trains distributed models by collecting model pa-
rameters from numerous data providers, which can alleviate the problems of insufficient
data and data privacy [10]. However, there are differences in the distribution of WiFi signal
changes caused by the same gesture in different environments, and the traditional federated
parameter average algorithm seriously affects the recognition accuracy of the model [11].

To address the above problem, we propose WiMA, a federated learning-based gesture
recognition framework with WiFi signals. In WiMA, we train the BVP-based gesture
recognition model on the federated learning clients, using the permutation invariance of
the neural network to match neurons with similar feature extraction functions when the
server aggregates the parameters, and freeze the matched neurons in layers when clients
update the parameters. This allows a more comprehensive extraction of BVP features
of the same gesture for different users, thus improving the robustness of the model to
unbalanced data.

The main contributions of this paper can be summarized as follows:

• We propose cross-local gesture recognition based on matched average federation
learning, aiming to solve the problem of low accuracy of WiFi gesture recognition due
to limited user samples and distribution differentiation.

• To realize robust cross-environment gesture recognition, we use BVP and construct a
deep learning model to build a local model, and then fuse the parameters between the
local models by federated average algorithm, and use the fused parameters to replace
the local modeling parameters.

• We carried out experiments with seven participant users in a distributed gesture
recognition environment. Experimental results show that the average accuracy of our
proposed system is up to 90.4%, which is very close to the accuracy of state-of-the-art
approaches with centralized training models.

The rest of this paper is organized as follows: Section 1 briefly summarizes the overall
work; Section 2 details the current work related to WiFi gesture recognition; Section 3
describes the basic techniques; Section 4 explains the motivation for using the federated
parameter matched averaging algorithm; Section 5 details the WiFi signal-based gesture
recognition system with matched averaging federated learning; and the performance of the
proposed algorithm is verified in Section 6.

2. Related Work

In recent years, with the combination of IoT and AI, model-based indoor WiFi action
recognition has started to emerge. However, the data required for training models are often
private, and federation learning has emerged to provide data protection for distributed
model training. This section focuses on recent research related to WiFi action recognition
and federation learning.

2.1. WiFi Gesture Recognition

In [12], Ding et al. proposed a passive device-free fall detection system, based on WiFi
framework for smart homes, which collects disturbance signals caused by human motion
from smart homes, performs a discrete wavelet transform on the data to eliminate random
noise, and then uses it as an input to a recurrent neural network to identify fall states.
In [13], Palipana et al. proposed FallDeFi, which use the traditional short-time Fourier
transform (STFT) to extract the time–frequency features in the WiFi signal, and the features
that are resilient to environmental changes are selected by a sequential forward selection
algorithm with a high fall detection rate.

In [14], Venkatnarayan et al. proposed a WiFi-based multi-user gesture recognition
method (MiMu), which automatically determines the number of gestures to be performed
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simultaneously, generates virtual samples from a training sample of individual users,
and recognizes gestures from comparisons with virtual samples. In [15], Golestani et al.
proposed a wireless system for human activity recognition based on magnetic induction,
combined with machine learning techniques to detect a wide range of human motion.

In [7], Al-qaness et al. proposed a WiFi-based device-free gesture recognition system
(WiGeR), which obtained the CSI fluctuation trend generated by hand motion by filtering
out the noise using the fluctuation of channel state information (CSI) of WiFi signal caused
by hand motion. In [16], Shang et al. proposed a sign language recognition system
(WiSign) based on WiFi signals, which extracts the multi-path distortion fluctuations
caused by different hands and arms in WiFi signals from CSI. In [8], Wu et al. proposed
an opposite robust PCA (OR-PCA) approach, which can obtaine correlations between
human activities and their resulting changes in channel state information values, thus
eliminating the influence of the background environment on correlation extraction. In [17],
Li et al. proposed WiHF, which derives a domain-independent motion change pattern
of arm gestures from WiFi signals, rendering the unique gesture characteristics and the
personalized user performing styles. In [18], Gu et al. proposed a gesture recognition
system based on the channel attention mechanism and CNN-LSTM fusion model, which
uses CNN-LSTM to extract spatiotemporal features with the help of attention mechanisms.
In [19], Tang et al. proposed a one-dimensional parallel long short-term memory–fully
convolutional network (LSTM-FCN), which uses LSTM to extract temporal features in user
gesture recognition data, and FCN to extract spatial features of data to jointly solve the task
of user gesture recognition from two dimensions.

However, these methods for action recognition either require the use of expensive
equipment or are supported by large amounts of experimental data, and can only recognize
a small number of user actions or gestures.

2.2. Federation Learning

Federated learning was first proposed by McMahan et al. [10], where a server extracts
the parameters of a multi-user local machine learning model, and the data can be trained
collaboratively on a distributed model without leaving the local area; it can protect sensitive
user information. In [20], S et al. proposed an adaptive update algorithm for federation
learning model parameters, which solves for the optimal number of client updates by
comparing the training accuracy of centralized learning, analyzing the model convergence
bound, and relating the number of client local updates to the model accuracy, combined
with the constraints on the client resource consumption and the total number of communi-
cation rounds. However, traditional federation learning algorithms only weight the model
parameters uploaded by different clients and do not take into account the replacement
invariance of each neuron in the model, which often degrades the performance for scenarios
with unbalanced data distribution.

In [21], Wang et al. proposed the federated matching average algorithm (FedMA),
which constructs a shared global model by layer matchingand averaging the extracted
hidden elements with similar features. It can extract the data distribution difference charac-
teristics of different clients to deeply match the calculation units of different client models,
which can alleviate the problem of accuracy degradation caused by data distribution dif-
ferences. In [22], Tang et al. proposed a federated matched averaging algorithm with
information-gain-based sampling, which calculates the information gain of the parameters
before transmitting the data, reducing the number of parameters sent by the client through
the sampling algorithm.

Federated learning can well solve the privacy problem of multi-user data, and the
matching average algorithm can alleviate the heterogeneity problem of multi-user data.
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3. Background
3.1. CSI and BVP

In frequency division multiplexing (OFDM) systems, by using current commercial
Wi-Fi equipment, S subcarriers represented by complex values can be collected from each
packet. CSI can be defined as

H( fk, t) = |H( fk, t)|ej∠H( fk ,t), k ∈ [1, S] (1)

where |H( fk, t)| and ∠H( fk, t) represent the subcarrier fk as the center frequency and the
tth timestamp CSI values of the amplitude and phase, respectively.

The relative motion between the transmitter and the receiver causes Doppler frequency
shift (DFS) [23]. According to CARM, the root reason that leads to DFS is the change
of signal propagation path. The frequency shift which results from the reflected signal
generated can be written as

fD(t) = −
1
λ

d
dt

d(t) = − f
d
dt

τ(t), (2)

where lambda, f , and tau(t) correspond to the wavelength of the signal, the subcarrier
frequency, and the time of flight of the signal, respectively, and d(t) is the distance of the
NLOS path.

When the user performs a gesture, in addition to the motion of various body parts that
generate different velocities, these movers also cause relatively non-negligible motion of
the DFS. Assuming accumulation caused by Doppler frequency shift of the velocity vector
for ~v, in each timestamp, note that k transceiver link corresponds to the Doppler frequency
shift as Fk

D(~v):
Fk

D(~v) = ck
x~vx + ck

y~vy, (3)

where ck
x and ck

y are determined by the location of the corresponding transceiver link.
Derived from ~v, ~vx refers to the user’s face orientation, and ~vy refers to the vertical direc-
tion [24]. Therefore,ck

x and ck
y can be used to solve the possible values of ~vx and ~vy, calculate

Fk
D(~v), solve the optimal solution of ~vx, and ~vy with the measurement DFS isolated from the

CSI measurement [25]. Body-coordinate velocity profile (BVP) can be represented by ~vx and
~vy. Different users perform the same action with different patterns; taking push and pull as
an example, as shown in Figure 1, different users at different phases of the same gesture
have different power distribution of speed components and different execution duration.

3.2. Federated Learning

According to the definition of federated learning [10], assuming that there are N clients
participating in the shared model training, the training data owned by the i client are Di.
Assuming that w is the model weight parameter, the loss function of a single sample j is
f j(·); therefore, the loss function of the ith client is calculated as

Fi(w) =
∑j∈Di

f j(w)

|Di|
(4)

Among them, |Di| represents the size of the dataset Di. Then, the loss function of the
federated sharing model is

F(w) =

N
∑

i=1
|Di|Fi(w)

|D| (5)

Among them, |D| =
N
∑

i=1
|Di|, and note that F(w) cannot be directly computed without

sharing information among multiple nodes.



Sensors 2022, 22, 2349 5 of 14

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase1:start

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase2:pushing

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase3:stop

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase4:pulling

(a)

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase1:start

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase2:pushing

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase3:stop

-1 0 1 2
Vx(m/s)

-1

0

1

2

V
y(

m
/s

)

phase4:pulling

(b)
Figure 1. BVP series for different users. (a) BVP series of user1. (b) BVP series of user2.

The training process of federated learning is shown in Figure 2. The server collects the
model parameters uploaded by each client in each iteration, and then distributes them to
each client after weighted averaging to complete the update of local model parameters.
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client_1 client_2 client_3

w1 w2 w3

server

w(t)

Figure 2. Federal learning framework.

4. Analysis and Motivation

In recent years, user gesture recognition technology based on WiFi signals has been
widely used in the field of IoT, such as smart homes. Existing gesture recognition methods
all require a huge amount of data support. With the help of complex deep learning and
other model structures, when the number of participating users in the training set is
sufficient, high accuracy can be achieved in the prediction of new users [26,27]. However,
in real scenarios, it is difficult to gather enough users to collect enough training data, or the
labor and transmission costs of collecting data are higher than the value it can bring. In this
context, the recently emerging concept of federated learning may bring new opportunities.
Federated learning allows multiple users to collect data locally, and jointly train a common
global model by transferring parameters, and without worrying about data transportation
costs and privacy leakage.

However, whether federated learning can use data generated by users scattered in
different regions to train models with high enough accuracy to predict new users has not
yet been verified. To verify the performance of federated learning in gesture recognition
application scenarios with different distributions of multi-client user ratios, we carried out
the following analytical experiments, and the data and models required for the experiments
are detailed in Section 6.

We first studied the relationship between the model accuracy and the number of users.
The results are shown in Figure 3a. Within a certain range, the model accuracy increases
with the increase of the number of users. When the total number of users reaches seven,
the model accuracy can exceed 0.9, which can meet the needs of most scenarios. In reality,
very few families have seven people.

Then we consider the distributed scenario, disperse the previous seven users into two
rooms (two client executables), divide their data into training set and test set first, and then
gather them together. This is the difference from the previous experiment, and we then
observe the respective test accuracy of the two rooms. The results are shown in Figure 3b.
Similar to the single-room centralized scenario, when the total number of users in two
rooms reaches seven, their respective model accuracy can reach 0.9.
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Figure 3. Different method comparison.

Finally, we verify our conjecture using FedAvg, a classic algorithm for federated
learning. The two rooms each represent a client that learns the model on the local training
set, and an additional server is responsible for fusing their model parameters. The result is
shown in Figure 3c: as the number of users increases, the accuracy of room2 can exceed
0.9, while the accuracy of room1 decreases after reaching a certain value. According to
the description in Reference [21], this is caused by the data heterogeneity in the local data
of two room users. This result shows that FedAvg is difficult to adapt to the complex
data structure. When the user’s local data are biased, the server-side global model may
perform well, while the user’s local model performs differently. The reason is that FedAvg
simply weights and averages the local model parameters of each user to achieve overall
high accuracy, while ignoring the differences in the characteristics of each local model for
its data.

Therefore, we are motivated to use the permutation invariance of neural networks
to further search and match the model parameters of individual users by combining
neurons with the same feature extractor and encoding the respective differentiated neurons
for normalization.
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5. Design

To train an efficient client federated learning model, we divide the WiMA system into
four blocks (as shown in Figure 4), CSI preprocessing block, BVP normalization block,
model building block, parameter fusion block, and gesture recognition block.

CSI
Collection

Select Antenna

Noise Removal

DFS Spectrum Extract

BVP 
Generation

Model 
Building

Parameter 
Fusion

Room1

Cloud

Room2

CSI preprocessing

BVP 
Normalization

CSI
Collection

Select Antenna

Noise Removal

DFS Spectrum Extract

BVP 
Generation

CSI preprocessing

BVP 
Normalization Model 

Building

Local 
parameters

Local 
parameters

Matched 
parameters

Matched 
parameters

Local 
dataset

Test data

Local 
dataset Train 

data

Train 
data

Test data

Predict 
Gesture

Predict 
Gesture

Figure 4. WiMA system architecture.

The CSI preprocessing block extracts DFS from collected raw CSI measurements,
and generates BVP from the DFS spectrum. The BVP normalization block is designed
to standardize the BVP series data to generate local datasets. The model building block
is used to construct local models with training data from local datasets. The parameter
fusion block is used to match and fuse the parameters of local models and return match
parameters to local models. The gesture recognition block is responsible for distinguishing
different user gestures with local models with matched parameters.

5.1. CSI Preprocessing

According to IndoTrack [23], the transmitting antenna and the two receiving antennas
of the CSI amplitude conjugate multiplication are used to eliminate the quasi-static offset.
The band-pass filter is used to filter out-of-band noise, which can remove the random offset.
Therefore, in order to preserve non-zero DFS with gaining multipath components, two
receiving antennas need to be selected. Widance [28] studied the influence of different
antennas on the dynamic path by calculating the variance of CSI amplitudes for different
transmit–receive antenna pairs, and the two receive antennas with larger variance in the
transmit–receive pair are selected to describe the user-induced dynamic components, which
can be used to extract the DFS spectrum and generate the BVP.

5.2. BVP Normalization

For the obtained BVP series, we need to normalize the BVP series. Durations of
different BVP series samples are not uniform, so it is necessary to upsample, fix the duration
of all samples, and normalize all elements in the BVP series. In this way, it can be ensured
that the BVP series is only related to user gestures.

5.3. Model Building

The clients use different local datasets to train a model with the same structure, and
the cloud collects local model parameters for parameter fusion. Each BVP series data can
be regarded as a picture sequence, which consists of pictures depicting the distribution
of velocity components. Each BVP profile describes the energy distribution of the user
performing a certain gesture. We use a convolutional neural network (CNN) as a spatial
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feature extractor, which can automatically learn parameters and features for complex
image problems.

Furthermore, since the BVP series has temporal features, we introduce a recurrent
neural network (RNN) to extract such dynamic temporal features. Common models of RNN
usually have long short-term memory (LSTM) and gated recurrent unit (GRU). Compared
with LSTM, GRU can use fewer parameters and obtain fairly accurate results, so we use
GRU to characterize BVP timing.

As shown in Figure 5, the complete network structure of the local model is two 3 × 3
convolutional blocks, a 2 × 2 maximum pooling layer, and two fully connected layers for
each BVP profile. The GRU block is then input and the GRU output is expanded, and
a dropout layer is introduced to prevent the model from overfitting. Then, the input is
extended to the fully connected layer classifier, and, finally, the softmax classifier based on
the cross-entropy loss function obtains the prediction result.

… G
RU

D
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18x18x16 16x16x1620x20x1 8x8x16 1x1024 1x128 1x64

3x3 convolutions

3x3 convolutions

2x2 m
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D
ropout Softmax

flatten

Figure 5. Local model structure.

5.4. Parameter Fusion and Gesture Recognition

For the parameters trained by local models, we propose a federated matching algo-
rithm, whose core is to introduce a permutation matrix to realize the permutation invariance
of neurons in the neural network. The simplest single-layer fully connected network can be
formulated as y = ∑L

i=1 W2,iσ(< x, W1,i >), and L is the number of neurons in the hidden
layer. Therefore, there are total L! parameter arrangements for W1, W2. Further,

Y = σ(xW1)W2 = σ(xW1Ω)ΩTW2, (6)

where Ω is any L × L permutation matrix. For two of the same size datasets, Xj, Xj′ ,
weight is obtained by training for W1Ωj, Ωj

TW2 and W1Ωj′ , Ωj′
TW2. Obviously, most likely

W1Ωj 6= W1Ωj′ and (W1Ωj + W1Ωj′)/2 6= W1Ωj for any Ω. Therefore, the first thing to
restore replacement is (W1ΩjΩj′

T + W1Ωj′Ωj′
T)/2 6= W1. Suppose Wjl is the lth neuron

learned on dataset Xj, θi represents ith neuron in the global model, and c(·) is defined as an
appropriate similarity function between a pair of neurons. The permutation optimization
problem can be defined as follows:

min
τ

j
li

L

∑
i=1

∑
j,l

min
θi

τ
j
li · c(Wjl , θi), s.t. ∑

i
τ

j
li = 1∀j, l; ∑

i
τ

j
li = 1∀i, j (7)

Ωjli
T = τ

j
li and the weight of a specific provide j th local Wj,q, Wj,2

J
j=1 provided by J

local sides, so we calculate the federated neural network weights W1 = 1
J ∑j Wj,1Ωj

T and

W2 = 1
J ∑j Ωj′

TWj,2.
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In order to solve the constraint problem involved in Equation (7), we apply Hungarian
matching algorithm and BBPMAP algorithm. This involves a basic concept in the field
of deep learning—weight space symmetry—whereby a neural network with multiple
latent variables will have multiple local minima, and equivalent models can be obtained
by exchanging the positions of the latent variables with each other. According to this
symmetry, any given neural network, which differs in many variations only in the order
of the parameters, constitutes a practically equivalent local optimum. Since the data for
multi-user gesture recognition are often heterogeneous (non-IID), simply averaging the
local model parameters for each user as a whole makes it difficult to effectively extract the
variability of each user’s local data, thus reducing the accuracy of the user’s local model.

To solve this problem, the server first collects the weights of the first layer from the
client, and performs similarity matching and averaging on the neurons in this layer of each
client to obtain the first layer weights of the federated model. The server then broadcasts
these weights to the client, freezes the parameters of the matched layers, and trains all
successive layers in the same way. This process is then repeated to the final layer, where a
weighted average is applied to each client’s data based on their class proportions.

6. Experiment Results

This section verifies the performance of the proposed algorithm.

6.1. Basic Settings

We use the public dataset Widar3.0 [25], which contains 9 gestures by 16 users. We
select 6 gestures performed by 12 users in 2 rooms as a dataset. In WiMA, we assume two
rooms as two local sides. The user data in each room do not conform to the characteristics
of the independent and identical distribution. We randomly select one user locally as the
test user, and then randomly select a specified number of users from the remaining users as
the local training set. We implement WiMA in MATLAB and Keras.

6.2. Benchmark

• Widar3.0 : This benchmark is a reproduction of the method in the literature [9], which
is a centralized training method, which scrambles all users together to extract BVP
data, and divides the training set and test set according to the ratio of 7:3. The network
mechanism used is shown in Section 5.3 as well as Figure 5, which is the ideal situation
for gesture recognition under the limitation of a fixed number of users and can achieve
the highest theoretical accuracy. The final results may differ slightly from the original
results.

• Global: The method is to pool the data of seven standard users together and divide
the training and validation datasets in the ratio of 7:3.

• FedAvg: The method is to place seven users in two rooms, divide the training and
testing data on the datasets of the two rooms, and centralize the two tests on the
server-side. The server collects the local models obtained from training on the local
data of each room, performs a simple weighted average of the parameters to obtain a
new global model, and updates the model for each room.

6.3. Experimental Analysis

Overall accuracy: We tested our method on the server side and saved the result; the
result is shown in Figure 6. It can be seen that as the total number of users drops from
seven to two (the number of users in each room may be different), the gesture recognition
accuracy for new users drops from 0.9 to 0.79. This result is similar to the prediction result
of BVP data new users in the literature [9], which can prove the validity of this work.
The main reasons for the result are as follows: (1) Due to the different behavior habits of
each user, the generated BVP data is in the distribution of users. There are differences:
(2) The difference of user BVP can be compensated by the number of users; (3) The gesture
recognition method based on BVP has environmental robustness.
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Figure 6. Confusion matrix of WiMA under different number of users. (a) Users number = 7,
accuracy = 0.90. (b) Users number = 6, accuracy = 0.88. (c) Users number = 4, accuracy = 0.85.
(d) Users number = 2, accuracy = 0.79.

Comparison with other methods: The comparison of the accuracy of various methods
with the number of users in different rooms is shown in Table 1; in order to show the
results more intuitively, the same results are shown in pictures in Figures 7 and 8. When
the total number of users exceeds four, the accuracy of WIMA in both rooms can exceed
0.85, and when the number of users reaches seven, it reaches 0.9. Overall, WIMA can reach
the standard of Widar 3.0. Its overall accuracy is better than that of Global and FedAvg,
and, especially, the performance of FedAvg in room1 is much lower than that of WiMA
and Widar3.0.

Table 1. Comparison of the accuracy of various methods with the number of users in different rooms.

Room Room1 Room2

User Num 2 4 6 7 2 4 6 7

Methods

Widar3.0 0.80 0.846 0.88 0.91 0.8 0.84 0.88 0.91

WiMA 0.791 0.85 0.875 0.904 0.78 0.85 0.89 0.90

Global 0.83 0.84 0.86 0.88 0.83 0.84 0.86 0.88

FedAvg 0.78 0.85 0.87 0.82 0.76 0.83 0.85 0.88
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Figure 7. Comparison of WiMA algorithm with three methods—Room1.
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Figure 8. Comparison of WiMA algorithm with three method—Room2.

The main reasons are as follows: First, each neuron corresponds to a feature extractor,
the arrangement positions of model neurons of different clients (rooms) are different,
and the direct adoption of the overall average to update the model parameters may not
be the optimal arrangement order of neurons. WiMA adopts the similarity matching of
neurons layer by layer by freezing the model parameters, which can better capture the client
model similarity characteristics [21]. Second, FedAvg is a simple average of client model
parameters. If there is a distribution difference in the data of each client, it will extract
common features as much as possible, which will affect the accuracy of some clients [29].

7. Conclusions

We proposed a gesture recognition system WiMA which exploited a federated matched
averaging algorithm with WiFi signals. We focused on leveraging federated learning to
address the accuracy and robustness of models with limited user data participating in
model learning with different environments. Our experimental results illustrated that
WiMA can improve the model accuracy where the data distribution is differentiated with
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two participant rooms. Although we initially implemented a gesture recognition solution
for two rooms, our future work will continue to optimize the method and extend the results
to more users and more scenarios.
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