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Abstract: Emotion recognition using EEG has been widely studied to address the challenges associ-
ated with affective computing. Using manual feature extraction methods on EEG signals results in
sub-optimal performance by the learning models. With the advancements in deep learning as a tool
for automated feature engineering, in this work, a hybrid of manual and automatic feature extraction
methods has been proposed. The asymmetry in different brain regions is captured in a 2D vector,
termed the AsMap, from the differential entropy features of EEG signals. These AsMaps are then
used to extract features automatically using a convolutional neural network model. The proposed
feature extraction method has been compared with differential entropy and other feature extraction
methods such as relative asymmetry, differential asymmetry and differential caudality. Experiments
are conducted using the SJTU emotion EEG dataset and the DEAP dataset on different classification
problems based on the number of classes. Results obtained indicate that the proposed method of
feature extraction results in higher classification accuracy, outperforming the other feature extraction
methods. The highest classification accuracy of 97.10% is achieved on a three-class classification
problem using the SJTU emotion EEG dataset. Further, this work has also assessed the impact of
window size on classification accuracy.

Keywords: arousal; classification; electroencephalogram; emotion; deep learning; valence

1. Introduction

Human emotions play a central role in decision making, social interaction, diagnosis
of mental conditions such as depression, etc. [1,2]. Traditionally, humans identify emotions
using facial expressions, audio signals, body pose, gesture, etc. [3]. In contrast, machines
cannot understand the feelings of an individual. In this context, affective computing aims to
improve communication among individuals and machines by recognizing human emotions,
thus making this interaction more accessible, usable, and effective [4].

Emotional experience is associated with physiological changes in the body. There-
fore, the knowledge of the physiological reaction of every emotion is essential to emotion
analysis [5]. Thus, research works have been conducted to recognize emotions using
physiological signals. The physiological signals [6,7] are internal signals, such as electroen-
cephalogram (EEG), electrocardiogram, heart rate, electromyogram (EMG), and galvanic
skin response (GSR). According to Cannon’s theory [8], the emotion changes are associ-
ated with quick responses in physiological signals coordinated by the autonomic nervous
systems. This makes the physiological signals not easily controlled and overcomes the
shortcomings of bodily expressions [7].

The advancement of brain–computer interface (BCI) devices and their ease of operation
has motivated research on emotion recognition using EEG signals. Some of the non-
invasive EEG devices are Emotiv Epoc, Emotiv Insight, Neurosky MindWave, InteraXon
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Muse, and OpenBCI. These devices are low-cost and portable, thus making EEG signals
highly accessible. These devices are accompanied by tools for various BCI applications as
well. The EEG signals are captured from individuals (or subjects) using the BCI devices
and analyzed using computers to identify the emotion class. At the heart of emotion
recognition lies the task of emotion classification. Emotion classification is the process of
distinguishing one emotion from another. Emotions are categorized based on two types of
models: categorical models and dimensional models. The categorical model categorizes
emotions into discrete classes, commonly anger, disgust, fear, joy, sadness, and surprise [9].
Based on facial expression, Ekman listed six basic emotions: happiness, anger, fear, sadness,
surprise, and disgust [10]. On the other hand, the dimensional emotion model suggests
that emotions can be placed in one or more dimensions rather than in categories. One of
the popular dimensional models is the Circumplex model, where emotions are placed into
two dimensions: valence (a continuum that varies from negative to positive) and arousal (a
continuum that varies from low to high) [11].

Considering the emotion models, various research works have been conducted to
trigger emotional events using images, music, audio-visual cues, etc., and subsequently
record the EEG signals from individuals. Some of the popular publicly available EEG
datasets prepared by applying audio-visual stimuli are DEAP [12] and SEED [13]. The EEG
signals from the datasets are used by machine learning models in order to learn how to
classify different emotions. Traditional machine learning approaches such as support vector
machine [14–18], linear discriminant analysis [19,20], quadratic discriminant analysis [21],
k-nearest neighbors [16,21–23], Naïve Bayes [20], feed-forward neural network [24], deep
belief network [25], multi-layer perceptron neural network [22], etc., are commonly used in
EEG-based emotion classification.

In this context, raw time-domain EEG signals are very complex to be handled by the
machine learning models as the signals are non-stationary and contaminated by artifacts.
Some of the significant physiological artifacts in EEG signals are eye movement, muscle
activity, and eye blinks. Various research works have been conducted to remove artifacts
from EEG signals [26]. Recently, automatic artifact removal techniques have gained much
popularity [27,28]. After removal of artifacts, the most important task is feature extraction.
Feature extraction methods are applied to reduce the complexity as well as the dimen-
sionality of input data to the learning models. Features are commonly extracted from
the delta, theta, alpha, beta, and gamma frequency bands. Some of the feature extraction
methods available in the literature are the asymmetry measure [16], power spectral den-
sity (PSD) [14], differential entropy (DE) [16], wavelet transform [22,29,30], higher-order
crossings [21], common spatial patterns [15], asymmetry index [31], differential asymmetry
(DASM), relative asymmetry (RASM), and differential caudality (DCAU) [25]. Most feature
extraction methods are manual and the selection of an appropriate method for emotion
classification is still a challenging task [32].

In recent years, research works on automatic feature extraction using deep learning
models have been explored in various problems such as speech recognition, vision sys-
tem, pattern recognition, etc. [33]. Convolutional neural networks (CNNs) have shown
tremendous capability in extracting spatial features from input data such as images, etc.
Various research works [34–39] claim that deep learning models have shown their abil-
ity in emotion classification using EEG over traditional approaches. The authors in [34]
proposed a feature extraction method that combines CNN and RNN. The CNN is used
to extract spatial features and RNN is employed to extract temporal features. Both the
feature vectors obtained from CNN and RNN are concatenated and given as input to the
learning model. Classification accuracy of 90.80% and 91.03% was achieved for valence and
arousal classification, respectively, on the DEAP dataset. In [35], raw EEG data are given
as input to a CNN architecture having 3D convolution kernels. The automated features
extracted using 3D-CNN result in arousal and valence classification accuracy of 73.1%
and 72.1%, respectively, on the DEAP dataset. Moon et al. in [39] proposed a CNN-based
approach for automated feature extraction. Three connectivity features, namely the Pearson
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correlation coefficient, phase-locking value, and phase lag index, are used to measure the
cross-electrode relationship. Each connectivity feature is transformed into a 2D vector
and given as input to different CNN models, such as CNN-2, CNN-5, and CNN-10, for
automated feature extraction. The authors claimed accuracy of 99.72% for valence classifi-
cation on the DEAP dataset using CNN-5 with phase-locking value matrices. The authors
in [38] proposed an automated emotion classification method using the CNN model on
time-domain and frequency-domain features.

In this work, a novel feature extraction method for emotion classification has been
proposed. The EEG signals are first segmented into segments of fixed window size, and
on each segment, DE features are calculated on five frequency bands. The method then
generates a 2D feature map, termed the asymmetric map (AsMap), from the DE features
obtained from an EEG segment. The AsMap features are then fed into a CNN for auto-
mated feature learning. The DE features give a measure of the randomness in the EEG
signal. The DE of an EEG segment is considered to be equivalent to the logarithm en-
ergy spectrum of a specific frequency band [16]. The mathematical aspects of DE have
been further discussed in Section 2.2.1. Other feature extraction methods such as DASM,
RASM, and DCAU are derived from DE features. DASM is the difference in DE features
on channels between two brain hemispheres. On the other hand, RASM is the ratio in DE
features on channels between two brain hemispheres. In DCAU, the difference between
the DE features on frontal and posterior brain regions is calculated. However, the AsMap
represents the difference between DE features between every channel pair in a 2D vector.
Thus, capturing all the possible inter-channel asymmetry in the spatial domain results
in more discriminating features compared to other methods such as DASM, RASM, etc.
Further, the windowing/segmentation process also provides time-domain resolution for
each AsMap. Thus, the AsMap captures both temporal as well as spatial features from all
brain regions. The proposed method has been tested on the SEED as well as on the DEAP
dataset and compared with other features such as DE, DASM, RASM, and DCAU. Different
classification scenarios have been tested on the proposed method.

The rest of the paper is organized as follows. In Section 2, the materials and meth-
ods used in automated feature extraction for emotion classification using the AsMap are
discussed. Later, in Section 3, the results obtained during the experiment are presented.
Section 4 provides a discussion of the contributions and the limitations of the proposed
method. Lastly, Section 5 gives the conclusions and future work.

2. Materials and Methods
2.1. Public Datasets
2.1.1. SJTU Emotion EEG Dataset (SEED)

Zheng et al. [25] prepared an EEG emotion dataset in the Center for Brain-Like Com-
puting and Machine Intelligence Laboratory by recording EEG signals. At the same time,
participants were subjected to audio-visual stimuli. A total of 15 participants, comprising
7 males and 8 females, were part of the experiment. The SEED dataset considers three
basic human emotions named positive, negative, and neutral. Positive emotion describes
a pleasant or desirable state of mind, ranging from interest to contentment. On the other
hand, a negative emotion depicts an unpleasant or unhappy state. Finally, the neutral
emotion is associated with the feeling of indifference, nothing in particular, and a lack of
preference. These emotions were elicited using 15 Chinese movie clips of length of around
4 min. Each trial of the experiment had 5 s indicating the start, followed by the presentation
of the movie clip. After completion of the movie, each participant was allotted 45 s for their
self-assessment, and lastly, a 5 s resting time was provided. The self-assessment involved
the following questions: (1) what did they feel after watching the movie clip? (2) is he/she
familiar with the movie clip? (3) have they understood the movie clip?

The EEG signals were captured using 62 electrodes placed according to the 10–20 system.
The SEED dataset contains two parts: the first part contains the processed EEG recordings
and the second part contains some extracted features. In the first part, the EEG recordings
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are down-sampled to 200 Hz, and EEG recordings containing artifacts such as EOG and
EMG were visually checked. The recordings seriously contaminated by EMG and EOG
were removed manually. In order to filter the noise and remove the artifacts, a bandpass
frequency filter from 0.3 to 50.0 Hz was applied. The dataset includes only the EEG captured
while watching the movie clip, with the rest eliminated. For the second part, each channel
of the EEG data was divided into same-length epochs of 1 s without overlapping. There
were around 3300 clean epochs for one experiment. Features such as PSD, DE, DASM,
RASM, and DCAU were computed on each epoch of the EEG data. The dimensions of
PSD, DE, DASM, RASM, and DCAU features obtained were 310, 310, 135, 135, and 115,
respectively. In order to further filter out irrelevant components, each feature vector was
further smoothed using conventional moving averages and linear dynamic systems, which
are then provided as separate feature vectors.

One of the limitations of the SEED is that it was prepared on very few participants.
Moreover, the annotation of the video clips with emotion classes was not done by the
participants. Thus, the participants’ assessments after watching the videos were not
considered for annotation in this dataset.

2.1.2. Database for Emotion Analysis Using Physiological Signals (DEAP)

Sander Koelstra et al. [12] prepared a multimodal dataset called DEAP containing EEG
and physiological signals. The dataset was prepared from the recordings of 32 participants
aged between 19 and 37 and had a balanced male–female ratio. Each participant was
presented with 40 videos having emotional content. The 40 videos were selected out of
120 music videos, which were collected from the website last.fm, having affective tags and a
manual procedure. The selection procedure for the videos involved a web-based subjective
emotion assessment interface. All the videos were of 1-min length and contained music
videos. EEG was recorded at a sampling rate of 512 Hz using 32 active AgCl electrodes
(placed according to the international 10–20 system). Thirteen peripheral physiological
signals, such as GSR, respiration amplitude, skin temperature, electrocardiogram, blood
volume by plethysmograph, electromyograms of Zygomaticus and Trapezius muscles, and
electrooculogram (EOG), etc., were also recorded.

The synchronization of the EEG with emotion data was done by first displaying
a fixation cross on the screen and asking the participant to relax for 2 min. After that,
40 videos of 1-min length were presented in trials to each participant, and before each trial,
a 2-s screen displayed the progress, and then a 5-s fixation cross was displayed to relax
the participant. It is very difficult to find markers in EEG signals for transition status in
emotions, as the transition status is highly subjective in nature. Therefore, the participant
ratings were used to mark the induced emotion.

The DEAP dataset contains the processed EEG recordings, which were further down-
sampled to 128 Hz, and the eye blink artifact was removed using blind source separation.
A bandpass frequency filter from 4.0 to 45.0 Hz was also applied. The data were averaged
to the common reference and they were segmented into 60-s trials and a 3-s pre-trial base-
line (out of the 5-s baseline recording). Moreover, the participant ratings were supplied
separately for valence, arousal, and dominance.

DEAP and SEED are the two most popular publicly available EEG emotion datasets.
Both the datasets used audio-visual stimuli for emotion elicitation. The DEAP dataset
has a greater number of EEG recordings compared to the SEED dataset as the numbers
of participants and videos are higher than in the SEED dataset. Unlike the SEED dataset,
the DEAP dataset recorded physiological signals apart from the EEG. However, the EEG
recordings of the SEED dataset have higher spatial resolution compared to the DEAP
dataset, as a higher number of electrodes were used in the SEED dataset to capture EEG
signals. The DEAP dataset used 40 different 1-min video clips to induce emotion in the
participants but SEED used 15 different movie clips of a maximum duration of 4 min. Lastly,
the SEED dataset used a categorical emotion model, whereas the DEAP dataset used a
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dimensional emotion model. The proposed feature extraction method was experimented
on both the datasets.

2.2. Proposed Methodology

This section discusses the methodology behind applying the deep learning technique
for automated feature learning from EEG data for emotion classification. The method
involves three steps as given below:

• Manual Feature Extraction;
• Generation of Asymmetric Map;
• Automated Feature Extraction.

2.2.1. Manual Feature Extraction

As EEG signals are complex and non-stationary, introducing EEG signals directly
for automated feature learning can lead to sub-optimal performance. Therefore, in this
work, DE features are extracted from the EEG signals. Considering an EEG signal from a
channel as a continuous random variable, DE gives the measure of the randomness in the
EEG signal. The DE of an EEG segment is considered to be equivalent to the logarithm
energy spectrum of a specific frequency band [40]. The DE equation on a random variable
is given as

h(X) = −
∫

X
f (x) log( f (x))dx (1)

To extract the DE features, the frequency spectrum of an EEG signal in a channel is first
obtained using a 256-point short-time Fourier transform (STFT) with a non-overlapping
Hanning window of 1 s. As different frequency ranges in EEG signals resemble different
brain states, various research works pre-dominantly subdivide the waveforms into fre-
quency bands such as delta, theta, alpha, beta, and gamma. Frequencies ranging from 1 Hz
to 3 Hz are named the delta band, which indicates a sleep state. The theta band comprises
frequencies ranging from 4 to 7 Hz and resembles a deeply relaxed state. The frequency
band 8 to 13 Hz is named the alpha band and indicates a very relaxed and passive attention
state. The beta band, comprising frequencies ranging from 14 to 30 Hz, resembles anxiety,
external attention, and an active state. Frequencies ranging from 31 to 50 Hz, named the
gamma band, represent a state of concentration and focus. The difference in the frequency
ranges at low and high frequency is attributed to the rhythmic patterns associated with
the brain states. The DE features are extracted for each frequency band in every epoch,
thus retaining the temporal characteristics. The DE features are further smoothed using
moving average in order to eliminate any unintended component introduced in the features.
Figure 1a gives a pictorial representation of the manual feature extraction process.

2.2.2. Generation of Asymmetric Map

After manual feature extraction, the next important step is to generate the AsMap.
Previous works have shown that the asymmetrical brain activity seems to be effective in
discriminating EEG signals induced by different emotions [41,42]. Here, the DE features of
each frequency band in n consecutive epochs in an EEG segment are grouped in fixed-sized,
non-overlapping windows, and we average the DE features under a window to form a
vector of size m. As there are 62 channels, we obtain a 62 × m vector for each frequency
band. Each column in the 2D vector further undergoes transformation to generate an
AsMap on the kth frequency band using Equation (2).

AsMap(i, j, k) = DE(i, k)− DE(j, k) (2)

Here, DE(i, k) represents DE features on the kth frequency band of the ith channel and
DE(j, k) represents DE features on the kth frequency band of the jth channel.
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(a)

(b)
Figure 1. Pictorial representation of the steps involved in (a) manual feature extraction and (b) gener-
ation of AsMap.

Normalization is also performed on the AsMap to transform the data in such a way
that each AsMap has distributions in a common scale from 0 to 1. The AsMap captures
the difference in DE between all possible pairs of channels, as shown in Figure 1b. In the
AsMap, the difference in DE features among all channel pairs gives a quantitative measure
of the low-level asymmetry in different brain regions irrespective of their spatial location.
For illustration, the AsMap of the gamma band for a slot in an EEG segment corresponding
to positive, negative, and neutral emotion in the SEED dataset is presented as grayscale
images in Figure 2.
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Figure 2. AsMap of gamma band on a slot corresponding to positive, negative, and neutral emo-
tion respectively.

2.2.3. Automated Feature Extraction

After obtaining the AsMap, we perform automated feature extraction on AsMaps of a
subset of frequency bands to obtain patterns in the asymmetry of different brain regions
across frequency bands. For this purpose, we use CNN on a subset of AsMaps to obtain
a 1D feature vector. The CNN model has two 2D convolutional layers with a kernel size
of 3 × 3 for spatial feature extraction. Further, each convolution layer uses the rectified
linear unit (ReLU) activation function. The use of the 3 × 3 kernel and ReLU activation
in this work is inspired by various models in the computer vision field. Initially, the first
convolutional layer has 32 feature maps, but in the subsequent convolutional layer, the
feature maps are halved to 16 feature maps. After each convolutional layer, we have a
max pooling layer that strides a two-dimensional filter of size (2 × 2) over each channel
of the feature maps and calculates the maximum or largest of the features lying within
the region covered by the filter. It reduces the dimensions of the feature maps generated
in the convolutional layer. The max pooling layer is followed by a dropout layer, where
we randomly shut down 25% of a layer’s neurons at each training step by zeroing out
the neuron values. Finally, the feature maps from the last max pooling layer are flattened
to obtain a 1D feature vector. Different layers of the CNN model used in this work are
presented in Figure 3.
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Figure 3. Different layers in the CNN model.

3. Results
3.1. Experimental Setup

During the experiment, an Acer Desktop with Intel Core i3 7th gen processor and
4GB RAM was used. Anaconda 3, which is a free and open-source distribution of the
Python and R programming language, was used to perform the scientific computing.
Python libraries such as Numpy, Pandas, and Scikit-Learn are some of the most important
libraries used for data handling during the experimentation. The proposed method for
feature extraction was tested on both the SEED and DEAP datasets. The experiment
conducted on the SEED dataset used the pre-extracted DE features. The DE features were
used to generate the AsMap. As EEG recording in the SEED dataset contains signals from
62 channels, the dimension of the AsMap is 62 × 62 × k for all frequency bands together.
Here, k is the number of frequency bands. As the SEED dataset presents three classes of
emotion (positive, negative, and neutral), a three-class classification problem on the SEED
dataset was formulated. The classification problem was formulated to classify between
positive, negative, and neutral emotions. Further, experiments were conducted on the
DEAP dataset, and AsMap features were extracted from the 32-channel EEG recordings.
The dimension of the AsMap features extracted from the DEAP dataset was 32 × 32 × k
for all frequency bands together. Based on the valence and arousal ratings provided
in the DEAP dataset, two different classification problems were formulated: two-class
classification (valence classification and arousal classification) and four-class classification.
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The two-class classification on valence was to classify between high valence and low valence.
Meanwhile, the two-class classification on arousal was to classify between high arousal and
low arousal. During the preparation of the DEAP dataset, participants provided a rating
from 1 to 9 for valence and arousal after watching each video. Based on the distribution
of the subjective ratings [12], these ratings were considered as an estimate for valence
and arousal. The classes were obtained in the following manner: the participants’ ratings
from 5.5 to 9 were categorized as the high-valence (HV) class and ratings from 1 to 5.5
were categorized as the low-valence (LV) class. Similarly, the participants’ ratings from
5.5 to 9 were categorized as the high-arousal (HA) class and ratings from 1 to 5.5 were
categorized as the low-arousal (LA) class. In the four-class classification problem, both
valence and arousal classes were combined together to classify four different classes of
emotion. The class labels for the four-class classification problem were high valence–high
arousal (HVHA), high valence–low arousal (HVLA), low valence–high arousal (LVHA),
and low valence–low arousal (LVLA).

The 1D feature vector obtained in the automated feature learning process was used to
train a fully connected neural network having two hidden layers with 512 neurons. Each
hidden layer used the ReLU activation function. The output layer had a number of neurons
equal to the number of classes, and the softmax activation function was used to classify the
different classes of emotion. For comparison, other feature extraction methods such as DE,
DASM, RASM, and DCAU were also used to train the classifier separately.

In order to analyze the proposed method on both the SEED and DEAP datasets, the
classification accuracy using AsMap+CNN features was compared with DE and other
DE-based features such as DASM, RASM, and DCAU. The features were obtained on
different frequency bands such as delta (δ), theta (θ), alpha (α), beta (β), gamma (γ), and
all frequency bands together (ALL BAND). Experiments were also conducted on varying
window sizes, where the window size was set to 3 s, 6 s, 12 s, 30 s, respectively.

3.2. Three-Class Classification on SEED

Table 1 presents the three-class emotion classification accuracy using different feature
extraction methods such as DE, DASM, RASM, DCAU, and AsMap+CNN on delta (δ),
theta (θ), alpha (α), beta (β), gamma (γ), and all frequency bands together (ALL BAND).
The proposed method outperformed all the DE-based feature extraction methods on delta
(δ), theta (θ), alpha (α), beta (β), gamma (γ), and all frequency bands together (ALL BAND).
The highest classification accuracy of 97.10% was obtained using AsMap+CNN on the γ
band with the use of a 3-s window size. It was also observed that the classification accuracy
obtained using all the other feature extraction methods remained between 93% and 96%
on the γ band. Further, the features on β and ALL BAND from all the feature extraction
methods resulted in classification accuracy above 91%, except for DE and RASM. It was
also observed that the classification accuracy using different feature extraction methods on
delta (δ), theta (θ), and alpha(α) remained below 70%.

Table 1. Three-class classification accuracy obtained using different feature extraction techniques on
frequency bands.

Method δ θ α β γ ALLBAND

DE 60.80% 47.41% 57.07% 88.09% 95.09% 88.28%
RASM 53.07% 49.56% 60.49% 88.53% 93.12% 90.62%
DCAU 59.79% 55.15% 64.02% 91.31% 95.12% 94.70%
DASM 57.44% 52.54% 63.58% 91.41% 95.87% 94.34%

AsMap+CNN 62.18% 56.20% 69.56% 93.99% 97.10% 96.25%
The window size was set to 3 s.
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The classification accuracy using AsMap+CNN on different frequency bands and
window sizes is presented in Figure 4. It can be observed that an increase in window size
has a negative impact on the classification accuracy. Using AsMap+CNN features on β, γ,
and ALL BAND, the classification accuracy remained above 85% for window sizes smaller
than or equal to 12 s. The classification accuracy obtained from features calculated on γ, β,
and ALL BAND showed linear degradation, and the accuracy remained above 75% until a
30 s window size. However, features obtained on delta (δ), theta (θ), and alpha (α) did not
show a linear degradation in accuracy. The figure also clearly illustrates that features on γ,
β, and ALL BAND had greater discriminating ability than those of other bands.
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Figure 4. 3-class classification accuracy on varying window size using AsMap+CNN features.

3.3. Two-Class Classification on DEAP

On the DEAP dataset, valence and arousal classification accuracy were analyzed on
different feature extraction methods. Table 2 presents the valence classification accuracy
obtained using different feature extraction methods on delta (δ), theta (θ), alpha (α), beta
(β), gamma (γ), and all frequency bands together (ALL BAND). In this experiment also, the
window size was set to 3 s. The highest valence classification accuracy was achieved on ALL
BAND using AsMap+CNN features, which was 95.45%. However, the classification accu-
racy achieved by using DASM features on ALL BAND was very close to the accuracy using
AsMap+CNN features. Further, the classification accuracy obtained by using DE, DASM,
DCAU, and AsMap+CNN on ALL BAND was higher than that obtained with features on
other frequency bands. In the β and γ bands, AsMap+CNN features generated the highest
classification accuracy compared with other feature extraction methods. However, in the δ,
θ, and α bands, the DE features yielded higher classification accuracy compared to other
features. Table 3 presents the arousal classification accuracy obtained using different feature
extraction methods on delta (δ), theta (θ), alpha (α), beta (β), gamma (γ), and all frequency
bands together (ALL BAND). The highest arousal classification accuracy was achieved on
ALL BAND using AsMap+CNN features, which was 95.21%. However, the classification
accuracy achieved using DCAU and DASM features on ALL BAND remained above 94%.
In comparison to valence classification, similar observations were made wherein the arousal
classification accuracy obtained by using DE, DASM, DCAU, and AsMap+CNN on ALL
BAND was higher than that obtained with features on other frequency bands. In the θ, β,
and γ bands, AsMap+CNN features generated the highest classification accuracy compared
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with other feature extraction methods. However, in the δ and α bands, the DE features
obtained higher classification accuracy compared to other features.

Table 2. Valence classification accuracy obtained using different feature extraction techniques on
frequency bands.

Method δ θ α β γ ALLBAND

DE 80.44% 86.57% 86.46% 74.52% 80.20% 86.87%
RASM 56.71% 56.48% 57.60% 74.19% 70.69% 56.24%
DCAU 70.68% 74.84% 72.35% 74.07% 74.78% 93.20%
DASM 72.59% 78.61% 78.43% 78.48% 80.74% 95.08%

AsMap+CNN 79.61% 85.64% 86.15% 86.83% 86.57% 95.45%
The window size was set to 3 s.

Table 3. Arousal classification accuracy obtained using different feature extraction techniques on
frequency bands.

Method δ θ α β γ ALLBAND

DE 82.01% 88.10% 87.78% 77.96% 80.65% 88.47%
RASM 57.55% 58.06% 64.08% 76.34% 74.49% 59.42%
DCAU 71.96% 75.90% 75.35% 75.27% 74.52% 94.60%
DASM 75.13% 81.03% 79.64% 79.31% 81.06% 94.17%

AsMap+CNN 81.38% 88.27% 87.24% 88.94% 89.00% 95.21%
The window size was set to 3 s.

The valence and arousal classification accuracy using AsMap+CNN on different
frequency bands and window sizes are presented in Figures 5 and 6, respectively. Both the
figures show a similar trend, where, with the increase in window size, the classification
accuracy decreases. Using AsMap+CNN features on ALL BAND, the valence and arousal
classification accuracy remained above 90% for window sizes smaller than or equal to 12 s.
The valence and arousal classification accuracy obtained showed linear degradation, and
the accuracy remained above 68% until a 30 s window size. Both Figures 5 and 6 clearly
show that AsMap+CNN features on ALL BAND together have greater discriminating
ability compared to other bands for valence and arousal classification.

3.4. Four-Class Classification on DEAP

In order to further test the capability of the AsMap+CNN feature extraction method,
a four-class classification problem was formulated using the valence and arousal classes
on the DEAP dataset. The four-class classification accuracy was also analyzed on other
feature extraction methods. Table 4 presents the four-class classification accuracy obtained
using different feature extraction methods on delta (δ), theta (θ), alpha (α), beta (β), gamma
(γ), and all frequency bands together (ALL BAND). In this experiment also, the window
size was set to 3 s. The highest classification accuracy of 93.41% was achieved on ALL
BAND using AsMap+CNN features. However, the classification accuracy achieved by
using DASM features on ALL BAND was 92.23%, which is close to the accuracy achieved
using AsMap+CNN features. Similar to two-class classification, the four-class classifica-
tion accuracy obtained using DE, DASM, DCAU, and AsMap+CNN on ALL BAND was
higher than that obtained with features on other frequency bands. In the β and γ bands,
AsMap+CNN features generated the highest classification accuracy compared with other
feature extraction methods. However, in the δ, θ, and α bands, the DE features obtained
higher classification accuracy compared to other features.
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Figure 5. Valence classification accuracy on varying window size using AsMap+CNN features.
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Figure 6. Arousal classification accuracy on varying window size using AsMap+CNN features.

The four-class classification accuracy using AsMap+CNN on different frequency bands
and window sizes are presented in Figure 7. Similar to the observations in two-class and
three-class classification, it was observed that the window size has a negative impact on
classification accuracy. Using AsMap+CNN features on ALL BAND, the classification
accuracy remained above 85% for window sizes smaller than or equal to 12 s. However,
the classification accuracy obtained on all frequency bands showed linear degradation,
and the accuracy remained above 55% until a 30 s window size. Figure 7 clearly shows
that AsMap+CNN features on ALL BAND together have greater discriminating ability
compared to other bands for complex classification problems having four classes.
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Table 4. Four-class classification accuracy obtained using different feature extraction techniques on
frequency bands.

Method δ θ α β γ ALLBAND

DE 70.23% 80.33% 80.89% 76.76% 79.31% 86.30%
RASM 30.97% 30.23% 47.15% 62.11% 59.11% 38.61%
DCAU 53.20% 62.71% 59.47% 58.87% 61.89% 90.48%
DASM 60.38% 69.65% 67.08% 67.57% 70.51% 92.23%

AsMap+CNN 67.86% 79.43% 79.15% 81.66% 82.16% 93.41%
The window size was set to 3 s.
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Figure 7. 4-class classification accuracy on varying window size using AsMap+CNN features.

4. Discussion

In this experiment, the proposed hybrid feature extraction method (AsMap+CNN)
outperformed other DE-based feature extraction methods in terms of classification accu-
racy. The proposed method was compared in competing scenarios where the window size
was varied from 3 to 30 s. The accuracy of classification using the features was tested on
different datasets and on a varying number of classes. On the DEAP dataset, AsMap+CNN
features from all frequency bands achieved the highest valence and arousal classification
accuracy of 95.45% and 95.21%, respectively. Further, experiments were conducted to
increase the difficulty level by formulating a four-class classification problem on the DEAP
dataset, and the highest classification accuracy of 93.41% was achieved on ALL BAND
using AsMap+CNN features. The highest classification accuracy of 97.10% was achieved
on the SEED dataset using AsMap+CNN features from the gamma band. One of the critical
findings of this work is that AsMap+CNN on the gamma band generated more discrimi-
native features than features from all bands together in classifying positive, negative, and
neutral emotions on the SEED dataset. This indicates that emotional experience has a higher
correlation with asymmetry in different brain regions on higher frequency bands. However,
on the DEAP dataset, it was observed that features on all bands together provided higher
classification accuracy than features on individual frequency bands. The DEAP dataset
was prepared on 32 EEG channels, compared to 62 EEG channels for the SEED dataset. The
features generated have a lower spatial resolution, and features on individual bands do
not provide classification accuracy above 90%. Thus, with the power of CNN in learning
hidden features, the classification accuracy increases by extracting hidden features from
the AsMap on all bands.
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In contrast to other feature extraction methods, the AsMap captures the asymmetry
among all the brain regions in a 2D vector. This work is the first attempt to generate
AsMaps using DE features and feed them into a CNN for feature engineering, to the best
of our knowledge. One of the limitations of this method is that the size of the AsMap
increases with the increase in the number of EEG channels, which introduces a higher
computational overhead on the CNN model. It was also observed that the classification
accuracy shows linear degradation with the increase in window size. This is due to
the fact that an increase in window size compromises the frequency resolution in STFT.
Moreover, the window size is fixed while passing through the entire frequency spectrum.
A viable solution to this is to use least-squares wavelet analysis (LSWA) or continuous
wavelet transform (CWT) instead of STFT for more accurate estimation of frequencies
and amplitudes [29,30]. In LSWA or CWT, the window size decreases as the frequency
increases, allowing one to capture the high-frequency components with short duration or
with varying amplitude over time or frequency. The investigation of a frequency-dependent
window length is subject to future work. The degradation in classification accuracy for
large window sizes can also be attributed to the combination of more than one emotion
feature in large windows. Investigation of the temporal features in the EEG data for a
particular window can be a viable solution to the degradation in classification accuracy
with an increase in window size.

This work highlights the importance of hybrid feature extraction in emotion classifica-
tion, as the accuracy of the classifier is directly dependent on the quality of features. The
results demonstrate that the hybrid method of manual and automated feature extraction
provides an advantage over the existing state-of-the-art feature extraction methods in
emotion recognition systems using EEG. The proposed method’s ability to classify dis-
crete emotions in a valence–arousal coordinate space provides scope for advancement in
EEG-based emotion recognition.

5. Conclusions

This work presented a deep learning approach for automated feature extraction for
EEG-based emotion classification. As CNNs have shown potential in image classification,
the DE features are transformed into a 2D feature vector called an AsMap. The automated
features obtained using the AsMap on the CNN model provide the highest classification
accuracy of 97.10%, using a 3 s window size. The AsMap+CNN for feature extraction
outperformed other feature extraction methods such as DE, DASM, RASM, and DCAU in
terms of classification accuracy. The AsMap+CNN features capture the spatial correlation
among different brain regions, thus resulting in higher classification accuracy. Results
also indicated that the gamma band features give higher classification accuracy than other
frequency bands on the SEED dataset. Further, experiments revealed that an increase in
window size results in lower classification accuracy.
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Abbreviations

The following abbreviations are used in this paper:

AsMap asymmetric map
BCI brain–computer interface
CNN convolutional neural network
CWT continuous wavelet transform
DASM differential asymmetry
DCAU differential caudality
DE differential entropy
EEG electroencephalogram
EMG electromyogram
EOG electrooculogram
GSR galvanic skin response
HA high arousal
HV high valence
HVHA high valence–high arousal
HVLA high valence–low arousal
LSWA least-squares wavelet analysis
LA low arousal
LV low valence
LVHA low valence–high arousal
LVLA low valence–low arousal
PSD power spectral density
RASM relative asymmetry
ReLU rectified linear unit
RNN recurrent neural network
SEED SJTU Emotion EEG Dataset
STFT short-time Fourier transform
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