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Abstract: Recently, indoor localization has become an active area of research. Although there are
various approaches to indoor localization, methods that utilize artificially generated magnetic fields
from a target device are considered to be the best in terms of localization accuracy under non-line-of-
sight conditions. In magnetic field-based localization, the target position must be calculated based on
the magnetic field information detected by multiple sensors. The calculation process is equivalent to
solving a nonlinear inverse problem. Recently, a machine-learning approach has been proposed to
solve the inverse problem. Reportedly, adopting the k-nearest neighbor algorithm (k-NN) enabled
the machine-learning approach to achieve fairly good performance in terms of both localization
accuracy and computational speed. Moreover, it has been suggested that the localization accuracy
can be further improved by adopting artificial neural networks (ANNs) instead of k-NN. However,
the effectiveness of ANNs has not yet been demonstrated. In this study, we thoroughly investigated
the effectiveness of ANNs for solving the inverse problem of magnetic field-based localization in
comparison with k-NN. We demonstrate that despite taking longer to train, ANNs are superior to
k-NN in terms of localization accuracy. The k-NN is still valid for predicting fairly accurate target
positions within limited training times.

Keywords: artificial neural networks; indoor localization; inverse problem; k-nearest neighbor
algorithm; magnetic field; optimization; real-time tracking

1. Introduction

Location-based services have become indispensable in daily life. This is primarily
owing to global positioning systems (GPS), whose performance has reached an unprece-
dentedly high level [1]. The significance of location-based services will increase in a
full-blown era of the Internet of Things (IoT) [2]. Although GPS effectively localizes objects
existing outdoors, it is not suitable for indoor localization since radio-wave propagation
is disturbed by buildings. Indoor localization techniques have been actively studied to
compensate for the limitations of GPS [3–7].

There are two main approaches for realizing indoor localization. One approach uses
radio waves [5–7]. Since radio waves can reach far points, it is possible with this approach
to obtain a large coverage area. A remarkable feature of radio waves is that they are
reflected by walls, floors, and obstacles. On account of this feature, it has been a severe
problem to improve localization accuracy with radio waves.

The second approach uses magnetic fields. The magnetic field-based approach is
further divided into two different methods. One method utilizes geomagnetic fields,
which are static fields [8–11]. The geomagnetic field-based method adopts fingerprinting
techniques and is conducive for covering relatively wide areas. To execute the geomagnetic
field-based localization, we must gather considerable amounts of data of the field strength
at various points of the target area in advance. Moreover, it is required to update the
magnetic field data since geomagnetic field patterns gradually change over periods of time.
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Since it is a tedious task to frequently gather the numerous data, establishing accurate
localization systems using geomagnetic fields is very tough.

The second magnetic field-based localization method utilizes artificially generated
magnetic fields, which are not static but time-varying fields [12–15]. Generally, the frequen-
cies used for this method are within low-frequency (LF) or high-frequency (HF) bands. A
remarkable feature of artificially generated magnetic fields is that the field patterns can be
easily calculated with reasonable precision. Owing to this feature, the tedious task involved
in the geomagnetic field-based method is no longer needed with the artificially generated
fields. The other feature of magnetic fields is that the interaction between the fields and
materials is much weaker than that between radio waves and materials, and this feature is
not only limited to artificially generated fields but also to geomagnetic fields. Owing to
these two features, the method involving artificially generated magnetic fields is best in
terms of localization accuracy in non-line-of-sight (NLOS) environments [4].

Localization accuracy is considered the most important aspect for location-based
services. Therefore, in this study, we treat localization techniques based on artificially gener-
ated magnetic fields. The only weakness of these techniques is that their coverage distance
is typically limited to less than 10 m, which is much shorter than that of radio waves. It is
due to the fact that artificially generated magnetic fields attenuate more steeply than radio
waves. Localization techniques that combine radio waves with a magnetic field-based
approach have been proposed to compensate for the weak point of artificially generated
fields [5,6]. Moreover, techniques for amplifying magnetic fields without increasing the
power consumption have also been investigated [16,17].

Typical localization systems that use artificially generated magnetic fields are com-
posed of multiple sensors placed at various positions within the target area. Magnetic fields
generated by a target device are detected by these sensors. The position of the target device
must be calculated using the magnetic field data detected by the multiple sensors. However,
this calculation is not trivial since it involves solving nonlinear inverse problems. Three
different methods are known for solving inverse problems in localization with artificially
generated magnetic fields.

The simplest method entails directly calculating the position of the target using closed-
form formulae [12]. The main advantage of this method is its short computational time.
It becomes possible with this method to establish real time location tracking of persons
and objects. However, the method is applicable only to systems having limited sensor
configurations in terms of numbers, positions, and their angles. Therefore, it is difficult to
flexibly design localization systems with the simplest method.

The second method solves optimization problems that are reduced from inverse prob-
lems. The conventional optimization method can be employed to predict the position of the
target from the detected signals by minimizing an appropriately constructed objective func-
tion [3,13,14]. An advantage of the optimization method is that the method can be utilized
for any sensor configurations. Therefore, the optimization method surpasses the closed-
form formulae method from a viewpoint of flexibility in the system design. However, it is
difficult to implement real-time tracking of moving targets with the optimization method
since it requires a much longer computational time. Moreover, since the optimization
method requires certain skills, it is not easy for beginners to obtain appropriate solutions
using the method. In fact, experienced engineers are often bothered about the problem of
local minima.

The third method involves the application of machine learning to solve the inverse
problems [18,19]. We have demonstrated that the computational time required for calculat-
ing the target position is significantly reduced by adopting machine learning. Moreover,
it has been shown that the prediction accuracy of the target position is improved by us-
ing machine learning instead of the conventional optimization method. Therefore, it is
expected that real-time tracking of moving targets is possible with high precision using
machine learning. Additionally, machine learning can be applied to any sensor configu-
ration, which is a significant advantage. Furthermore, even beginners can easily obtain
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appropriate solutions for inverse problems as many useful machine-learning tools are
becoming increasingly available.

Since there are many algorithms for machine learning, it is critical to select an algorithm
suitable for magnetic field-based localization. It has been demonstrated that we can predict
the target positions in reasonable accuracy within a short computational time by adopting
the k-nearest neighbor algorithm (k-NN). Furthermore, it is well known that artificial neural
networks (ANNs) exhibit excellent performance in various machine-learning applications.
It was also suggested that better prediction accuracy may be obtained with ANNs in
comparison with k-NN [20]. However, a performance comparison between these two
algorithms has not yet been reported.

In this study, we thoroughly investigated the effectiveness of ANNs for magnetic
field-based localization in comparison with k-NN. In Section 2, we formulate the in-
verse problems to be solved for realizing magnetic field-based localization. Moreover,
the machine-learning approach for solving inverse problems is also explained. In Section 3,
the performances obtained with the two different machine-learning algorithms, ANNs and
k-NN, are compared from various viewpoints. It was demonstrated that ANNs exhibit
better prediction accuracy, although they require a much longer training time in comparison
with k-NN.

2. Formulation of Inverse Problems

In this section, we describe the basic of calculation techniques required for magnetic
field-based localization and formulate the inverse problems to be solved by machine
learning [18,19].

2.1. Calculation of Artificially Generated Magnetic Fields

Figures 1 and 2 show a typical localization system that utilizes artificially generated
magnetic fields. Suppose that the target device having a transmitter (TX) is freely moving
inside the cubic space. Magnetic fields are generated from a single coil connected to the TX
and they are detected by magnetic field sensors (S1–S4) placed at four corners. Although
the four sensors are depicted in Figures 1 and 2 as an example, the number of sensors is not
limited to four. Furthermore, locations of the sensors are not limited to the corners. Our
machine-learning approach has no limitation regarding the number and location of the
sensors. In this study, however, we assume that four sensors are located at four corners of
the cubic space.
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Figure 1. A conceptual image of a localization system with artificially generated magnetic fields (Top
view). Magnetic fields generated by a TX are detected by multiple sensors (S1–S4) located at various
points of the target space. The position of the TX is calculated from the information of the magnetic
fields detected by the sensors.
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Figure 2. A three-dimensional (3D) drawing of a localization system with artificially generated
magnetic fields.

We also consider that the sensors can detect all components of the magnetic field
vectors B =

(
Bx, By, Bz

)
. In other words, each sensor is equipped with three receiving coils,

that are perpendicular to each other. Our objective is to calculate the position of the TX
based on the magnetic field information detected by the four sensors.

Magnetic field patterns generated inside the cubic space depend on both the position
and angles of the TX coil. Therefore, magnetic-field vector components detected by the k-th
sensor can be formally written as follows:

B(k) =

 B(k)
x

B(k)
y

B(k)
z

 =


B(k)

x

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
B(k)

y

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
B(k)

z

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
, (1)

where
(

x(t), y(t), z(t)
)

denote the position of the TX coil and
(

θ(t), ϕ(t)
)

represent the
direction of a vector normal to the TX coil in spherical coordinates. The superscript
“(t)” indicates that the symbols having “(t)” represent the physical quantities of the TX.
Hereinafter,

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
are referred to as “TX-state parameters” since they

represent the physical state of the TX.
The magnetic fields created at an arbitrary point (x, y, z) by the TX coil placed at a

coordinate origin can be calculated using the following equation [18,19]:
Bx

(
x, y, z, θ(t), ϕ(t)

)
By

(
x, y, z, θ(t), ϕ(t)

)
Bz

(
x, y, z, θ(t), ϕ(t)

)
 = µ0

4π
m

(x2+y2+z2)
5/2 ×

cos θ(t)

 3xz
3yz

2z2 − x2 − y2



+ sin θ(t)

 3xy sin ϕ(t) +
(
2x2 − y2 − z2) cos ϕ(t)

3xy cos ϕ(t) +
(
2x2 − y2 − z2) sin ϕ(t)

3z
(

x cos ϕ(t) + y sin ϕ(t)
)


,

(2)

where µ0 and m denote the vacuum permeability and dipole moment associated with the
TX coil, respectively. The dipole moment can be expressed by the parameters of an N-turn
coil attached to the TX as follows:

m = NIS, (3)

where I and S denote the current and area size of the TX coil, respectively.
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Note that the magnetic-field vector components detected by the k-th sensor can be
written in terms of the left-hand side of Equation (2) as follows:

B(k)
x

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
B(k)

y

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
B(k)

z

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
 =


Bx

(
x(k) − x(t), y(k) − y(t), z(k) − z(t), θ(t), ϕ(t)

)
By

(
x(k) − x(t), y(k) − y(t), z(k) − z(t), θ(t), ϕ(t)

)
Bz

(
x(k) − x(t), y(k) − y(t), z(k) − z(t), θ(t), ϕ(t)

)
, (4)

where
(

x(k), y(k), z(k)
)

denote the positions of the k-th sensor. Substituting Equation (2)
into the right-hand side of Equation (4), we can derive a useful formula to calculate the
magnetic-field vector components detected by the k-th sensor for any TX-state parameters
as shown below.


B(k)

x

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
B(k)

y

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
B(k)

z

(
x(t), y(t), z(t), θ(t), ϕ(t)

)
 = µ0

4π
m{

(x(k)−x(t))
2
+(y(k)−y(t))

2
+(z(k)−z(t))

2}5/2×

cos θ(t)


3
(

x(k) − x(t)
)(

z(k) − z(t)
)

3
(

y(k) − y(t)
)(

z(k) − z(t)
)

2
(

z(k) − z(t)
)2
−
(

x(k) − x(t)
)2
−
(

y(k) − y(t)
)2



+ sin θ(t)


3
(

x(k) − x(t)
)(

y(k) − y(t)
)

sin ϕ(t) +

{
2
(

x(k) − x(t)
)2
−
(

y(k) − y(t)
)2
−
(

z(k) − z(t)
)2
}

cos ϕ(t)

3
(

x(k) − x(t)
)(

y(k) − y(t)
)

cos ϕ(t) +

{
2
(

x(k) − x(t)
)2
−
(

y(k) − y(t)
)2
−
(

z(k) − z(t)
)2
}

sin ϕ(t)

3
(

z(k) − z(t)
) {(

x(k) − x(t)
)

cos ϕ(t) +
(

y(k) − y(t)
)

sin ϕ(t)
}





(5)

2.2. Solving Inverse Problems Using Machine Learning

Since the above formula has been obtained, it is easy to calculate
(

B(k)
x , B(k)

y , B(k)
z

)
from

the arbitrary TX-state parameters
(

x(t), y(t), z(t), θ(t), ϕ(t)
)

. It is a straightforward problem.

However, magnetic field-based localization requires the calculation of
(

x(t), y(t), z(t)
)

from(
B(k)

x , B(k)
y , B(k)

z

)
, and the calculation is not easy since it is a nonlinear inverse problem.

Solving the inverse problem is equivalent to finding a function F that satisfies

x(t) = F
(

B(1), B(2), B(3), B(4)
)

, (6)

where x(t) =
(

x(t), y(t), z(t)
)

. After observing Equation (5), it is hopeless to obtain the exact
form of F. Therefore, the next step involves constructing a function that can “predict” the
approximate values of the TX position based on the magnetic field information detected by
the four sensors. In equation form, the predictor function P can be expressed as follows:

x(p) = P
(

B(1), B(2), B(3), B(4)
)

, (7)

where x(p) =
(

x(p), y(p), z(p)
)

denotes predicted TX-position vector. It is emphasized with

the superscript (p) that x(p) is the predicted quantity and is not identical to x(t), which is a
true TX-position vector. Although x(p) is considered an approximation of x(t), we should
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note that x(p) is not completely equal to x(t). In the component representation, Equation (7)
can be written as follows: x(p)

y(p)

z(p)

 =


Px

(
B(1)

x , B(1)
y , B(1)

z , B(2)
x , B(2)

y , B(2)
z , B(3)

x , B(3)
y , B(3)

z , B(4)
x , B(4)

y , B(4)
z

)
Py

(
B(1)

x , B(1)
y , B(1)

z , B(2)
x , B(2)

y , B(2)
z , B(3)

x , B(3)
y , B(3)

z , B(4)
x , B(4)

y , B(4)
z

)
Pz

(
B(1)

x , B(1)
y , B(1)

z , B(2)
x , B(2)

y , B(2)
z , B(3)

x , B(3)
y , B(3)

z , B(4)
x , B(4)

y , B(4)
z

)
 (8)

Generally, regression analysis is an effective method for constructing P. It is possible
to construct P with reasonable accuracy through regression analysis by gathering sufficient
volume of training data. In equation form, the training data are expressed as follows:(

B(1), B(2), B(3), B(4)
)
7−→ x(t), (9)

where the left- and right-hand sides denote the input and desired outputs of P, respectively.
In the component representation, Equation (9) can be written as follows:(

B(1)
x , B(1)

y , B(1)
z , B(2)

x , B(2)
y , B(2)

z , B(3)
x , B(3)

y , B(3)
z , B(4)

x , B(4)
y , B(4)

z

)
7→
(

x(t), y(t), z(t)
)

(10)

Hereinafter, the training-data representation used in Equations (9) and (10) is referred to as
“linear representation”.

Generally speaking, it is often required to gather training data from a real world for
the regression analysis. However, for our purpose, measurements in the real world are
not required since the magnetic-field patterns formed by the TX coil can be calculated
by Equation (2) in reasonable accuracy. Actually, existing localization systems that use
artificially generated magnetic fields are based on the fact that the fields are governed by
Equation (2) [12–14].

Therefore, for our purpose, sufficient quantity of training data can be easily generated
by applying Equation (5) to various TX-state parameters. This is a straightforward proce-
dure. Presently, it is well known that machine learning is effective for regression analysis.
When machine learning works properly with a sufficient number of training data, we can
obtain a reasonable predictor function P that satisfies Equations (7) and (8).

Given that B(k) depends on x(t), θ(t), and ϕ(t), the predictor function can also be viewed

as a function of these variables. Subsequently, we introduce a new predictor function,
~
P

defined as

x(p) = P
(

B(1)
(

x(t), θ(t), ϕ(t)
)

, B(2)
(

x(t), θ(t), ϕ(t)
)

, B(3)
(

x(t), θ(t), ϕ(t)
)

, B(4)
(

x(t), θ(t), ϕ(t)
))

,
~
P
(

x(t), θ(t), ϕ(t)
)

.
(11)

It is reasonable to appraise the performance of the predictor function by the difference
between x(t) and x(p). Hence, we define an error distance function (EDF) as follows:

d
(

x(t), θ(t), ϕ(t)
)
, ‖x(t) −

~
P
(

x(t), θ(t), ϕ(t)
)
‖

2
, (12)

where the subscript “2” in the right-hand side of Equation (12) denotes that the EDF is
defined by the Euclidean distance between x(t) and x(p). Since the EDF represents the error
of the predictor function, the values of d decrease with improvements in the predictor
functions.
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2.3. Method for Generating Better Predictor Functions

When θ(t) = 0, Equation (2) can be simplified by using a spherical coordinate. Br(r, θ, ϕ)
Bθ(r, θ, ϕ)
Bϕ(r, θ, ϕ)

 =
µ0

4π

m
r3

 2 cos θ
sin θ

0

 (13)

Here (r, θ, ϕ) denote variables of the spherical coordinate system. Note that (θ, ϕ) are
different from TX-state parameters

(
θ(t), ϕ(t)

)
. It is understood from Equation (13) that

the amplitude of fields generated by a magnetic source is proportional to r−3. This is a
remarkable property of near fields generated by a magnetic dipole, which is nothing but a
current loop. In contrast, it is well known that the amplitude of radio waves is proportional
to r−1. More specifically, the spatial attenuation ratio of magnetic fields (60 dB/decade) is
much larger than that of radio waves (20 dB/decade).

In this study, we treat the magnetic near fields, whose attenuation ratio is 60 dB/decade.
Performances of the localization systems that use artificially generated magnetic fields
are governed mainly by the large attenuation ratio. When the TX moves proximity of a
sensor, the sensor detects a considerably larger signal level. Moreover, the variations in the
detected signal level also become very large. On the other hand, when the TX are existing in
the regions distant from a sensor, both the signal level and its variations become extremely
small. It was suggested that the prediction accuracy obtained with machine learning is
limited by these differences in the behavior of signal levels [18].

To solve this problem, an effective method for preprocessing training data has been
proposed [19]. The core idea of the method is to logarithmically transform the magnetic
field values in the training data. In the equation form, the transformation is written as
follows:

B̂(k)
i , sign

(
B(k)

i

)
log


∣∣∣B(k)

i

∣∣∣
max

(all training data)

{∣∣∣B(k)
i

∣∣∣}
, (14)

where i can be x, y, or z. Note that the positive/negative information of B(k)
i is encoded in

B̂(k)
i . Moreover, a one-to-one correspondence is satisfied between B(k)

i and B̂(k)
i [19]. The

preprocessed training data are then written as follows:(
B̂(1)

x , B̂(1)
y , B̂(1)

z , B̂(2)
x , B̂(2)

y , B̂(2)
z , B̂(3)

x , B̂(3)
y , B̂(3)

z , B̂(4)
x , B̂(4)

y , B̂(4)
z

)
7−→

(
x(t), y(t), z(t)

)
(15)

As with Equation (9), we can express Equation (15) in a simple form using vector notation.(
^
B
(1)

,
^
B
(2)

,
^
B
(3)

,
^
B
(4)
)
7−→ x(t) (16)

Hereinafter, the training-data representation used in Equations (15) and (16) is referred to
as “normalized-signed log (NSL) representation.” Accordingly, we denote the predictor
function generated by the training data in the NSL representation by Q. Subsequently, the
equations corresponding to Equations (7), (8), (11), and (12) can be written as follows:

x(p) = Q

(
^
B
(1)

,
^
B
(2)

,
^
B
(3)

,
^
B
(4)
)

(17)

 x(p)

y(p)

z(p)

 =


Qx

(
B̂(1)

x , B̂(1)
y , B̂(1)

z , B̂(2)
x , B̂(2)

y , B̂(2)
z , B̂(3)

x , B̂(3)
y , B̂(3)

z , B̂(4)
x , B̂(4)

y , B̂(4)
z

)
Qz

(
B̂(1)

x , B̂(1)
y , B̂(1)

z , B̂(2)
x , B̂(2)

y , B̂(2)
z , B̂(3)

x , B̂(3)
y , B̂(3)

z , B̂(4)
x , B̂(4)

y , B̂(4)
z

)
Qx

(
B̂(1)

x , B̂(1)
y , B̂(1)

z , B̂(2)
x , B̂(2)

y , B̂(2)
z , B̂(3)

x , B̂(3)
y , B̂(3)

z , B̂(4)
x , B̂(4)

y , B̂(4)
z

)
 (18)
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x(p) = Q

(
^
B
(1)(

x(t), θ(t), ϕ(t)
)

,
^
B
(2)(

x(t), θ(t), ϕ(t)
)

,
^
B
(3)(

x(t), θ(t), ϕ(t)
)

,
^
B
(4)(

x(t), θ(t), ϕ(t)
))

,
~
Q
(

x(t), θ(t), ϕ(t)
) (19)

d
(

x(t), θ(t), ϕ(t)
)
, ‖x(t) −

~
Q
(

x(t), θ(t), ϕ(t)
)
‖

2
(20)

3. Performance Evaluation of Machine Learning in Solving the Inverse Problems

In this section, the performance of predictor functions generated by machine learning
is thoroughly investigated. In this study, we adopted ANNs and k-NN as methods for
machine learning.

3.1. Conditions of Numerical Calculation

The scenarios and conditions of our investigation are shown in Figures 1–3. In this
study, we assume that the target (TX) exists inside a cubic space of length (2 m) × height
(2 m) × width (2 m). However, the dimensions of the cubic space are not fixed since the
scaling law holds in localization with artificially generated magnetic fields. Therefore, the
results obtained with the 2 m × 2 m × 2 m cubic space can be easily extended to cubic
spaces with arbitrary dimensions. For example, it is possible to obtain a predictor function
valid for a cubic space of length (4 m) × height (4 m) × width (4 m) by using the same
model without increasing training data. Details on this topic are discussed in [18].
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Figure 3. (a) x-y plane and (b) x-z plane sliced in the cubic space shown in Figure 2. The numerical
values are described in meters. In this case, the length of one side of the cubic space is supposed to be
2 m. TX positions used to calculate training data are indicated with black dots. The distance between
the two nearest dots is 0.10 m. TX positions used to calculate EDF are indicated using crosses. The
distance between the two nearest crosses is considered to be 0.17 m. The positions of the dots and
crosses do not coincide except for the coordinate origin.

What we should do first is to generate sufficient numbers of training samples in the
forms of Equations (10) or (15). Fortunately, we do not have to gather training samples
by cumbersome measurement in real systems. It is possible to obtain numbers of training
samples just by calculating B(k) for many different TX-state parameters using Equation (5).
The TX-positions chosen to calculate the training samples are indicated by black dots in
Figure 3a,b, depicting the x-y and x-z planes of the cubic space, respectively. The numerical
values in Figure 3 are in meter. Hence, the distance between the two adjacent dots is
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δx = δy = δz = 0.10 m. In this condition, the amount of TX positions for the training
samples reaches 193 = 6859. It should be noted that B(k) is dependent on both positions
and angles of the TX. Hence, we must calculate B(k) for various TX-angle sets

(
θ(t), ϕ(t)

)
for

each TX position. Here, we adopt δθ(t) = δϕ(t) = 11.25◦ to calculate the training samples
for different TX-angle sets. Therefore, the number of angle sets was 482. Hence, the total
number of TX states used for training data reached Ntraining = 6859× 482 = 3, 306, 038.

In this study, Wolfram Mathematica 12.0 was used to execute machine learning [18,19].
Mathematica includes highly automated functions related to machine learning. We used
the “Predict” command to generate predictor functions P and Q. The command can be
executed to automatically generate the predictor functions by inputting training data. We
also selected “Quality” as an option command of Mathematica for setting a performance
goal. Additionally, it is possible to select several algorithms for machine learning using
Mathematica. In this study, we selected “Neural Network” and “Nearest Neighbors” for
the algorithms and used a standard computer with Intel Xeon W-2223 and 64-GB RAM.

To evaluate generalization performances of predictor functions obtained by machine
learning, we must calculate the EDF values (d) for various TX-state parameters that were
not used for calculating training samples. The TX positions used for evaluating the gener-
alization performances are indicated by crosses in Figure 3. It can be confirmed that the
positions of the crosses do not coincide with those of dots, which are used for training.

3.2. Performance Evaluation of Predictor Functions

We calculated the EDF values and plotted them within x-y planes for three different
TX-state parameters to compare the performances of the predictor functions generated by
k-NN and ANNs, as shown below.(

z(t), θ(t), φ(t)
)
= (0 m, 0◦, 0◦), (0.34 m, 30◦, 30◦), (0.68 m, 60◦, 60◦) (21)

The results are presented in Figure 4. The predictor functions used for plotting Figure 4
are P, which were generated from the training data in a linear representation. Note that
the TX-state parameters in Equation (21) were not used for the calculation of the training
data. Therefore, the results plotted in Figure 4 exhibit the generalization performance of
the predictor functions generated by machine learning. The left and right columns indicate
the EDF values obtained using k-NN and ANNs, respectively. It was observed that, with
k-NN, the prediction accuracy is reduced in the vicinity of the four corners of the target
space [18,19]. Meanwhile, it was confirmed that the prediction accuracy was significantly
improved by adopting ANNs.

Figure 5 shows the EDF patterns obtained with the predictor functions Q, which were
generated from training data in the NSL representation. By comparing Figures 4 and 5, it is
evident that the prediction accuracy is improved for both ANNs and for k-NN by using
training data in NSL representation. However, it was observed that ANNs showed better
performance for both representations of the training data.

Although it has been demonstrated in Figures 4 and 5 that ANNs and NSL representa-
tion show better performances, quantitative assessments of the predictor functions have not
yet been carried out. Hence, we quantitatively evaluated the performances of the predictor
functions via a statistical approach. To do this, we calculated the EDF values at TX positions
indicated by crosses in Figure 3 and analyzed the statistical distribution of the values for
predictor functions generated from different combinations of the learning algorithms and
training-data representations. As shown in Figure 3, the distance between the two adjacent
crosses was 0.17 m (∆x = ∆y = ∆z = 0.17 m). The EDF values were calculated for various
angles (∆θ(t) = ∆ϕ(t) = 30◦) for each cross point. As a result, the number of TX states
used for the quantitative evaluation of the predictor functions reached 82,522. Since the
TX states used to generate the training samples were not included in the 82,522 states,
the statistical distribution of the EDF values reflects generalization performances of the
predictor functions.
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The statistical distributions of the EDF values are shown in Figure 6. It can be seen that
the predictor functions generated by ANNs exhibit better performance for both representa-
tions of the training data (NSL and linear). With regard to the training-data representations,
the NSL representation is superior to the linear representation, regardless of the learning
algorithms. Figure 7 illustrates the EDF values averaged over 82,522 TX states. The average
EDF value is denoted by dav. The benefits of using ANNs and NSL representation are again
confirmed by Figure 7.
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learning algorithms (ANNs/k-NN) and training-data representations (NSL/linear).
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Figure 7. Average EDF values obtained using four different combinations of the learning algorithms
(ANNs/k-NN) and training-data representations (NSL/linear).

It is also critical to investigate the relationship between the prediction accuracy and
the number of training samples, Ntraining. We plotted Prob(d < 0.1 m) and dav as functions
of Ntraining in Figures 8 and 9, respectively, to investigate the relationship. Since reducing

Ntraining is equivalent to reducing δx(= δy = δz) and δθ(t)
(
= δϕ(t)

)
, the simulations have

been executed for different combinations of
(
δx, δθ(t)

)
. It can be observed from these

figures that the prediction accuracy was improved by increasing Ntraining. Moreover, it
is expected that the prediction accuracy will be further improved by increasing Ntraining
except for the combinatorial use of ANNs and linear representation. In other words, the
situation of overfitting has not yet occurred for Ntraining = 3, 306, 038.
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predictor functions generated from four different combinations of the learning algorithms (ANNs/k-
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In real-world applications, signals detected by sensors are affected by noise and
irregularities of fabricated coils. Therefore, it is important to estimate the influences of
these factors on prediction accuracy. Here we first discuss the influences of noise.

Since the amplitude of received signals depends on TX-state parameters, it is valid to
define the reference magnetic-field amplitude for quantitatively discussing the influences
of noise. Thus, we introduce the reference magnetic-field amplitude defined by

Bref ,
∣∣∣B(k)

z (0, 0, 0, 0, 0)
∣∣∣. (22)

It is understood that Bref means the magnetic-field amplitude generated at the sensor posi-
tions by the TX directed toward z-axis at a coordinate origin. Note that Bref is independent
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of k when the sensors are located at the corners of a cubic space as shown in Figure 2. We
also define the signal-to-noise ratio (SNR) of sensors as

SNR [dB] , 20 log10

(
Bref
Bein

)
, (23)

where Bein denotes amplitude of equivalent-input noise associated with each coil of the
sensor. By considering the noise, the signal amplitude detected by the sensor can be
written as

B(k),real
i = B(k)

i

√√√√1 +

(
Bein

B(k)
i

)2

= B(k)
i

√√√√1 + 10−
SNR [dB]

10 ·
(

Bref

B(k)
i

)2

, (24)

where B(k),real
i and B(k)

i denote the amplitudes of detected signals with and without noise,
respectively.

Using Equation (24), we calculated the prediction accuracy as functions of the SNR.
The results for Prob(d < 0.1 m) and dav are plotted in Figures 10 and 11, respectively.
It is observed that noise immunity depends on training-data representations. For NSL
representation, the prediction accuracy is almost constant for SNR > 25 dB. On the other
hand, for linear representation, it is kept constant for SNR > 15 dB. It is interesting to see
that linear representation is superior to NSL representation in terms of noise immunity.
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Figure 10. Relationship between Prob(d < 0.1 m) and SNR for predictor functions generated from
four different combinations of the learning algorithms (ANNs/k-NN) and training-data representa-
tions (NSL/linear).

Next, we consider the influences of misalignment of receiving coils. In this study,
we suppose that each sensor is equipped with the three coils. Let us denote unit vectors
perpendicular to the three coils by nx, ny, and nz. It is obvious that nx, ny, and nz must
be parallel to x, y, and z-axes fixed to a target space, respectively. However, it is difficult
to align the coils so that nx, ny, and nz become completely parallel to the coordinate axes.
As shown in Figure 12, we consider the situation of the misalignment, where the wrongly
directing unit vectors are denoted by n′x, n′y, and n′z. For simplicity, let the error angle α be
common for all unit vectors. Moreover, we assume that n′x, n′y, and n′z are parallel to x-y,
y-z, and z-x planes, respectively. In this situation, the influences of the misalignment can be
written as  B(k),ma

x

B(k),ma
y

B(k),ma
z

 =

 cos α sin α 0
0 cos α sin α

sin α 0 cos α


 B(k)

x

B(k)
y

B(k)
z

, (25)
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where B(k),ma
i and B(k)

i denote amplitudes of the detected signals with and without the
misalignment, respectively.
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Figure 11. Relationship between average EDF values and SNR for predictor functions generated
from four different combinations of the learning algorithms (ANNs/k-NN) and training-data repre-
sentations (NSL/linear).
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Ideal vectors are denoted by nx, ny and nz. On the other hand, n′x, n′y, and n′z represent the unit
vectors that include angle errors.

Using Equation (25), we calculated the prediction accuracy as functions of α. The
results for Prob(d < 0.1 m) and dav are plotted in Figures 13 and 14, respectively. It is
observed that the predictor function generated from the combination of k-NN and NSL is
the most sensitive to α. The other three predictor functions show similar characteristics
against α. We can say that the influences of the misalignment are limited for α < 5 deg.
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Figure 13. Relationship between Prob(d < 0.1 m) and error angle for predictor functions gener-
ated from four different combinations of the learning algorithms (ANNs/k-NN) and training-data
representations (NSL/linear).
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Figure 14. Relationship between average EDF values and error angle for predictor functions gener-
ated from four different combinations of the learning algorithms (ANNs/k-NN) and training-data
representations (NSL/linear).

In addition to prediction accuracy, the computational speed is another critical aspect
that needs to be evaluated. Since one of the advantages of machine learning to the conven-
tional optimization method is the speed of predicting target positions, it is imperative to
evaluate the time required for the prediction with machine learning, which we denote as
Tpred. The relationship between Tpred and Ntraining is plotted in Figure 15. The following
three features can be observed in Figure 15.
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Figure 15. Relationship between the time required for predicting a TX position and the number of
training samples plotted for predictor functions generated from four different combinations of the
learning algorithms (ANNs/k-NN) and training-data representations (NSL/linear).

1. Tpred is almost independent of Ntraining;
2. Tpred is increased by approximately 1.5 times with ANNs in comparison with k-NN;
3. Tpred is increased by approximately 1.2 times with training data of NSL representation

in comparison with those of linear representation.

In terms of prediction accuracy, the best combination of the algorithm and training-
data representation is that of the ANNs and NSL. Fortunately, Tpred considered with the
best combination is kept less than 10 ms and is not drastically increased in comparison with
the other combinations. Therefore, real-time tracking is possible with the best combination.

Regarding the computational speed, another critical index is the time required to
generate a predictor function from training data, which we denote as Ttraining. Therefore,
we also investigated the relationship between Ttraining and Ntraining, which is plotted in
Figure 16. The following three features can be observed in Figure 16.
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plotted for predictor functions generated from four different combinations of the learning algorithms
(ANNs/k-NN) and training-data representations (NSL/linear).

1. Ttraining is an almost monotonically increasing function of Ntraining;
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2. For large Ntraining, Ttraining is increased by approximately 500 to 1000 times with ANNs
in comparison with k-NN;

3. For large Ntraining, Ttraining is increased by approximately 5 to 10 times with training
data of NSL representation in comparison with those of linear representation.

From a practical viewpoint, the only drawback of the best combination is that Ttraining
becomes considerably longer. In fact, it takes 269 h for Ntraining = 3, 306, 038 with the
computer used in this study (Intel Xeon W-2223 and 64-GB RAM). The considerably large
Ttraining is primarily due to the adoption of ANNs. However, as shown in Figures 8
and 9, a better prediction accuracy is obtained with ANNs. Therefore, there is a trade-off
relationship between Ttraining and prediction accuracy. The performances obtained thus far
are summarized in Table 1.

Table 1. Summary of performances of predictor functions generated from four different combinations
of the learning algorithms (ANNs/k-NN) and training-data representations (NSL/linear).

ANN (NSL) ANN (Linear) k-NN (NSL) k-NN (Linear)

Prob(d < 0.1 m) [%] 97.2 93.7 83.8 78.0
dav [mm] 44.1 51.8 65.8 89.5
Tpred [ms] 7.27 6.21 4.84 4.95
Ttraining [h] 269 40.3 0.414 0.0503

We plotted the relationship between dav and Ttraining for several different values of
Ntraining in Figure 17 to clearly establish the trade-off relationship. As expected, the trade-off
relationship can be seen as a whole. However, it was also observed that k-NN and ANNs
formed different clusters. The right cluster composed of squares suggests that ANNs are
suitable for obtaining the best prediction accuracy, although Ttraining becomes considerably
long. Meanwhile, the left cluster composed of circles implies that a fairly good prediction
accuracy is obtainable with k-NN while keeping Ttraining fairly short.
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4. Conclusions

Localization systems that utilize artificially generated magnetic fields are required to
calculate target positions based on the information of magnetic fields detected by multiple
sensors. This calculation is not easy since it involves solving nonlinear inverse problems. In
this study, we demonstrated that machine learning is suitable for solving inverse problems.
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Our emphasis was on comparing performances obtained with k-NN and ANNs that
were adopted for machine learning. We numerically evaluated the accuracy of the target
positions predicted by k-NN and ANNs by considering the 2 m × 2 m × 2 m cubic space.
Prob(d < 0.1 m) and dav obtained with k-NN were 84% and 66 mm, respectively, and those
obtained with ANNs were 97% and 44 mm, respectively. It was demonstrated that ANNs
are superior to k-NN in terms of prediction accuracy.

Furthermore, we also evaluated the computational times taken with the k-NN and
ANNs. Accordingly, Tpred and Ttraining obtained with k-NN were 4.8 ms and 0.4 h and
those obtained with ANNs were 6.2 ms and 269 h, respectively. It was demonstrated that
Tpred obtained with both k-NN and ANNs was short enough to execute real-time tracking.
However, it was revealed that ANNs require much longer Ttraining than k-NN. Therefore,
k-NN remains a valid method for generating fairly good predictor functions within limited
training times.
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