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Abstract: Artificial Intelligence applied to Structural Health Monitoring (SHM) has provided con-
siderable advantages in the accuracy and quality of the estimated structural integrity. Nevertheless,
several challenges still need to be tackled in the SHM field, which extended the monitoring process
beyond the mere data analytics and structural assessment task. Besides, one of the open problems in
the field relates to the communication layer of the sensor networks since the continuous collection
of long time series from multiple sensing units rapidly consumes the available memory resources,
and requires complicated protocol to avoid network congestion. In this scenario, the present work
presents a comprehensive framework for vibration-based diagnostics, in which data compression
techniques are firstly introduced as a means to shrink the dimension of the data to be managed
through the system. Then, neural network models solving binary classification problems were
implemented for the sake of damage detection, also encompassing the influence of environmental
factors in the evaluation of the structural status. Moreover, the potential degradation induced by
the usage of low cost sensors on the adopted framework was evaluated: Additional analyses were
performed in which experimental data were corrupted with the noise characterizing MEMS sensors.
The proposed solutions were tested with experimental data from the Z24 bridge use case, proving that
the amalgam of data compression, optimized (i.e., low complexity) machine learning architectures
and environmental information allows to attain high classification scores, i.e., accuracy and precision
greater than 96% and 95%, respectively.

Keywords: artificial intelligence; MEMS accelerometers; model-assisted takeness-based compressed
sensing; operational modal analysis; structural health monitoring

1. Introduction

Damage detection has a pivotal role in Structural Health Monitoring (SHM) systems
as a fundamental means to implement on-condition maintenance. In particular, many
novel damage detection procedures are gaining momentum thanks to the recent develop-
ments in the Machine Learning (ML) field [1–5]. Indeed, to cope with these continuously
evolving requirements, novel Artificial Intelligence (AI) tools have been proposed in the
recent literature, which were fostered by the parallel technological advancements in the
processing power promoted by the information engineering community. In seminal works,
the adoption of graph convolutional networks, in which the problem of feature extraction
and classification is mapped in the graph domain rather than resorting to the standard
time/frequency representation, has shown the benefit of learning data patterns in a more
flexible and self–adaptive way. For example, in [6,7], graph models were applied for crack
detection and localization in the framework of vibration diagnostic, showing outstanding
performances. Capsule neural networks have also demonstrated great potential to tackle
SHM issues. These networks, which are intrinsically based on convolutional operations,
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are unique in that, thanks to the novel concept of capsule unit and routing by agreement,
they can overcome the main limitations of conventional Convolutional Neural Networks,
such as shift and rotation invariance and the presence of mandatory pooling layers, while
preserving spatial relationships among the learned features. As a representative use case,
capsule neural networks were applied for source localization purposes [8], showing greater
generalization performances with respect to standard convolutional models.

Another emerging approach, Spiking Neural Networks (SNN), was recently adopted
for damage assessment purposes. SNNs are peculiar in that they try to tackle the problem
of structural inference by means of a more realistic mathematical representations of the
human brain, which specifically mimics biological spike-based event-driven processes
to communicate between neurons [9] (a research perspective which is also known as
neuromorphic computing). The main advantage of these models is that, when implemented
on custom hardware, they are more power efficient than standard AI approaches. Inspired
by this idea, researchers in [10] have proven that SNNs can be very performative for
vibration-based assessment, and suitable to be embedded on resource-constrained device,
with considerable power saving for the underlying electronics.

It is also worth mentioning the continual learning paradigm [11], in which the trained
diagnostic models are continuously updated, over time and in real time, without the
bottlneck of performing long data collection phases to train the networks at the beginning
of the SHM system lifecycle. In this way, comparatively tinier models could be designed,
which are most suited for near-sensor integration, hence reducing the latency and the cost
of the monitoring process.

In this context, anomalies are identified by feeding ML algorithms with damage sensi-
tive features which are deemed to be representative of the structure under inspection [12].
In particular, the integrity assessment of structures in the dynamic regime usually relies on
the extraction of vibration parameters, the so-called modal parameters, which comprise
natural frequencies, damping ratio and mode shapes [13]. When the excitation signal is un-
known, a condition which is typical for the majority of the civil and industrial plants, modal
features are extracted by resorting to operational modal analysis (OMA) techniques [14].

The modal identification process implies long time series are to be collected, stored
and processed for each sensing device. If the structure under inspection has large di-
mensions and complex geometries, which demand the deployment of very dense sensor
networks basing on low-cost sensors [15], the risk of having unacceptable data flooding
and network congestion is high. Prompted by these issues, data compression techniques
were investigated as viable solutions to alleviate the communication and memory burden
caused by such large datasets. Spanning from methodologies based on compressed sensing
(CS) [16] up to AI-driven alternatives [17], a wide range of solutions have been developed
in the last few years to fulfill this task.

The performance of compression approaches is usually evaluated by computing the
mean square error between the recovered and the originally acquired signals [16,18], or by
analysing the degradation in the modal parameter estimation [19,20], while only minor
attention (to the best of these authors’ knowledge) was paid to assess how compression
affects the damage classification performance. Indeed, the list of works dealing with the
combination of data compression and ML is relatively short and includes very general
application scenarios. For example, authors in [21] proposed a compressed sensing and
online extreme learning autoencoder for anomaly detection in Internet of Things frame-
works, while the problem of efficient data management and anomaly/attack identification
in wireless sensor networks was discussed in [22]. A combination of random projection
serving the task of data reduction while preserving anomalous data in image processing
can instead be found in [23]. However, none of these works tackles the specificity of
structural health monitoring, such as the necessity to estimate modal parameters.

As far as classification is concerned, ML and deep learning architectures targeting the
identification of structural damages were extensively investigated (see [3,24]). Nevertheless,
as anticipated, an important challenge is the embedding of inference algorithms on the
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smart sensing nodes at the extreme edge [25], i.e., the adoption of a ‘sensor-near’ monitoring
paradigm where information is partly elaborated on local sensors, in strict proximity
where it is actually sensed. This trend translates into the design of tiny ML architectures,
which correspond to small-size, low-complexity and minimal power consumption AI
applications [26] compliant with hardware-oriented solutions. Hence, stringent limits are
imposed concerning the complexity of the classification models to be deployed, given the
constrained computational resources available on the sensor nodes.

Furthermore, condition monitoring data are typically affected by environmental and
operational parameters (EOPs), whose effect on modal parameters can be even more pro-
nounced than the one due to pure structural degradation [27]. Thus, EOPs need to be
properly modeled and taken into consideration to avoid false alarms. Dynamic regres-
sion analysis and principal component analysis are just a few of the reference approaches
already investigated in the field [28]. All these methodologies aim at finding non-linear
dependencies between the measured environmental factors and the identified structural
parameters, which are then compensated by means of standard fitting models. Alterna-
tively, more sophisticated methodologies to the ones based on standard eigen analysis have
recently started to be considered, such as the one offered by singular spectrum analysis that
is specifically designed to identify and extract oscillatory components from time series [29]
while filtering out the presence of unwanted, aperiodic noise trends. This algorithm is
implemented via the cascade of an embedding (forward) and grouping (inverse) operation
with an intermediate step of spectral decomposition, in which each individual time series
(and not a whole batch of data as required by classical principal component) is decomposed
into its individual components, thus allowing for a better removal of inherent noise and
seasonal drifts without affecting the quality of the modal features [30].

In such scenario, the primary aim of classification networks is to determine whether
degrading phenomena are occurring or not and to signal alerts in a timely manner, a task
which is usually referred to as One Class Classification (OCC). The objective of OCC
is, therefore, to find which specific class a given input object belongs to by selecting
either the target (i.e., ‘normal’) or outlier (i.e., ‘anomalous’) class. OCC solutions based
on standard neural network (NN) models were shown to achieve good classification
scores in numerous application scenarios, such as the monitoring of industrial plants (e.g.,
mechanical rotors [31], wind farms [32,33]) and avionics or automotive structures [34,35].
In the civil engineering domain, a two-stage OCC Neural Network (OCCNN) was recently
proposed [36] and validated on the dataset related to the Z24 bridge [37]. Indeed, this
infrastructure has become a reference test bench for ML validation purposes [38,39]. In
fact, the performances of the approach adopted in [36] are very promising, with a reported
accuracy of 96% and a precision of 98%. However, the quality of the results provided by
OCCNN is strongly influenced by the training set point distribution , whilst completely
neglecting the dependence of the identified structural features from EOPs, a procedure
which, in turn, does not allow to decouple the actual effect of structural degradation on
the one due to operational variability. This means that even if a long data collection phase,
usually performed on a yearly or at least seasonal scale, has to be conducted to create a
set of baseline values comprehensive of all the possible structural-to-EOP dependencies,
the retrieved information might yet be insufficient when these environmental changes
are not properly compensated. Furthermore, the framework proposed by the authors
in [36] does not include the degrading effect of lossy transmissions to central processing
units, is high-computationally demanding and does not take into consideration the practical
limitations of instrumentation non-idealities, such as the effect of intrinsic noise density
native in low-cost devices; therefore, it is not suited to cope with the limited computational
and storage resources available for embedded systems.

Contribution

In this work, an OCCNN-based damage detection procedure for dense accelerometer
networks is proposed and tested against the possible limitation of commercial off-the-shelf
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MEMS sensors. Such a procedure is compatible with the deployment of large sensor
networks and embedded processing solutions. More specifically, the main contributions
can be listed as follows:

• Input data. It is investigated how CS methodologies, which reduce the probability
of network congestion, may affect the classification process. Temperature values
are provided as additional input data for the NN machine to inherently model the
dependency of modal features on environmental factors.

• Knowledge distillation. A reduction in the complexity of the NN models is performed
by shrinking the number of neurons in the hidden layers, without affecting the
classification accuracy with respect to more redundant configurations.

• MEMS noise density. Acceleration waveforms are corrupted with the intrinsic noise
density characterizing MEMS-based sensors, which are the most widely adopted
sensing technology in this kind of application and, thus, need to be properly handled
in view of real installations. Hence, the robustness of the classification process under
this technological limitation is evaluated.

The paper is organized as follows. The complete processing flow, from the data
compression/decompression stage up to the classification process, is thoroughly illustrated
in Section 2. Section 3 concerns the description of the experimental validation phase,
which uses the the Z24 dataset as a reference application scenario. Results are presented in
Section 4, discussing how the novel approaches explored in the work might increase the
overall performance of the SHM framework. Finally, the conclusions end the paper.

2. From Data Acquisition to Classification

The monitoring framework proposed in this work (summarized in Figure 1) is or-
ganized around three successive steps: (i) the data compression and recovery phase, which
is aimed at retrieving the original time waveform from compressive acquisitions; (ii) the
modal identification procedure, returning the structural features of interests; and (iii) the
final classification stage, which leverages ML techniques as enabling tools for structural
integrity assessment.

Moreover, for each of these phases, an efficient processing strategy to deal with it
was included. To this end, it is worth stressing the fact that the selected algorithms only
represent some of the many possible solutions, and their selection has to be properly judged
depending on the characteristic of the scenario under test and the available instrumentation.

Data 
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Feature 
Tracking
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Figure 1. Proposed framework for structural assessment: From left to the right, data compression
and recovery, modal feature extraction and selection with the final structural assessment block.
The matrix XP is used to indicate the ensemble of CS-reconstructed signals from all the different
acquisition points, as it is required by OMA algorithms to provide a global understanding of the
structure under analysis.

2.1. Data Compression and Recovery

This processing phase includes data cleansing (such as trend removal and filtering)
and compression procedures that are performed by local sensor nodes installed on the
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structure [40]. Subsequently, compressed data are transmitted to a central aggregating unit
where the original time series is recovered.

In CS-based strategies, the compression procedure can be modelled by the product
xC = ΦxP, where xP is the generic signal acquired by one of the Lx peripheral sensors,
Φ ∈ RNC×NP is the rectangular sensing matrix (NC � NP) and xC is the compressed signal,
which is eventually forwarded by the peripheral node to the central processing unit. Here,
a recovery procedure is applied for each of the active sensors, which consists in estimating
x̂P from the assumption that such signal is sparse in a representation domain spanned by
a given basis Θ ∈ RNP×Q, i.e., xP = Θ · xS, where most of the coefficients in xS are zero
valued or negligible. In this general framework, a wide range of variants were investigated
by selecting different sensing matrices, different representation bases and/or different
optimization procedures for the recovery of the sparse coefficients [41].

Among the different strategies implementing CS, the model-assisted rakeness-based
compressed sensing technique (MRAK-CS) [19] is suggested in this work for data compres-
sion and recovery thanks to its peculiar adaptation to the second order statistics, i.e., to the
signal energy distribution, of the processed data. This is extremely beneficial for vibration
analysis, where the structural properties are defined in the spectral (frequency) domain.
Compared with alternative CS approaches, MRAK-CS not only exploits the classical spar-
sity assumption, but it specifically leverages the available prior information about the
structure, namely the fact that the energy is not uniformly distributed over the whole
spectrum but rather concentrated near a few spectral components, as a ruling criterion for
the optimization of the sensing matrix.

The strategy to be implemented for the derivation of the optimal sensing matrix as dic-
tated by the MRAK-CS approach is schematically represented in Figure 2. The computation
starts with the selection of the frequency regions of interest, as they can be predicted by a
numerical model or prior structural campaigns, on the basis of which a band-pass-like cor-
relation profile of the structure (Cx) is synthetically designed. Then, the CS-based problem
statement is entered by firstly extracting the sensing matrix correlation profile (CS) as pre-

scribed by the analytical solution of rakeness-based approach, i.e., CS = 1
NC

(
CX

tr(CX)
+

INC
NC

)
(in which tr(·) stands for the matrix trace operator, while INC is an NC × NC identity ma-
trix). Hence, the latter value is used to sample each row of the sensing matrix Φ from a
multivariate Gaussian distribution with zero mean and correlation profile equal to CS.
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Baseline 
measurements

Closed Analytic
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Figure 2. General processing flow at the basis of the MRAK-CS approach.

2.2. Modal Parameter Extraction

Modal identification can be performed in the time or frequency domain. The selection
of one category over the other is usually influenced by the required frequency resolution,
which is a consequence of mode proximity and the allowable computational complexity [14].
The basic idea of frequency-domain strategies is to derive modal parameters from quantities
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(i.e., magnitude, phase, half-bandwidth) associated with the peak values of the spectral
response function [42].

Conversely, stochastic subspace identification (SSI) algorithms [43] tackle the problem
from a time-domain perspective, by modelling the acquired time series as the output of
an equivalent linear system whose governing equations are completely described by the
related state–space matrices. The principal advantage of SSI methods over conventional
spectral alternatives relies in their fully unsupervised nature. Indeed, the extraction of
modal features can be automated and used as input for AI tools. For this reason, it
constitutes the core block of the modal identification task considered in this work.

The crucial point of SSI methodologies is the selection of the most appropriate model
order, on the basis of which the system matrices are computed and the corresponding
modal parameters can be retrieved by means of an eigenvalue decomposition. It is worth
noting that the model order depends on the operational and environmental conditions,
therefore such a parameter must be adaptively selected. To tackle this issue, the so-
called stabilisation diagram [43], i.e., a point chart representing how the location of the
identified modal frequency values may vary as a function of increasing order number,
can be employed. When paired with clustering procedures, this tool provides valuable
information about the frequency vector F containing the NF identified structural modes, in a
totally unsupervised manner. Once modal frequencies were estimated with the clustering
procedure, their evolution over time can be tracked with Gaussian moving average filters
which aim at fitting a Gaussian kernel function to each h-th vibration component of interest:
At each step, the filter is designed to update the mean value µh, h, 1 . . . NH with the average
value of the frequency points falling in a frequency interval of ±2σ, σ being the standard
deviation. This further step is essential for three main motivations: (i) Keeping trace of
slow variations induced by environmental effects, (ii) filtering out spurious components
which are not consistent across successive measurements and (iii) shrinking the dimensions
of the feature space to NH ≤ NF components of interests.

A Covariance-Based SSI Approach

Amidst the various SSI implementations, the SSI-COV method in Figure 3 deserves
particular attention owing to its robust recovery without affecting the processing time.
SSI-COV takes its name from the calculation of the covariance function of the measured
data, that represents the core function of the entire algorithm. Given this defining feature,
it is worth observing that SSI-COV represents an optimal complement to the MRAK-CS
compression approach described beforehand: This due to the fact that both strategies, even
if tackling different aspects of the monitoring chain, are covariance-based, i.e., they both
aim at extracting structural information from the covariance function of vibration signals
while maximizing the preserved energy. For this reason, when combined with compression
techniques, SSI-COV could be more advantageous with respect to other feature extraction
strategies since it is implicitly less prone to possible signal reconstruction errors at the end
of the CS recovery phase. It exploits the concept of state variables for casting the driving
structural equations into a mathematical system of Q first-order differential equations that
emulate the dynamics of the underlying physical (structural) system.
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Figure 3. Schematic representation of the SSI-COV processing flow, from data collection to modal
parameter extraction.

The approach involves the following steps:

1. Compute, for fixed time lag l and time shift s, the block Toeplitz matrix of dimension
Lxl × Lxl

Rs|l =


Rl Rl+1 . . . Rs

Rl+1 Rl . . . Rs+1
...

...
. . .

...
R2l−1 R2l . . . Rl

 (1)

in which the internal Lx × Lx blocks:

Rl =
1

N − l
[X[1:N−l] −E[X[1:N−l]]][X[l:N] −E[X[l:N]]]

T ∈ RLx×Lx (2)

are nothing but the covariance matrix between the aggregated output signals
X = [x1 . . . xLx ] acquired in the interval [1 : N − l] and [l : N], respectively.

2. Perform the Singular Value Decomposition (SVD) of R1|l (s = 1), returning
R1|l = URΛRVH

R , with UR ∈ RLx l×Q the rectangular matrix of left singular vectors
and ΛR ∈ RQ×Q the diagonal matrix of singular values.

3. Apply the state–space factorization of the covariance matrix. Starting from the pure al-
gebraic manipulation of the SVD, one may write R1|l = URΛRVH

R = OC. This means
that R1|l can be decomposed into the product of two matrices: The so-called observabil-
ity matrix O = UΛ1/2 and the controllability matrix C = Λ1/2VT . The advantage in
pursuing such factorization is that the two latter quantities admit an alternative state–
space formulation as OT =

[
C CA . . . CAl−1

]
and C =

[
Al−1G . . . AG G

]
uniquely determined by the state output matrix A, the state matrix C and the next
state–output matrix G. While C and G can be easily extracted from the first Q rows
(columns) of the controllability and observability matrix, respectively, the computa-
tion of A is given by A = O†R2|l+1C† († being the Moore–Penrose pseudoinverse
operator).

4. Execute the eigenvalue decomposition of the above-computed state matrix. This
is decomposed as A = ΞAΩAΞT

A, corresponding to the product of the eigenvec-
tor matrix ΞA ∈ RQ×Q and the diagonal matrix of Q eigenvalues ωq, namely
ΩA = diag[ω1, . . . , ωQ].
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5. Estimate the sought natural frequencies of vibration f and mode shapes Ψ from (Ts
being the sampling time):

f =
| log(diag(ΩA))|

2πTs
(3a)

Ψ = CΞA (3b)

As a competitive variant to SSI-COV, in SSI-DATA the computation of the covariance
matrix is replaced by the projection of the row space of future outputs into the row space
of past outputs. The problem with this method is that it involves the factorization of a very
large matrix and, hence, becomes very computationally onerous. For this reason, SSI-COV
inherently provides a much faster and efficient algorithmic solution, since the derivation of
Rs|l can easily be obtained via the Fourier transform. This is also one of the reason why
SSI-COV is preferred over SSI-DATA in decentralized monitoring systems where near-
sensor data processing and feature extraction is a trending research direction [44]. Beside,
alternative solutions such as the contemporary canonical correlation analysis [45] have very
recently been proposed for real-time structural analysis, showing the superior capability of
providing a more robust identification method which is less sensitive to EOP uncertainties.

2.3. Environmental Analysis

Modal parameters are extremely sensitive to environmental factors (e.g., temperature
and humidity) since they are constitutive elements determining the stiffness and damping
property of the structure [13].

To cope with environmental factors, the conventional approach is to resort to re-
gression methods [28]. Conversely, the approach presented in this work tackles this
problem from a pure ML perspective, by including NE EOP parameters (grouped into
the NE-dimensional vector E) as additional input features of the AI block. In this manner,
the neural network is instructed to autonomously learn this frequency vs EOP relationship,
without requiring any further processing steps to be performed aside.

2.4. Neural Network Design

OCCs can be seen as standard neural networks trained with samples acquired for
the pristine structure since no training data is usually available for damaged conditions
(i.e., the so called adversarial population). In these cases, a possible alternative consists in
artificially generating these adversarial points. Among the OCC implementations presented
in the literature, the very recent OCCNN proposed in [46] and the Autoassociative Neural
Network (ANN) are considered in this work.

2.4.1. OCCNN

OCCNN [36] is an ML technique aiming at finding either linear or non-linear bound-
aries between healthy and defective conditions in the parameter space. In these terms, it
serves the goal of anomaly detection in low feature space by predicting whether an input
feature vector falls into a normal or abnormal region of the total feature space. Let us
suppose that NT measurements are used in the training phase, whose corresponding struc-
tural and EOP features can be organized in the matrices H ∈ RNT×NH and E ∈ RNT×NE ,
respectively. As schematically drawn in Figure 4, the neural network topology consists
of two main elements. The former is the adversarial point generator block (APG), which
randomly generates data Z ∈ RNZ×(NH+NE) of the defective class in the damaged space
identified in a given iteration, where NZ indicates the number of adversarial points to
be used during training. As described in [46], APG generates points in an iterative way
by sampling them from a uniform random distribution, assuming their distribution in
the feature space can be described as a Poisson point process with density λi (if i is the

current iteration index). The latter value can be computed as [47] λi =
∑

NT
n=1 kn−1

π ∑
NT
n=1 r2

n
, in which

rn indicates the Euclidean distance between the n-th point and its kn-th neighbour and
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NT is the number of training points. More formally, at each step, the APG block takes as
inputs the point density and the weights of the NN that represent the network state after
the previous iteration and defines the actually estimated boundaries Ω (Ω0 being the null
matrix so that points can be generated in the whole space): The adversarial points are thus
generated in the portion of the feature space where the training points are absent and the
output layer activation function is greater than 0.5 (assuming that label 1 is associated with
the training set points and 0 to the adversarial ones) [46].

These adversarial data, together with healthy instances, are plugged as inputs to the
second NN component, that is a two-layer fully connected NN with NN neurons in each
hidden layer, finally providing an estimate of the boundaries Ω.

APG
Neural

Network

� ∈ ℝ�� �� ��

�	
	��


Ω

�� �� ��

… …

�� ��

� ∈ ℝ�� ��

� ∈ ℝ�� ��

Figure 4. General scheme of OCCNN with its main procedural blocks.

The adversarial point generator cycles are iterated until the desired level of fitting
with respect to the training data distribution is reached. The higher the number of cycles,
the higher the resolution of the boundary contours will become. It follows that two key
variables might significantly affect the classification performance of OCCNN, which are
the number Ncycles of APG iterations retained sufficient for a robust system realization,
and the number of neurons per layer.

2.4.2. Autoassociative Neural Network

In essence, an ANN [48] (Figure 5) represents a feed forward multilayer NN whose
goal is to reconstruct data as they appear at the input layer (a condition which implies an
identical number of neurons in the input and output layer). The processing chain involves
a compression stage, in which the dimensions are reduced by means of a mapping function
with progressively lower neurons per layer, followed by a reconstruction step, also known
as demapping layer. The role of the mapping layer (with NA neurons) is to project the
input data into a lower dimensional space that is used as a bottleneck layer thanks to a
number of neurons NB lesser than the dimensions of the feature space; an opposite function
is conversely fulfilled by the demapping counterpart. Anomaly detection is achieved by
searching for abrupt variations in the residual (i.e., reconstruction error) between the input
and the currently predicted output values.
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Figure 5. General scheme of the implemented ANN architecture.

3. Experimental Validation
3.1. Z24-Bridge Dataset

The openly available dataset related to the Z24 bridge [37] provides unique features
for the assessment of SHM algorithms. The Z24 bridge was monitored for more than one
year by means of a permanently installed monitoring network consisting of 11 uni-axial
accelerometers and multiple environmental sensors (humidity, temperature, wind). Two
different experimental campaigns were performed: A long term continuous test, dur-
ing which the structure was subjected to operational excitation, and a progressive damage
test, consisting of purposely induced deterioration processes. The monitoring system
was programmed to acquire, on an hourly basis and from all the installed accelerometers,
65,536 acceleration values at a sample rate of 100 Hz, corresponding to observation win-
dows of 11 min. Unfortunately, some measurements were lost due to sensor failures, such
that only 55.6% of the total data are now available. Among the total NI = 5651 observa-
tions, 4922 instances belong to the normal class which is acquired in healthy structural
conditions, while the remaining 729 instances are acquired in damaged configurations.

When compared with previous works related to the same dataset, the analysis pre-
sented here is novel in that it jointly evaluates three pivotal aspects for the design of the
next generation of SHM architectures, which are: (i) The investigation of the effects of
adapted compressed sensing on the quality of the identified bridge health status, (ii) the
exploitation of temperature data as direct input of the NN models, (iii) the inclusion of
instrumental non-idealities on the entire monitoring processing flow, and in particular of
the residual noise density characterizing commercial off-the-shelf MEMS accelerometers.

A dataset preparation phase was necessary, too. In particular, the machine learning
models adopted in this work only need data from the normal class during training. Thus,
70% of these data from the normal class was randomly sampled to favor diversity in terms
of environmental conditions. This subset was further subdivided: 70% of it was used for
training and the leftover 30% allocated to validation. Conversely, the remaining 30% of the
normal class together with all the data acquired in damaged conditions were employed for
testing purposes.

3.2. Data Compression and Recovery

For the target scenario explored in this work, modal analysis studies applied to the Z24
dataset proved that the most relevant modal components of the bridge are located below
20 Hz. In particular, at a reference temperature value of 25 °C and in nominal working
conditions (no vehicle passing through), the three dominant bending modes are located at
3.87 Hz, 12.42 Hz and 13.21 Hz, one lateral mode at 4.82 Hz and two closely spaced mixed
torsion/bending modes at 9.77 Hz and 10.50 Hz, respectively. By taking into consideration
these modal frequencies, two main spectral bands of interest were identified and plugged
as input of the MRAK-CS approach, used for the estimation of the compression matrix:
The former one spans the interval [3.5;5] Hz, while the latter has wider dimensions and
includes all the components from 9.5 Hz to 13.5 Hz. This information was used to design
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the sensing matrix, as illustrated in [19], while the Discrete Cosine Transform (DCT) matrix
was assumed as sparsifying basis Θ.

The acquired waveforms were divided into 512-sample long segments and the com-
pression ratio , intended as the ratio between the number of columns (NP) and rows
(NC) of the sensing matrix, was set equal to 6. These parameters for the CS encoder
were selected to be compatible with real-field scenarios where the storage capabilities
of edge devices are limited to a few hundred kB. Indeed, assuming each piece of data
can be represented as a 4 B word, storing a sensing matrix with the selected dimensions
(i.e., 512/6 = 85× 512 elements) might require at least 90 kB. It is worth emphasizing
that the imposed compression level is higher than typical values adopted in vibration
analysis [19,49]; in these terms, it was chosen to replicate worst case scenarios. Finally,
the SPGL1 [50] algorithm was employed for the recovery of the sparse coefficients. The
underpinning principle behind SPGL1 is that the recovery process can be treated as a
convex optimization problem aiming at estimating the set of sparse coefficients x̂P of the
original signal such that the Euclidean norm of the error with which the received com-
pressed signal xC is matched by the currently predicted solution x̂C = ΘΦx̂P is minimum.
Compared with different solvers proposed in the literature, the convex-based nature of
SPGL1 allows this method to achieve better reconstruction accuracy since it does not suffer
from approximation errors characterizing greedy or iterative algorithms [51].

3.3. Feature Extraction
3.3.1. Modal Identification

As anticipated, the covariance-based SSI-COV approach in Figure 3 was adopted to
estimate the main vibration components of the bridge. More specifically, the structural
identification process was divided into three steps. Firstly, the stabilisation diagram was
computed for a model order ranging from 1 to NF = 160; then, the k-means algorithm [52]
was run to create a batch of candidate modal frequencies. To this end, the number of
centroids for each instance was varied from 10 to 15 and the corresponding Euclidean
distance (intended as the sum of the distances between the centroids and the associated
points) was computed. The number of centroids returning the lowest error has thus been
chosen for the given set of measurements. The adoption of such a blind approach is due
to the fact that the actual number of frequencies in each data record is not known a priori
and needs to be adaptively estimated. Thirdly, only the first bending and lateral modes
were retained in the following analysis (i.e., NH = 2) due to their high energy content
and, consequently, more pronounced response at the occurrence of structural anomalies.
The moving average filter was finally applied to track their evolution over subsequent
instances. In this case, the parameters of the kernel Gaussian functions for the first and
second modal components were selected to be µ1 = 4.0 Hz and µ2 = 5.2 Hz, respectively,
while an equal standard deviation of 0.16 Hz was imposed to ensure the best compromise
between the capability of the filter to react to rapid frequency changes while being immune
to potential outliers.

3.3.2. EOP Selection

The environmental monitoring system deployed on the bridge consisted mostly of
temperature and humidity sensors, which were deployed in a redundant configuration
(more than 53 different measurement positions) over the whole structure, so as to precisely
keep trace of EOP effects on the vibration signature. As already proven in previous works
for the Z24 use-case [53], very high correlation was found between the frequency shifts
induced by thermal excursion and the temperature variation at the top deck of the structure.
Thus, such quantity was the only one retained for the subsequent classification.

It is worth underlining that, thanks to the relatively high thermal inertia of the struc-
ture, just one temperature value per acceleration series has to be stored. Trends in modal
frequencies induced by temperature fluctuations are depicted in Figure 6 for the first
(Figure 6a) and second (Figure 6b) vibration component.
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Figure 6. First (a) and second (b) frequency component vs temperature. Red points concentrating
on high temperature values (from 20 °C to 30 °C) are related to damaged structural configurations,
while the green ones covering the entire temperature axis refer to the healthy state.

3.4. Neural Network Models

The details of the explored NN models are presented in this subsection. For the sake
of brevity and from this point onward, the acronyms OCCNN and ANN will be denoted
as O and A. The initial number of parameters for the NN models was selected to provide
a fair comparison with the reference work in [36,46], in which the OCCNN architecture
was firstly proposed. it is noteworthy that such a choice was necessary to evaluate how,
with the remaining parameters being equal, the effect of temperature data could actually
impact on the quality of the classification performance. Then, starting from this initial
configuration, the model complexity was progressively reduced to shrink the inference
time and make the solution compatible with edge devices. Coherently, the basic OCCNN
implementation, as it was proposed in [46] consisting of two hidden layers with NN = 50
neurons each, is referred to as model A (OA); conversely, subscripts B, C and D will be
used to indicate its distilled versions with 32, 16 and eight neurons per layer, respectively.
Besides, the number of adversarial points was generated as detailed in [46].

For the ANN case, NA = 64 neurons were selected in the mapping and demapping
layer, a quantity which was determined by taking into consideration the complexity of the
problem at hand with respect to the available number of instances used during training,
whereas one single neuron was used for the bottleneck layer , as constrained by the
exploitation of only two features in the input stage.

When the networks are fed with CS data, they will be indicated with superscript CS,
while the ones complemented with temperature values are named after with prefix T (e.g.,
TOA, TA1). Rectified Linear Unit (ReLU) was chosen as activation function for the input
and hidden layers, while softmax was considered in the output layer for all the investigated
NN models. The number of training epochs was set equal to 5000 with a learning rate of
the stochastic gradient descent equal to 0.05. Cross-validation with k-fold = 5 was also
considered to avoid biases in the designed classification models.

3.5. Noise Density in MEMS Accelerometers

Micro Electro-Mechanical Systems (MEMS) devices are characterized by high sensitivity,
low-power consumption and very high integration levels, which made this sensing technol-
ogy a cost-effective yet reliable and extremely advantageous alternative to the piezolectric
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counterpart for the design of accelerometer sensors [54]. Indeed, the advent of MEMS
sensors made the widespread development of low-cost, dense and miniaturized sensor
networks a real opportunity in the context of SHM [55].

Notwithstanding their successful adoption, signals acquired by MEMS accelerometers
are affected by comparatively higher intrinsic noise density values, which thus need to be
properly accounted for in the signal processing chain to assess the actual performances of
the implemented algorithms. To this end, further analyses were performed in this work,
in which the original data were degraded by adding the residual noise floor inherent in two
different kinds of digital accelerometers. The noise was generated via the Matlab® Sensor
Fusion and Tracking Toolbox™, which offers specific routines to simulate the mechanical
behavior of inertial measurement units, including accelerometers and gyroscopes.

In more detail, the mechanical characteristics in Table 1 were assumed: As can
be noticed, MEMS accelerometer type MA (No = 25 µg/

√
Hz) refers to commercial

off-the-shelf devices exhibiting the lowest noise density levels, while type MB with
No = 80 µg/

√
Hz is representative of medium-class but extremely low-cost devices. Co-

herently, the newly obtained waveforms were then processed following the procedures
exposed in Sections 3.2 and 3.3 while maintaining unaltered all the remaining parameters.

Table 1. Mechanical features of the considered MEMS accelerometer types.

Feature Unity of Measure MA MB

Sensitivity @ ±2 g µg/LSB 61.0 3.9

Zero-g level offset mg 40 25

Noise (No) µg/
√

Hz 80 25

Zero-g change vs temperature mg/C ±0.1 ±0.1

Sensitivity change vs temperature [%/C] ±0.01 ±0.01

For the sake of NN validation, noise-corrupted data can be treated as novel datasets
and, for this reason, they are taken as inputs to the previously trained TOD model (the
one with noise-free data). This verification procedure was preferred over the generation of
new models for each of the new datasets since it represents a more severe test to be passed.
At the same time, it is also appropriate in view of practical implementations, in which the
variability and the uncertainties hidden in the acquired data cannot be predicted a priori.

4. Results

Four main objectives were pursued within the experimental validation phase: (i) As-
sess the improvement brought by the introduction of temperature values as additional
input features of the AI block; (ii) evaluate the effect of compression/recovery stages on
the classification performance of the designed SHM framework; (iii) reduce the complexity
(i.e., number of parameters) of the NN models to be compatible with embedded processors
without impinging on the accuracy of the classification; (iv) evaluate the effect of MEMS
noise floor on classification performances to cope with real issues.

To quantify the performance of the classifiers, four classical classification metrics [1],
i.e., accuracy, precision, F1 and recall, were computed.

4.1. Effect of Temperature Data

As can be observed in the bar chart depicted in Figure 7, adding temperature values
as additional input features to the NNs provides invaluable insight in the case of the
the OCCNN solution, for which an average increase of 4.5 percentage points was ob-
served while moving from the basic OA model to the TOA one corrected with temperature
data. Conversely, in the ANN implementation, no consistent gain in the quality of the
classification process is obtained by inputting temperatures. A possible explanation is
in the compression imposed by the bottleneck layer, which acts as a filtering operator
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removing noise and minor details from the input signals [56]. This condition also applies
to the framework analysed in this work, where the detection of structural anomalies is
performed on the reconstructed frequency features at the output layer while disregarding
the additional temperature data used in the input stage. Based on these observations, only
temperature-added OCCNN realizations will be investigated hereinafter.

OA TOA A TA
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95

100
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97

95 95
94

97

99 99

95

99

94 94

91

98
97

96

[%
]

Acc Prec F1 Rec

Figure 7. Performances of OCCNN and ANN reference models with (TO,TA) and without (OA,A1)
temperature input values, for compression-free configurations.

Moreover, it is important to point out that classification scores attained by TOA are
highly competitive to the ones presented in [36], which explore a combined ANN-OCCNN
architecture to account for biases in the training point density estimation. In the ANN-
OCCNN case, an ANN is employed in the first step of the classification chain and used
to generate adversarial points rather than resorting to a first cycle of OCCNN to derive
a rough estimation of the feature boundaries, while totally neglecting the exogenous
contribution of EOPs on modal features. Despite its remarkable accuracy (96% accuracy
and 98% precision), the ANN-OCCNN solution is poorly compatible with the inclusion of
temperature values and CS compression/decompression stages due to the filtering effect
at the basis of ANN.

When the current results are compared with those presented in [39], where PCA is
employed to decouple the impact of EOPs and structural damages, the TOA solution here
proposed performs satisfactorily well, allowing to discern between healthy and deficient
configurations in a completely agnostic way, without needing to find, among all the
principal components yielded by PCA, the one which better allows to decouple the effect of
temperature variation from true damage. Indeed, as demonstrated in [39], some principal
components might be completely blind with respect to the existence of damage and, thus,
may lead to an erroneous structural bulletin if not aided by a purposely dedicated training
phase in which the sensitivity of this principal components is firstly assessed to select the
best indicator.

4.2. Effect of Data Compression

The primary impact of compression/decompression stages can be observed in the
larger superposition between healthy and damaged data in the feature space distribution
depicted in Figure 8. Coherently, a reduction in the performance of the CS-driven versions
can be seen in the first column of Table 2 for OCCNN (TOCS

A ) with respect to the results
illustrated in the previous section. Similarly as before, the inclusion of temperature in the
pool of NN inputs is particularly effective even in this case since it returns classification
results comparable to those pertaining to the basic OA alternative. Indeed, despite a minor



Sensors 2022, 22, 2229 15 of 19

reduction in the precision, the accuracy is almost equivalent and F1 and recall undergo a
significant improvement.
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Figure 8. Feature space distribution with compression-free (a) and CS-processed (b) processing
framework. Red points distributed in the south-west part of the feature space are referred to the
damaged state, while the green ones represent healthy structural configurations.

4.3. Effect of NN Distillation

Finally, the computational cost, here intended as the number of NN parameters, was
reduced to make the NN model compatible with the constrained resources of embedded
devices, and the effect on the classification accuracy was thus evaluated. To this end,
starting from the network with NN,A = 50, the number of neurons per layer in the OCCNN
architecture was then reduced to 32, 16 and down to 8, corresponding to a shrinkage
of model parameters to NN,D = 122, with intermediate values of NN,B = 1250 and
NN,C = 370. In the first three lines of Table 2, other performance metrics, such as the
memory usage and the execution time of each distilled version, are enclosed to provide a
more accurate comparative analysis. Besides, classification scores are also included.

The exponential decrease in both the occupied memory and running time of the algo-
rithms as NN halves can be clearly observed, the combined action of which leads, in turn, to a
consistent contraction of the associated power consumption. Indeed, the model size shrinks
more than 95% with a time gain above 75% while NN moves from 50 to 8 neurons.

Table 2. Performance metrics of OCCNN models A, B, C, D with temperature input values and
CS-processed configurations: Beside the classical classification scores, the overall complexity, in terms
of memory consumption, number of parameters and execution time, is enclosed.

NN TOCS
A TOCS

B TOCS
C

TOCS
D

∞ MA MB

Model size [KB] 13.232 6.824 3.304 2.312

parameters 2852 1250 370 122

Accuracy [%] 95.73 96.98 96.04 97.16 93.49 90.12

Precision [%] 94.12 95.78 94.59 96.25 92.65 89.25

Recall [%] 99.93 99.93 99.87 99.67 99.37 100

F1 [%] 96.94 97.81 97.16 97.93 96.18 94.04
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Remarkably, model D with only eight neurons attains high classification performances,
which are absolutely competitive with the ones associated with the most redundant con-
figuration (model A). Moreover, it performs even better than alternative solutions with
much higher parameters (see models B and C). This is further justified by the very similar
classified instances reported in the corresponding confusion matrices of Figure 9a–d.

4.4. Effect of Intrinsic Noise Density in MEMS Accelerometers

The impact of non-negligible noise floors in MEMS accelerometers can be quantified
by observing the last three columns in Table 2 (header MA and MB). As can be observed,
the primary effect is the decrease up to seven percentage points of the accuracy in the
classified instances while moving from noise free (header ∞) to MB MEMS-type, a trend
which is also clarified by the confusion matrices (e) and (f) in Figure 9. A similar trend is
evidenced for precision and F1; however, good performance values are attained, which
are always very close or consistently above 90%. Recall demonstrates to be less sensitive
to such noise levels, being nearly constant at 100%. On the other hand, MEMS typology
MA, which features a less significant No level, only undergoes a limited reduction in both
accuracy and precision (which show losses of 3% and 4%, respectively).

As such, it was demonstrated how the selection of the sensing unit might play a
crucial role in the effectiveness of the adopted signal processing techniques, which must
cope with the inherent source of non-idealities while moving from theoretical analyses to
real case studies.
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Healthy  1 5121 
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Figure 9. Confusion matrices corresponding to the classification scores presented in Table 2.

5. Conclusions

In this work, an investigation on how data compression may affect the performance
of ML-based damage detection procedures in structural health monitoring is presented.
In particular, one of the most promising compression techniques (namely MRAK-CS)
was applied to the dataset of the Z24 bridge and the recovered data were used to feed
low-complexity neural networks to perform the anomaly detection task.

In particular, it was shown: (i) How the compression ratio influences the detection
performances; (ii) the different degradation in the performance achieved with different
classifiers (ANN and OCCNN) as a function of the network complexity; (iii) the practical
implementation of the model in low-power and resource constrained devices; (iv) the
beneficial effect brought by the inclusion of temperature data among the inputs of the
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network; and (v) the impact of non-negligible noise floors on MEMS-based accelerometers
on classification scores.

From the results, it can be concluded that the OCCNN architecture with eight neurons
per layer and a compression ratio equal to 6 achieves a negligible degradation with respect
to much deeper networks applied to features extracted from uncompressed data. The
low computational cost of the implemented network is compatible with the storage and
processing resources of low-cost microcontrollers, and the compression stage allows to
minimize the risk of network congestion. Further works will include the validation of
the proposed approach in multiple application scenarios and the inclusion of additional
features, such as damping factors and mode shapes, as inputs for the NNs, in order to
further improve the classification results.
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