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Abstract: Ireland has a wide variety of farmlands that includes arable fields, grassland, hedgerows,
streams, lakes, rivers, and native woodlands. Traditional methods of habitat identification rely on
field surveys, which are resource intensive, therefore there is a strong need for digital methods to
improve the speed and efficiency of identification and differentiation of farmland habitats. This is
challenging because of the large number of subcategories having nearly indistinguishable features
within the habitat classes. Heterogeneity among sites within the same habitat class is another problem.
Therefore, this research work presents a preliminary technique for accurate farmland classification
using stacked ensemble deep convolutional neural networks (DNNs). The proposed approach has
been validated on a high-resolution dataset collected using drones. The image samples were manually
labelled by the experts in the area before providing them to the DNNs for training purposes. Three
pre-trained DNNs customized using the transfer learning approach are used as the base learners. The
predicted features derived from the base learners were then used to train a DNN based meta-learner
to achieve high classification rates. We analyse the obtained results in terms of convergence rate,
confusion matrices, and ROC curves. This is a preliminary work and further research is needed to
establish a standard technique.

Keywords: farmland habitat; habitat classification; drone images; base-learner; meta-learner; stacked
ensemble model

1. Introduction

Habitat mapping can be utilized in a variety of applications in nature conservation.
They serve as a guiding principle for monitoring inventories of natural areas, curating the
networks of protected areas, environmental impact assessment, management planning,
and target setting for ecological restoration. However, most such applications still rely on
field-based methods. The research in this area is increasingly focused on the data available
from satellite imagery. The main works are related to forest and vegetation mapping using
LANDSAT images, WorldView-2, Sentinel-2, IKONOS, GeoEye, MERIS, radar, and LiDAR
images [1–7]. Earth observation data offers new opportunities for environmental sciences
and is transforming artificial intelligence-based methodologies because of the massive
data with spatial, spectral, and temporal variations available from satellite sensors [8–10].
The use of traditional remote sensing images for land use monitoring and mapping has
been widely used in many types of research from the early 2000s onwards [11–13]. The
works of Cheng et al. [14] and Xie et al. [1] describe state-of-the-art technologies and
possible datasets for land cover mapping and classification. There is increasing demand for
applications to monitor ecosystems and assess their seasonal variations in the twenty-first
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century as climate change and global warming are making significant impacts all over the
world [15,16]. To implement effective biodiversity conservation and climate protection
practices on an international and national scale, accurate mapping of habitats plays a vital
role. One of the prominent works in this direction is the European Union’s (EU) Copernicus
Programme [17]. Through this program, global data can be obtained in real-time using
airborne, ground-based, and seaborne-based systems, which can also be used for local and
regional needs efficiently.

Many works have been published using the Copernicus Land Monitoring Service
(CLMS), due to it being free and openly accessible to users [18–20]. The main constraint
is that, since the spatial resolution of CLMS is at EU-level, it has limitations for more
differentiated habitat identification at the scale of individual member countries. Another
distinguished EU programme is the European Nature Information System (EUNIS) which
accumulates the European data from multiple databases and is extensively used as the
main reference for the research in ecology and conservation [21,22]. While the EU Coper-
nicus Programme supports research mainly in six thematic areas, namely land, marine,
atmosphere, climate change, emergency management, and security, EUNIS has a dedicated
directive for habitat classification. Indeed, it is the main comprehensive European hier-
archical classification of habitats that covers not only marine but also terrestrial realms
from early 1990 onwards [23–26]. It has become one of the key elements of the INSPIRE
(Infrastructure for Spatial Information in Europe) Directive [27] which aims to create an EU
spatial data infrastructure for policies or approaches that might affect the environmental
structure. It is also the main contributor to Resolution 4 (1996) of the Bern Convention on
endangered natural habitat types released in 1996 which was subsequently revised in 2010
and 2014 [28]. It also assists the Natura 2000 process (EU Birds and Habitats Directives),
the development of indicators in the European Economic Area (EEA) core set, and the
environmental reporting connected to EEA reporting activities [29]. Later, for establishing
a solid database on a continental scale, it has been renewed and thus used in a major scale
for studying land cover usage, vegetation, forest and habitat mapping [30–32].

However, the scarcity of publicly available datasets with remote sensing images at
an appropriate scale and resolution has hindered the development of new models and
methods using deep learning techniques as they demand massive heterogeneous data.
Rapid advancements in unmanned aerial vehicle (UAV) technology have allowed highly
accurate data collection with a wide variety of sensors. Many recent works in this area are
focused on UAV images acquired using RGB, multispectral, hyperspectral, and thermal
imaging cameras [33–37]. The works are not only contributing new methodologies but also
high-resolution image datasets to the public domain, which in turn support applications
that require in-depth analysis. The advantages of UAV imagery include ultra-high spatial
resolution, low altitude images allowing detection of fine details, flexibility in using diverse
sensors that can acquire different ranges of the spectrum, and ease of collection compared
to data collected by fieldwork which is often limited by the logistical effort of field surveys.
Images from UAVs are routinely used for monitoring diseases, crop nutrition, forest fire,
hydrology, and topography analysis for drainage and road construction, creating high-
resolution vegetation, forest, and habitat maps, 3-D mapping, and estimation of tree height
and surveys over inaccessible areas. Rather than automated methods, these applications
are still mostly dependent on fieldworks.

For all the use case scenarios, studies are concentrated on the forest, vegetation, land
cover and habitat mapping; also for observing climate changes, identifying crop and soil
conditions, water content determination, and drought monitoring. Extensive research is
still required in automated habitat mapping methods that deal with the use of drones in
farm-scale image collection and the use of deep learning techniques for the identification
of habitats. Habitat mapping is always a challenging task; habitats frequently merge or
grade from one to another, or form complex mosaics, with the result that a continuum of
variation often exists within and between different habitat types which blur the distinctions
between habitats. Although it reflects some natural phenomenon, however, in some cases,



Sensors 2022, 22, 2190 3 of 22

disturbance and damage blur the contrast among habitats. Another complicating factor
is that typical farmland habitats have a dynamic nature due to their varying attributes
across different seasons of the year e.g., hay meadows, reedbeds, areas of dense bracken,
or turloughs. Fertilizer use and heavy grazing could also be the reason for a significant
alteration in habitat structure, function, quality, and species composition. Therefore, even
the complex deep learning algorithms fail to distinguish between different habitat types.
The lack of availability of image datasets in the public domain is another problem. Yasir
et al. [38] describe available datasets that can be used for various habitat mapping problems
but it doesn’t contain any farmland datasets. Some of the recent works in this regard are
habitat mapping of marine, land, and benthic zones [39–49].

In this work, we tried to classify Irish farmlands using self-collected drone images.
Farming in most of Ireland ranges from highly managed arable land in the east to smaller
wetter fields in the west [50,51] and farmland habitats are an integral part of Irish biodi-
versity [52,53]. However, there is nearly no authentic work or datasets available for the
automated classification of Irish farmlands in the public domain.

The specific objectives of this study were (i) to collect and label habitat images of
representative Irish farmlands collected using UAVs, (ii) to develop a machine learning
method for the digital classification of farmland habitat types, and (iii) assess the effective-
ness of the developed classification scheme for habitat identification in the Irish farmlands.
The paper is organized as follows: Section 2 describes the developed habitat classification
method systematically. The method is validated in Section 3 using various experiments
conducted on the dataset and comparing those with existing works. Analysis of the results
is presented in Section 4. Finally, the work is concluded in Section 5.

2. Materials and Methods

The overall workflow of the proposed approach is presented in Figure 1. The workflow
is explained in detail in the below subsections.
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2.1. Data Collection

The task comprised collecting images of a variety of selected habitats [48] in Ireland
from a drone using a high-resolution imaging camera. For this purpose, a DJI Mavic 2 Zoom
drone was used. It has a CMOS imaging sensor of 1/2.3-inch, 12-megapixels resolution
with up to four-times zoom, including a two-times optical zoom (24–48 mm) which makes
it suitable for aerial photography. The field of view (FOV) is about 48◦ to 83◦. The lens
is auto-focus with a focal length of approximately 4×. The aspect ratio was kept at 3:2
for capturing the images. Different fields within the farm have been identified, and the
drone collected a low number (approximately fewer than 10) of replicate images from
that field, before moving on to the next field within the farm. Thus, the method sampled
different fields with different habitat types within the farm. For this work, the images were
captured from July to September 2021 at around noon. The height of the flight was set at
approximately 20 m above ground level.

A total of 2233 images were collected ranging across 18 different classes. Habitat cate-
gories that belong to these 18 classes can be broadly grouped into 6 different types [47,48].
Table 1 describes the habitat types among 18 different classes covered by the image dataset.
Figure 2 provides one sample image from each of the habitats along with the habitat type
of the study area.

Table 1. Habitat Types of the Image Samples.

Class Sub-Class Species

G: Grassland and Marsh GA1 Improved agricultural grassland
GSi1 Dry calcareous and neutral grassland

GS4/GSi4 Wet grassland
GS2/GSi2 Dry meadows and grassy verges

W: Woodland and Scrub WN2 Oak-ash-hazel woodland
WN6 Wet willow-alder-ash woodland
WN7 Bog woodland
WD1 (Mixed) Broadleaved woodland
WD4 Conifer plantation

B: Cultivated and built
land BC1 Arable Crops

BC2 Horticulture Land
BC3 Tilled Land

F: Freshwater FS1 Reeds and large sedge swamps
FL8 Other artificial lakes

P: Peatlands PB4 Cutover Bog
H: Heath and dense

bracken HD1 Dense Bracken

The samples were labelled by JAF and PM [52]. The master information sources that
have been referenced for labelling the images are the guides published by the Irish Heritage
Council [52,54]. The manuals provide a standard scheme and protocol for identifying,
describing, and classifying wildlife habitats in Ireland. Figure 3 illustrates the range of class
types and the number of images in each type in the dataset after labelling. It is noted that
the distribution of the images to class types is not ideal for training; however, this can be
improved upon in the future by collecting more images. In this work, this is dealt with the
task by boosting the data in the under-represented classes.
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2.2. Data Cleaning and Preprocessing

Some datasets contain class imbalance and have far more instances than others
(Figure 3). Achieving high classification accuracy with this data was difficult. However, to
assess the performance with this imbalanced data, a simple classification was performed
with a VGG16 pre-trained model by changing the number of nodes in the final classifi-
cation layer to 18. 20% of the data has been used for validation. The results are shown
in Figure 4. It can be noted that the performance is poor in terms of both accuracy and
loss. The validation accuracy is less than 20%, which clearly outlines that if the imbalance
in the actual data stream is reflected, it can lead to poor average precision during deep
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learning classification. Therefore, it was necessary to balance the dataset with nearly equal
data over different classes. The high-resolution drone images have a spatial resolution of
4000 × 3000 pixels. The images were resized and scaled using bilinear interpolation [55]
to make them compatible with the input size of the base models; in this work, it was set
as 150 × 150. Using bilinear interpolation, the size of the images was reduced without
affecting the characteristics of the actual high-resolution images and thus the features are
preserved for the deep neural network classification. Then the images were boosted and
augmented using 4 different transformations: rotation, flipping, shifting, and shear. The
transformations were applied iteratively for different classes by changing the parameters
(rotation range, flip direction, shift range and direction, shear range) of each transformation.
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Given Fn is the number of images in the class type Ci, i=[1,2, . . . ,18] of the original dataset
and Yn is the number of transformations applied to each image Xk ∈ Ci, i=[1,2, . . . ,18], the
total number of images Dn in the augmented dataset is based on Equations (1) and (2).
The procedure will augment entries from the minority classes to match the quantity of the
majority classes without overfitting the oversampled classes and ensure that no image is
repeated. Thus, a total of 68,356 different images were generated from 2233 images.

Yn =
Number of Iterations

Batch Size of the Images
(1)

Dn = Yn × Fn (2)

For the processed dataset, preliminary training and validation were performed with
the same VGG16 model to compare the performance with the imbalanced one. The results
are shown in Figure 5 which demonstrates the improvement in both training and validation.
It is noteworthy that the validation accuracy is increased to 60% by rectifying the data
imbalance problem to a certain extent. Figure 6 shows one sample image from each of the
habitats along with habitat type in the processed and augmented dataset.
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2.3. Model Selection and Tuning

The multi-CNN approach proposed in this work is based on a set of pre-trained CNN
models selected by hyperparameter tuning and customized using the transfer learning
approach. There are many pre-trained models available for image classification such
as VGG [56], Inception [57], Xception [58], Mobilenet [59], Resnet [60], DenseNet [61],
SquezeNet [62], Shufflenet [63], and many others trained using Imagenet [64], which has
more than a million natural images belonging to 1000 different classes. Out of these,
2 comparatively lightweight yet accurate-enough models for classification, VGG16 [56]
and ResNet34 [60], were chosen along with MobilenetV2 [58], taking into account that
the extended work has to be implemented in embedded boards and eventually in a mo-
bile phone.

CNN models consisting of convolutional, pooling, and fully connected (FC) layers
can be efficiently used for image classification [65]. The 2D convolutional layer extracts the
local patterns of input features through several feature maps and kernels. This extracted
feature vector is then compressed to low resolution by the pooling layer. Pooling helps
to decrease the computational cost and over-fitting. Then, these features are given as
input to the FC layers. In this work, since the habitat dataset is different compared to the
Imagenet database, the final FC layers were removed, and a transfer learning approach
was implemented, where pre-trained models are used as the starting point for training and
subsequently re-modelled for the specific task. For the specified classification problem, a
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feed-forward DNN [66] with various layers and neurons was tried, and finally 3 hidden
layers with 512, 256, 128, and 64 neurons respectively were chosen as the end layers of each
of the model. A DNN model is suitable for processing nonlinear data, and the performance
is better for classification problems. The newly added fully connected dense layers learn
the linear and nonlinear relationship between the input features and target, whereas the
weights of the convolutional layers of the pre-trained network are kept frozen. In order
to prevent overfitting, a dropout layer of 0.2 is added in between the layers. Dropout [67]
is a more effective and computationally inexpensive regularizer that prevents overfitting.
All layers used rectified linear unit (ReLU), which is the most commonly used non-linear
activation function [68]. The final classification layer used a SoftMax activation function [68]
with 18 neurons corresponding to the number of classes. All the models are trained for a
maximum of 50 epochs with a batch size of 32, where the number of steps in each epoch is
fixed using Equation (3). Overtraining of the models during training is avoided by early
stopping [69]. Early stopping is a method that allows specifying an arbitrarily large number
of training epochs and ceasing training once the model performance stops improving on a
holdout validation dataset.

Number of Steps in each epoch =
Number of Images in the dataset

Batch Size of the Images
(3)

Since the dimensions of the input images are scaled to 150 × 150 during the pre-
processing step, the base models are also modified to make them compatible with the input
size. Based on the architecture, the 3 base models with VGG16, ResNet34 and MobileNetV2
produced feature vectors of 4 × 4 × 18, 5 × 5 × 18, and 5 × 5 × 18, respectively, for every
image. This is given as input to the final classification layer. The architecture of each model
can be understood from Figure 7.
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2.4. Hyperparameter Tuning

Each model was trained with different optimizers by varying the learning rates and
the best-fit hyperparameters were chosen as the ones with the highest validation accuracy.
Based on previous work in image classification, the four most suitable optimizers, namely,
Adam, RMSProp, SGD, and Nadam were chosen for tuning each model [70–72]. The
learning rate was varied from 10−2 to 10−5 to determine the best fit. Since the problem is
image classification, categorical cross-entropy was taken as the loss function for training,
due to the fact that one sample can be considered to belong to a specific category with
probability 1, and other categories with probability 0. The results of the validation accuracy
are given in Table 2. From the Table it can be seen that the Adam optimizer with a
learning rate of 10−4 and 10−3 is the best-fit for the base models with VGG16 and ResNet34
respectively; for the base model with MobilenetV2, RmsProp with a learning rate of 10−3 is
the best-fit.

Table 2. Hyperparameter Tuning Results. Best results achieved for each classifier is shown in bold.

Model Optimizer Validation Accuracy for Different Learning Rates

10−2 10−3 10−4 10−5

Base model with
VGG16

ADAM 65.12 68.51 70.05 66.32

RmsProp 62.51 64.62 63.29 61.52

SGD 44.07 40.54 45.33 42.06

NADAM 64.89 66.11 65.24 62.61

Base model with
ResNet34

ADAM 69.06 73.89 72.32 71.54

RmsProp 70.16 72.51 73.01 71.11

SGD 56.55 58.34 58.22 57.51

NADAM 61.21 73.51 61.37 60.29

Base model with
MobileNetV2

ADAM 65.55 66.02 64.66 62.54

RmsProp 69.18 75.12 73.51 72.66

SGD 49.32 53.51 54.34 52.21

NADAM 57.51 65.07 67.98 65.55

Stacked
Ensemble

ADAM 75.54 77.02 78.70 77.37

RmsProp 76.57 78.23 79.08 75.05

SGD 63.39 64.21 64.11 65.63

NADAM 69.54 69.29 65.95 63.49

2.5. Stacked Ensemble Model

Stacking the base models reduces the dispersion of the predictions and can make
better predictions than any single contributing model [73]. Ideally, a model with low
bias and low variance will provide better performance, although in practice it is very
challenging and often difficult to achieve. Ensemble models provide a way to reduce the
variance of the predictions, leading to improved predictive performance. Ensemble models
can be implemented by averaging the individual models, where each model essentially
contributes equally to the ensemble prediction, despite the performance of each model.
Motivated by this, another approach is a weighted average ensemble, where the models
which perform well are required to contribute more, while worse-performing models are
required to contribute less. A further generalization of this approach is stacked ensemble
which combines the predictions of the sub-models to generate new predictions.

The proposed stacked ensemble learning process consists of two-level stacking. In
the first level, 3 base models are trained to obtain the initially predicted features. In the
second level, a feed-forward DNN model is used as the meta-learner trained with the
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combination of predicted features of the first level to obtain the final classification result.
The feed-forward DNN of the meta-learner is also designed with 3 hidden layers and a
final classification layer similar to the base-learners. The optimizer and learning rate are
tuned similar to the base-learners to derive the best fit by considering validation accuracy
as reference. The number of nodes and all other parameters is set in the same way as that
of base-learners. Based on the results presented in Table 2, Adam optimizer with a learning
rate of 10−4 demonstrated better performance. The architecture of the stacked ensemble
model is shown in Figure 7. Increasing the number of levels of the stacking will improve the
performance of the model up to a certain limit which must be found experimentally, but it
also increases the execution time. Also, since each level demands different datasets, for this
particular work, the number of stacking levels is confined to 2 because of the limitations of
the dataset mentioned in Section 2.2.

The pre-processed data was split into training, validation, and test data with a ratio
of 7:2:1 to ensure different datasets as input to different levels. While training the base-
learners, the hidden layers were not flattened as the input is a 2D image, which has
significant importance for its spatial coordinates corresponding to brightness, edges, and
corners. The predicted features for a sample image are shown in Figure 8. The feature
vectors of size 4 × 4 × 18 and 5 × 5 × 18 respectively (refer to the previous Section 2.3) are
reshaped to 2D vectors of size (16,18) and (25,18), respectively, for visualization. The base
models are trained with training data and the model is saved.
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Figure 8. Sample Image from PB4 and its predicted features for base-learners with VGG16, Resnet34
and MobilenetV2 respectively.

For training the meta-learner, validation data was fed to the already trained base
models to obtain the preliminary predictions. Then these initial predictions were concate-
nated to get a single dataset which was then used to train the meta-learner. The weights of
the meta-learner were optimized based on target classes. After training the base models
and meta-learner, the test data was given for performance evaluation of the stacked en-
semble model. The test data was first given to the base models to obtain the preliminary
classification probabilities, which were then combined and fed to the meta learner to get
final predictions.

3. Results

The experiments were conducted using a core i7, GTX 1650 Graphics Processing Unit
(GPU) with 16 GB RAM. The weights of each model were saved when it achieved maximum
validation accuracy, preventing it from overfitting. The variation of accuracy and loss with
respect to the number of epochs for training and validation are shown in Figures 9 and 10.
For all models, the training step was carried out to 50 epochs. It can be seen from the
results that the highest accuracy and lowest loss for both training and validation were
obtained for the stacked ensemble model. The accuracy was improved considerably for
the meta-learner.
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Ensemble models, respectively.

The performance metrics used in this study to evaluate the models are accuracy,
precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC).
Precision is the percentage of samples classified in a class that were actually members
of that class and recall is the percentage of samples of a class that were classified as that
class by the model. F1-score, the summary of recall and precision, is the weighted average
between these two values. Accuracy is the percentage of correct predictions across the
whole dataset. They are defined using Equations (4)–(7).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 Score = 2× Precision× Recall
Precision + Recall

(6)

Accuracy =
TN + TP

TN + FP + TP + FN
(7)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Values close to 1 indicate
good performance. These values are calculated from the confusion matrix which describes
the complete performance of the model.
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The confusion matrix of the base-learners along with the ensemble model is shown in
Figure 11. Table 3 describes class-wise accuracy values of the performance metrics. It is
calculated by taking the average of values lying across the main diagonal of the confusion
matrix, which is the ratio of total correct predictions to total predictions made. Table 4
depicts the comparison of results achieved using various base-learners in combination with
the stacked ensemble model.
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The receiver operating characteristic (ROC) curve, which is a plot between false
positive rate (FPR) and true positive rate (TPR) corresponding to the four classifiers, is
shown in Figure 12. The area under the ROC curve (AUC) for each class is also shown
along with the plots. AUC measures the entire two-dimensional area underneath the ROC
curve from (0,0) to (1,1). The value ranges from 0 to 1, representing the probability that the
model ranks a random positive sample more highly than a random negative sample.
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Table 3. Class-wise accuracy of base-learners with VGG16, Resnet34, MobilenetV2, and Ensem-
ble models.

Class
Model

VGG16 ResNet34 MobileNetV2 Ensemble

BC1 1 1 1 1
BC2 0.371 0.85 0.968 0.925
BC3 1 1 0.993 1
FL8 0.946 0.981 0.887 0.993
FS1 0.715 0.81 0.798 0.818
GA1 0.819 0.688 0.871 0.881
GS2 0.433 0.208 0.521 0.543
GS4 0.511 0.576 0.779 0.727
GSi1 0.856 0.948 0.979 0.948
GSi2 0.923 0.875 0.945 0.912
GSi4 0.637 0.623 0.575 0.699
HD1 0.531 0.962 0.968 0.993
PB4 0.934 0.931 0.646 0.962

WD1 0.724 0.755 0.647 0.778
WD4 1 0.933 0.965 0.993
WN2 0.756 0.841 0.641 0.710
WN6 0.987 0.956 0.954 0.993
WN7 1 0.998 1 1

Table 4. Comparison of results achieved for various base-learners in combination with proposed
classifiers. Best results achieved using the Stacked Ensemble model is indicated in bold.

Model
Performance Metrics

Precision Recall F–Measure Accuracy

VGG16 0.8019 0.7647 0.7584 0.7861
Resnet34 0.8489 0.8451 0.8273 0.8300

MobilenetV2 0.8443 0.8611 0.82 0.8414
Stacked Ensemble 0.8944 0.9016 0.8842 0.8844
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The number of parameters and execution time for 1 epoch along with classification
accuracy are compared in Table 5 for each of the models. This will provide valuable insights
for developing efficient edge algorithms in the future where these values will be a major
concern in the model design. It can be seen that the base-learner with MobilenetV2 had
the lowest execution time among all the models and the highest accuracy among the base
models. The base-learner with Resnet34 had the highest execution time among all the
models but its accuracy was even lower than the stacked ensemble one. The second highest
execution time was for the stacked ensemble model which is obvious from the number
of levels to train. However, when compared with its high accuracy the execution time
is satisfactory.

Table 5. Comparison of execution time and accuracy for various models. Best results are indicated
in bold.

Model
Number of Parameters

Execution Time in
Minutes/Epoch Accuracy

Total Non-Trainable Trainable

VGG16 18,662,906 14,714,688 3,948,216 3.41 0.7861
Resnet34 27,684,411 21,302,473 6,381,938 5.57 0.8300

MobilenetV2 18,086,322 12,257,984 5,828,338 1.04 0.8414
Ensemble 40,759,762 39,977,279 782,483 5.50 0.8844

Table 6 displays the results of major state-of-the-art methods published not long ago,
along with the proposed best performing stacked ensemble model. Most of the existing
methods deal with marine and land habitats and none of them addresses the problem of
farmland habitat classification. The dataset, number of samples, and validation techniques
used by the various state-of-the-art methods are different. Therefore, a fair comparison of
the results is not possible. Though the habitat types are different, it is noteworthy that the
proposed method has proven its effectiveness.

Table 6. Comparison of results with other recent state-of-the-art methods.

Study Habitat
Type Dataset Classes Classifier Model Accuracy

A.Diegues et al., 2018 [45] marine Self-collected 2 CNN VGG16 85.10
T.Liu et al., 2018 [37] wetland Self-Collected 7 CNN - 76.90

A. Gómez-Ríos et al., 2019 [43] marine EILAT & RSMAS 8, 14 CNN ResNet50 &
ResNet151 98.90 1

M. Yasir et al., 2020 [38] marine MLC 9 MLP DenseNet169 87.40

This study * farmland Self-collected 18 CNN Stacked
Ensemble 88.44

1 Combined accuracy for all datasets; * Results achieved using proposed method is indicated in bold.

Another experiment was conducted, by choosing a single subclass from each category
and applying the same algorithms and models described in Section 2 to the reduced dataset
to classify the samples into six broader classes, as described in Table 1. The variation of
accuracy and loss with respect to the number of epochs for training and validation are
shown in Figures 13 and 14 respectively. The confusion matrix of the base-learners along
with the ensemble model is shown in Figure 15. It can be seen that all the models show
very good results. The AUC approached 1 with nearly 0 misclassifications for the stacked
ensemble model (Figure 16). Figure 17 shows some of the sample classification results
along with the classification accuracy for the second experiment in which the habitats are
classified into each of the broad categories.
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4. Discussion

From the results, it was verified that the performance of the stacked ensemble model
outperforms the base-learners. The overall prediction accuracy achieved by the stacked
ensemble model was 88.44%. Some classes were predicted well, whereas the prediction of
other classes was not so good, which ultimately affects the overall performance of the model
(Table 3). For any deep learning model, during the training or the validation phase, the
model can overfit as it tries to represent as much as possible the underlying characteristics
of training data. This process deeply downgrades the model’s ability to perform accurate
predictions on new data. Although techniques to prevent the model overfitting (such
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as using three different datasets at the three levels of training, data augmentation and
transformation, dropout, and early stopping), deep learning models produce better results
only when given a vast number of samples in the training phase. Therefore, the main reason
for this is the imbalance of the self-collected dataset that was used for the work, which is
clear from Figure 3. The other reason is that the method needs to classify many subclasses
that belong to different broad categories which are often confusing. However, this could be
overcome by the collection and addition of more images from under-represented classes,
and further development of this preliminary approach.

As seen from Table 1, the broader classes have many sub-categories within them.
Sub-classes belonging to the same broad category have very similar features for which the
models find it difficult to establish distinguishable patterns between them. Heterogeneity
of samples within the same class is another reason for misclassification. This is because of
the dynamic nature of the farmland habitats which makes the acquisition system capture
the same habitat types in slightly varying formats at different time intervals. This was
overcome to a certain extent by collecting the data in the same season and almost at the same
time throughout the data collection period. In addition, certain samples that showed high
variance compared to other samples in the same class were manually removed. However,
variations within the habitats still exist.

A lot of misclassifications can be seen in the middle blocks of the confusion matrix. The
reason is that the middle row constitutes G: grassland and marsh, comprising six subclasses,
which is the most in this experiment, all of which have nearly indistinguishable features. In
this category, GSi1 had the highest prediction accuracy as it is dry calcareous and neutral
grassland with rocky features, not seen in any other habitat types. Misclassifications can
be seen in the bottom blocks of the confusion matrix also which constitutes W: woodland
and scrub, which has the second-highest number of sub-classes—five, in which WD1 and
WN2 have similar features contributing to prediction errors. Though the habitat mapping
problem is a challenging task, from Table 6, it can be understood that the proposed method
performed well.

Based on the results provided in Table 5, if the execution is done on a GPU machine,
the stacked ensemble model will always be a good choice considering the high accuracy.
However, when there is a trade-off between execution time and accuracy, especially for
resource-constrained edge devices, MobilenetV2 may be a good choice. The classification
accuracy of the stacked ensemble model is around 4% higher than the base-learner with
MobilenetV2 whereas its execution time is approximately 6 min lower. However, more
experiments need to be performed for better understanding in this regard and other models
need to be explored.

In the second experiment when the number of classes was reduced, accuracy ap-
proached approximately 100% with no misclassifications. This can be verified from the
associated results shown from Figures 13–17. From this experiment, it is clear that the
imbalance of the data, similar features between subclasses, and varying features within the
same classes decrease the prediction accuracy of the habitat mapping process.

5. Conclusions

We investigated an approach for farmland habitat classification which is an important
contribution to improved monitoring and preservation of ecosystems. High-resolution
self-collected drone images were used collected over 18 different habitat types that were
grouped into six broad categories. A stacked ensemble model was proposed which reduced
the bias and variance and thus improved the prediction accuracy. The average accuracy over
all the classes reported was 88.31% using this approach. Although an effective farmland
habitat classification technique is proposed, there is room for further work. The data set
used in this work is an imbalanced one with only 2233 samples across a comparatively
large number of classes. More samples need to be collected that should be balanced
across all possible habitat types to improve the accuracy of the deep learning technique.
As an extension of this work, we aim to collect more samples and label them to make
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the dataset publicly available so that the entire research community can benefit. Other
state-of-the-art pre-trained CNN architectures could be tried and various combinations of
pre-trained CNNs could be explored in the future to understand the best possible model
that will adapt the minute variations of the features among different habitats. In this
work, tuning was conducted only for identifying the best optimizer and learning rate.
Extensive hyper-parameter tuning could be conducted to develop the best fit model for
particular applications. Different mechanisms to develop resource-efficient, deep learning
models for mobile edge devices and other IoT devices used in smart agriculture have to
be investigated. Based on the requirements of the execution environment (e.g., mobile
phone or UAV capturing farmland images), a suitable compressed deep learning model
can be generated.
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