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Abstract: This work proposes to develop an underwater image enhancement method based on
histogram-equalization (HE) approximation using physics-based dichromatic modeling (PDM).
Images captured underwater usually suffer from low contrast and color distortions due to light
scattering and attenuation. The PDM describes the image formation process, which can be used to
restore nature-degraded images, such as underwater images. However, it does not assure that the
restored images have good contrast. Thus, we propose approximating the conventional HE based on
the PDM to recover the color distortions of underwater images and enhance their contrast through
convex optimization. Experimental results demonstrate the proposed method performs favorably
against state-of-the-art underwater image restoration approaches.

Keywords: histogram equalization approximation; physics-based dichromatic model; convex optimization

1. Introduction

Underwater exploration has progressed greatly due to underwater remotely operated
vehicles (ROVs) mounted with underwater surveillance video cameras or event data
recorders [1]. Ones can collect and analyze data through computer vision applications, such
as image classification, object detection, semantic segmentation, etc. One of the most critical
factors for these systems to work well is that the recorded videos and the captured images
are visually clear with good contrast. However, it is not always the case that the visual
source has decent visibility [2]. Since the attenuated light reflected by the scene reaches
the camera, causing absorption and scattering effects, underwater images often have color
distortions and appear hazy and blurry [3].

Visibility improvement in underwater images is always a challenge. Contrast enhance-
ment (CE) is a useful technique to enhance low-contrast images’ visual quality and bring
out image details that would be otherwise unseen. Among different approaches for CE,
global HE [4] is one of the most widely used methods due to its simple implementation
and generally satisfactory results. HE tries to distribute intensity levels (IL) of an image
uniformly across the available IL range through a transformation function calculated using
the image cumulative distribution function (CDF). It works for general cases; however,
the absorbed lights for underwater scenes make the images bluish or greenish, which may
cause HE-based methods to under-enhance or over-enhance the images. Therefore, HE may
not work well for such images since it does not consider underwater physics characteristics.

On the other hand, several attempts have been made to restore color and sharpness for
underwater images using physics-based dichromatic modeling (PDM) [5–9]. Drews et al. [7],
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inspired by the dark channel prior (DCP) for image dehazing [8], restored underwater im-
ages using underwater DCP. Peng et al. [10] adopted image blurriness and light absorption
to estimate depth information and background light for underwater scenes for underwater
image restoration. Peng et al. [9] generalize the DCP to apply to various nature-degraded
scenes, such as underwater, hazy, and sandstorm. However, physics-based dichromatic
modeling often can only achieve color restoration, but the restored images may still not
have good contrast.

In traditional image enhancement methods, [5,6,11–16] have all made related attempts.
The scene depths used in [5,12,15] are all obtained from the transmission map (TM), which
is derived from the DCP. He et al. [8] proposed to compute the amount of spatially uniform
haze by using the darkest channel in the scene to remove haze in natural images. In
natural scenes, DCP can be used to estimate TM and scene depth since points closer to
the camera have shorter scattering paths. In contrast, points closer to dark scenes are still
dark because of the intensity of scattered light they experience is lower. However, these
traditional methods may still fail to restore red light for underwater images due to its
long wavelengths and low frequencies, which attenuate faster underwater. Therefore, in
underwater scenes, RGB channel-based of DCP often only considers the red channel to
measure the transmission, resulting in incorrect depth estimation and poor restoration
performances. Sequentially, an underwater DCP based only on the blue and green channels
was proposed in [6,13,16] to solve the above problems. Additionally, Galdran et al. [14]
proposed an approach based on DCP of green, blue, and inverted red channels, called the
Red Channel method. Furthermore, Carlevaris-Bianco et al. [11] replaced DCP with the
maximum intensity prior for estimating TM, which calculates the difference between the
maximum intensity of the red channel and the maximum intensity of the blue and green.
However, there are many exceptions to these priors due to the light scattering, absorption,
and different lighting conditions in underwater images, which lead to no way for these
methods to achieve satisfactory performance.

In recent years, deep learning has made significant progress, especially in the field
of computer vision and low-level image processing tasks [17–22]. As a pioneering work,
Cao et al. [17] proposed to synthesize degraded/clean underwater image pairs based on
the image formation model to train a model to estimate scene depth and background
light for an underwater image. Li et al. [23] extended it by using a Generative Adver-
sarial Network (GAN) to make restored underwater images more realistic. In addition,
Guo et al. [24] employed a residual multi-scale dense GAN model to enhance underwater
images. Li et al. [25] collected an underwater image dataset with its subjectively better cho-
sen restored results and proposed a gated fusion network to improve underwater images
enhancement. A physical model for simulating real underwater images according to differ-
ent water body types is proposed by Li et al. [26]. In total, they trained ten models together
for underwater image enhancement, named UWCNN, each of which corresponds to one
group of synthesized underwater images. Collected underwater images usually determine
the performance of these underwater image enhancement models for training. Thus, it is
challenging to have enough underwater images to represent real-world conditions. For this
reason, the generalization capability and robustness of current deep learning-based models
for underwater image enhancement/restoration are limited and somewhat dissatisfied.

Unlike the previously mentioned methods, this work proposes a novel idea that com-
bines the conventional HE [4] with a PDM-based restoration method to strike a balance
between “whether the image has good contrast” and “whether the image color is recovered”
through convex optimization techniques. The proposed method using the HE approxi-
mation based on the PDM considers the physics characteristics of nature images to make
the color restoration consistent among pixels while keeping the distributions of image
intensities uniform across the entire IL range for better contrast.
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The rest of the paper is organized as follows. Section 2 describes related works. The HE
and how to use PDM to restore underwater images are briefly reviewed in Section 3. The
proposed method is described in Section 4. The experimental results are reported in
Section 5. Finally, Section 6 summarizes the conclusions.

2. Related Work
2.1. Histogram Equalization

Due to the absorption, scattering, and attenuation of propagated light with distance
from the camera, the contrast of underwater imaging will be significantly reduced and
cause fogging. CE is a helpful method to improve the visual quality of such images and
bring out image details that would be otherwise invisible. In the field of CE, there are many
related extension techniques, and global HE [4] is one of the most widely used because of
its simplicity of implementation and generally satisfactory results. Global HE attempts
to adjust the intensity levels (IL) presented in the image to be well-distributed over the
IL range using a transformation function derived from the image cumulative distribution
function (CDF). However, it can lead to under-enhancement or over-enhancement of the
image. Significant peaks in the histogram may occupy wider ranges in the mapping
transformation, leaving a relatively narrow range for other intensity levels. In addition,
using global HE may also increase the noise in the input images and create unwanted
artifacts. Much research has been conducted to improve global HE. In 1977, Kim [27]
proposed brightness preserving bi-histogram equalization (BBHE) to maintain the original
brightness in CE. It splits the image histogram into two sub-histograms based on the mean
intensity of the global HE. The idea of mean brightness preservation, such as Dualistic
sub-image histogram equalization (DSIHE) [28] which is similar to BBHE, separates the
histogram according to the median intensity. Then, multiple histogram separations such
as multi-peak histogram equalization (MPHE) [29], recursive mean separation histogram
equalization (RMSHE) [30], and recursive sub-image histogram equalization (RSIHE) [31]
are sequentially performed. They are proposed to maintain mean brightness.

In keeping mean brightness while avoiding added noise in global HE, the image
histogram can be modified by cropping to control the CE rate. The method of HE with
bin underflow and bin overflow (BUBOHE) [32] was presented to regulate the gradient of
the mapping function by setting the lower and upper bounds of the calculated probability
density function (PDF). Besides, gain-controllable clipped histogram equalization (GC-
CHE) [33] is a clipped HE method using gain control. Furthermore, a hybrid histogram
modifications (HM) method, bi-histogram equalization with a plateau limit (BHEPL) [34],
was presented to integrate the histogram separation and clipping techniques for CE. Adap-
tive gamma correction with weighting distribution (AGCWD) [35] is another hybrid HM
method for CE that combines the gamma correction [36] and global HE to keep the original
mean brightness while curbing the under-enhancement and over-enhancement.

In subsequent studies, a 2D HE method that exploits the contextual information around
each pixel in the input image was proposed and applied to global HE instead of using
the 1D intensity histogram. In 2011 and 2012, Celik proposed two-dimensional histogram
equalization (2DHE) [37] and contextual and variational contrast enhancement (CVCE) [38],
respectively. Both use a sliding window to compute a two-dimensional histogram that
counts the neighbor pixel intensities for each intensity level to enhance the contextual
features further.

The global HE described above may effectively enhance contrast for most natural
images. However, it may not be enough for restoring underwater images because they do
not only suffer low contrast but color distortions.
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2.2. Pdm-Based Restoration Methods

Many underwater image restoration methods have been proposed in recent years.
Since our approach is relevant to PDM-based restoration, we introduce these relevant
methods here. Since underwater images resemble hazy images in some cases, researchers
have employed dehazing methods to deal with underwater image restoration. For instance,
single image dehazing based on the dark channel prior [8] assumes that dark pixels exist
in most local patches of natural images without haze. Based on this assumption, one can
estimate the haze transmission and ambient light to restore hazy images based on the PDM.
The underwater DCP (UDCP) [7] method observed that the absorption rate of red light is
larger and modified DCP to fit underwater scenes. Similarly, the red channel method [14] is
considered a dark channel method to recover degraded images by restoring the contrast and
colors associated with short wavelengths. Peng et al. proposed a depth estimation method
for underwater scenes based on image blurriness and light absorption (IBLA) [10], restoring
underwater images. Besides, Peng et al. also proposed a Generalized Dark Channel Prior
(GDCP) [9] approach for image restoration, which incorporates adaptive color correction
into PDM. This approach can be reduced to several DCP variants for different special
situations of turbid medium and ambient lighting conditions. Importantly, underwater
images usually present blur and color casts caused by light absorption and scattering in
a water medium. Therefore, the underwater light attenuation prior method (ULAP) [39]
applys the correct depth map, the transmission maps (TMs), and the background light
(BL) for RGB lights to recover the true scene radiance under the water through an image
formation model. Song et al. [40] restores underwater images using transmission map
optimization. However, these image restoration methods do not consider further enhancing
the contrast of the restored images, sometimes presenting unsatisfying restored results.

3. Background Reviews
3.1. Histogram Equalization

Let I be the input image and I(x) ∈ [0, L− 1] be the intensity of the input image
at pixel x, where L = 2b for an image with a b-bit IL. Let the image histogram H =
[h0, h1, ..., hL−1]

T ∈ NL, where hi represents the number of pixels with the intensity of i, ∀i.
in the input image. The probability density function P = [p0, p1, ..., pL−1]

T ∈ Rn
+ of I can

be depicted in a vector form as:

P =
H

1T H
, (1)

where 1 = [1, 1, ..., 1]T ∈ NL. The CDF C = [c0, c1, ..., cL−1]
T ∈ Rn

+ of the image is computed
as cl = ∑l

i=0 pi. In HE, the transform function Tf is derived as:

Tf (l) = b(L− 1)cl + 0.5c, (2)

where l ∈ [0, L − 1]. Finally, each distinct IL l of the input image I is remapped to a
corresponding output IL via the transform function in Equation (2).

3.2. Pdm-Based Image Restoration

A simple PDM-based method for underwater images is given as [8,9]:

Ic(x) = Jc(x)t(x) + Bc(1− t(x)), (3)

where Ic is the observed intensity in the channel c, with c being one of the R, G, B channels,
Jc is the scene radiance, Bc is the background light (BL), and t is the transmission map.
The transmission describes how much light is not attenuated from traveling through the
medium and reaches the camera. Besides, it can be formulated as an exponential decay
term of the scene depth:

t(x) = e−βd(x), (4)
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where β is the attenuation coefficient, and d(x) represents the corresponding depth for the
pixel at x. Thus, if a scene point is farther from the camera its t gets smaller.

Let S0.1 be the set of the positions of the top 10% brightest pixels in Idark, where
Idark(x) = miny∈Ω(x){minc Ic(y)}. The estimated BL Bc can be calculated by:

Bc =
1
|S0.1| ∑

x∈S0.1

Ic(x), c ∈ {r, g, b}. (5)

Based on the DCP, the depth map t(x) is estimated [8] as:

t(x) = 1− min
y∈Ω(x)

{
min

c∈{R,G,B}

Ic(y)
Bc

}
, (6)

where Ω(x) is a local patch centered at x. In our work, a 15× 15 patch is adopted. Since the
depth map has blocking artifacts, it can be refined by median filtering. Finally, plugging Ic,
t and Bc into Equation (3), the scene radiance Jc can be recovered as:

Jc(x) =
Ic(x)− Bc

max(t(x), r0)
+ Bc, c ∈ {r, g, b}, (7)

where r0 is empirically set from 0.1 to increase the exposure of J for display.
Figure 1 shows two sets of underwater images: underwater images and their enhanced

images obtained using the HE and the PDM-based method [9] respectively. We can observe
that applying the HE to the images produces better contrast; however, the colors of these
enhanced images are distorted. By contrast, the PDM-based method restores degraded
images by reversing the image formation process, but the restored images may have low
contrast. Therefore, the proposed method aims at combining the HE and PDM to obtain
restored results with good contrast.

Figure 1. A comparison of underwater image enhanced results. (a) Underwater images.
The enhanced images obtained using (b) the HE [4], and (c) ref. [9] for the underwater image.
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4. Proposed Method

In this section, we discuss the details of the proposed approach. The overall framework
of the proposed method is depicted as Figure 2, where it combines HE and PDM-based
restoration to balance between the input image’s HE transformation function and PDM
mapping distribution via convex optimization. To this end, it outputs the enhanced image
using the final transformation function generated.

0    1     2    3          255

HE

PDM model

Transformation 

function

Enhanced imageInput image
Final transformation 

function

Eq. (12)

Figure 2. The overall framework of the proposed method.

To combine the HE and PDM, we first consider the HE part. Since the transformation
function Tf is one-to-one, it can be represented in a vector form T = [t0, t1, ..., tL−1]

T ∈ NL as:

T = b(L− 1)[c0, c1, ..., cL−1]
T + 0.5c

= b(L− 1)[p0, p0 + p1, ...,
L−1

∑
i=0

pi]
T + 0.5c,

(8)

which is referred to as the transformation matrix. According to Equation (8), the difference
of two consecutive ILs can be given by:

tk − tk−1 = b(L− 1)ck + 0.5c − b(L− 1)ck−1 + 0.5c
≈ b(L− 1)pkc.

(9)

Then, the transformation function T can be further denoted as:

RT =


1 0 · · · 0 0
−1 1 · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 0
0 0 · · · −1 1

T ≈ b(L− 1)Pc = P̂, (10)

where R ∈ ZL×L is a tridiagonal matrix as shown above.
For the PDM part, since the recovered image is derived by Equation (7), there is no

way to find a one-to-one function to describe it because each distinct IL l of the input
image Ic may be mapped to multiple ILs in the recovered scene radiance J. Hence, in
order to combine the PDM with the HE, it can be assumed that the transformation matrix
Tc = [tc

0, tc
1, ..., tc

L−1] is an independent Gaussian random vector, where Tc ∼ N(Tc, ΣTc),
and Tc = [tc

0, tc
1, ..., tc

L−1]
T ∈ RL and ΣTc = diag{σ2

tc
k
} ∈ RL×L, ∀k ∈ [0, L− 1], where tc

k and

σ2
tc
k

represent the mean and the variance of the random variable tc
k, respectively.
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However, not every element in the Tc and ΣTc is valid because there may be empty
bins in the histogram of the input image, i.e., the elements in Tc that corresponds to empty
bins are regarded as invalid. Thus, a matrix E ∈ Rñ×L is generated to get rid of those
elements in Tc that do not have valid Gaussian distributions, where ñ is the number of
distinct ILs in the input image I. Assume each element tc

k in Tc corresponds to a row vector
ec

k ∈ R1×L where only the (k + 1)th element is 1 and the rest are 0. E is given by:

E =


...

ec
k
...

 ∈ Rñ×L, (11)

where tc
k is valid, and k ∈ [0, L − 1]. Hence, the assumption is modified as ETc ∼

N(ETc, EΣTc ET).
To this end, the objective function f0(Tc) of combining the HE and the PDM is formu-

lated as:

minimize ‖RTc − P̂‖2 − α log G(ETc)

subject to RTc � 0,

tc
0 = 0,

tc
L−1 = L− 1, c ∈ {r, g, b},

(12)

where α ≥ 0 is a control parameter, and the multivariate Gaussian distribution G is given by:

G(ETc) =
1√

(2π)ñ|Σ̃Tc |
exp{−

‖(Σ̃Tc)
− 1

2 E(Tc − Tc)‖2
2

2
}, (13)

where Σ̃Tc = EΣTc ET.
The objective function f0(Tc) has two terms: the HE term ‖RTc − P̂‖2 and the PDM-

based Gaussian distribution term log G(ETc). Since G is log-concave, and the logarithm
is monotonically increasing, log G is adopted to regularize the HE term by penalizing the
transformation matrix Tc being different from the PDM-based distribution and to make the
objective function f0 convex as well.

To solve Equation (12), the PDM term can be simplified as:

α log G(ETc)

=
α

2

[
ñ log 2π + log |Σ̃Tc |+ ‖(Σ̃Tc)

− 1
2 E(Tc − Tc)‖2

2

]
=α̃
[
‖(Σ̃Tc)

− 1
2 E(Tc − Tc)‖2

2 + C
]
,

(14)

where α̃ = α
2 , and C = ñ log 2π + log |Σ̃Tc |, which is constant in f0 and thus can be dropped.

Therefore, by introducing two slack variables, Equation (12) is equivalent to:

minimize t + α̃g

subject to RTc � 0,

t ≥ ‖RTc − P̂‖2,

g ≥ ‖(Σ̃Tc)
− 1

2 E(Tc − Tc)‖2
2,

tc
0 = 0,

tc
L−1 = L− 1, c ∈ {r, g, b},

(15)
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which can be solved by using CVX, a package for specifying and solving convex pro-
grams [41,42]. Through minimizing f0(Tc) with an appropriate α̃, ranging from 10−4 to
10−5 in this paper, the HE approximation based on the PDM can further improve the
enhanced image quality.

5. Experimental Results

In this section, we first describe the implementation details, then compare the proposed
method against the HE and the PDM-based methods in an image enhancement context.

5.1. Experiment Settings

In this work, we employ the UIEB [25] dataset to test our method. The UIEB dataset
is a real-world underwater image dataset consisting of 890 underwater images with the
corresponding high-quality reference images, including haze-like, greenish, and blueish un-
derwater images. We compare our proposed method against 7 state-of-the-art underwater
image restoration methods, including the Fusion-based [43], Retinex-based [44], IBLA [10],
AGC [45], GDCP [9], BL-TM [40], and UWCNN [26]. We set α̃ = 5× 10−5 and r0 = 0.1 in
our method for all the experiments. For all the other compared methods, we follow their
default settings to process underwater images.

The performance of the compared methods is evaluated qualitatively and quanti-
tatively. We choose three prominent cases for the qualitative assessment, comprising
haze-like, greenish, and blueish underwater images. For the quantitative evaluation, we
adopt two no-reference quality metrics for accessing the quality of underwater images:
Underwater Color Image-Quality Evaluation (UCIQE) [46] and Natural Image Quality
Evaluator (NIQE) [47]. The UCIQE linearly combines the variation of chrominance, average
saturation, and luminance contrast to measure underwater image quality. Higher UCIQE
values indicate better visual perceptual quality. The NIQE measures deviations of the
tested image from regularities of natural scene statistics. Lower NIQE values suggest better
image quality.

5.2. Qualitative Assessment

We chose representative cases from the UIEB dataset to demonstrate visual comparison
enhancement results, including haze-like, greenish, and blueish underwater images. The
competing methods either do not restore color distortions or produce low-contrast images.
By contrast, the results generated by our method look natural with better contrast.

Figure 3 demonstrate restoration results for a common haze-like blueish underwater
image. Fusion-based [43], Retinex-based [44], AGC [45], and UWCNN [26] successfully
dehaze (dim) the image to increase its contrast. However, the blueish color cast remains.
IBLA [10], in contrast, brighten the image and restore its color a little. BL-TM [40] brightens
the image more, thus making it even hazier. GDCP [9] performs poorly here since it over-
enhances the brightness of the image, making it unnatural. The proposed method restores
the image’s color and enhances its contrast, presenting a visually satisfying result.
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Figure 3. (a) Dark bluish underwater image, and its restored/enhanced results obtained using (b)
Fusion-based [43], (c) Retinex-based [44], (d) IBLA [10], (e) AGC [45], (f) GDCP [9], (g) UWCNN [26],
(h) BL-TM [40], and (i) the proposed method. The number on the top-left corner of each image refers
to its UCIQE/NIQE score.

Figure 4 shows enhanced results for another blueish underwater image, where most
methods work fine. Out of the compared methods, UWCNN [26] seems to do little for the
restoration to the image. GDCP [9] and BL-TM [40] distort the color of the restored images.
Fusion-based [43], Retinex-based [44], IBLA [10], AGC [45], and the proposed method all
perform well for this case.

Figure 4. (a) Bright bluish underwater image, and its restored/enhanced results obtained using (b)
Fusion-based [43], (c) Retinex-based [44], (d) IBLA [10], (e) AGC [45], (f) GDCP [9], (g) UWCNN [26],
(h) BL-TM [40], and (i) the proposed method. The number on the top-left corner of each image refers
to its UCIQE/NIQE score.

Figure 5 shows the comparisons of enhanced results on a haze-like blueish underwater
image. As can be seen, the methods [43–45] enhance the image’s contrast but do not work
well on color restoration. UWCNN [26] makes the output darker but seems not to work
at all. IBLA [10] and GDCP [9] improve the contrast but introduce color distortions. BL-
TM [40] corrects the color a bit but fails to recover its contrast. The proposed method
performs better regarding contrast and color balance together.
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Figure 5. (a) Hazy and bluish underwater image, and its restored/enhanced results obtained using (b)
Fusion-based [43], (c) Retinex-based [44], (d) IBLA [10], (e) AGC [45], (f) GDCP [9], (g) UWCNN [26],
(h) BL-TM [40], and (i) the proposed method. The number on the top-left corner of each image refers
to its UCIQE/NIQE score.

Figures 6 and 7 shows the comparisons of processed results on a haze-like greenish
underwater image, where Fusion-based [43] and Retinex-based [44] methods remove the
greenish color cast but the restored images look a little washed out and unnatural. IBLA [10],
AGC [45], and UWCNN [26] fail to the restore color of the image. GDCP [9] overcorrects the
input image with more red color added. BL-TM [40] again corrects the color but does not
perform well on contrast. The proposed method works better than the other methods visually.

Figure 6. (a) Greenish underwater image with a diver and ribbons, and its restored/enhanced results
obtained using (b) Fusion-based [43], (c) Retinex-based [44], (d) IBLA [10], (e) AGC [45], (f) GDCP [9],
(g) UWCNN [26], (h) BL-TM [40], and (i) the proposed method. The number on the top-left corner of
each image refers to its UCIQE/NIQE score.
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Figure 7. (a) Greenish underwater image, and its restored/enhanced results obtained using (b)
Fusion-based [43], (c) Retinex-based [44], (d) IBLA [10], (e) AGC [45], (f) GDCP [9], (g) UWCNN [26],
(h) BL-TM [40], and (i) the proposed method. The number on the top-left corner of each image refers
to its UCIQE/NIQE score.

As can be seen from the above results, most methods can work in terms of color
restoration or contrast enhancement to some extent. The proposed method can effectively
remove the haze and possible color casts and improve the contrast without over-saturation
and over-enhancement. Notably, we also show the objective performance here on each
restored image, where our results achieve the best UCIQE/NIQE scores.

5.3. Quantitative Assessment

Table 1 displays objective comparisons among the methods on the UIEB dataset [25]
based on UCIQE [46] and NIQE [47], where the proposed method performs favorably
against the other state-of-the-art approaches.

To sum up, we can see by solving the convex problem formulated in Equation (15)
with an appropriate control parameter α̃, the proposed method can effectively combine HE
and PDM to present satisfying enhancement results.

Table 1. The UCIQE [46] and NIQE [47] scores for all the compared methods on the UIEB dataset [25].
The best scores are in bold.

Methods UCIQE ↑ NIQE ↓
input 0.52 4.31

Fusion-based [43] 0.59 3.85
Retinex-based [44] 0.60 4.09

IBLA [10] 0.60 3.90
AGC [45] 0.62 4.04
GDCP [9] 0.60 3.88

UWCNN [26] 0.52 4.20
BL-TM [40] 0.62 4.00
Proposed 0.64 3.79

5.4. Runtime Assessment

We compared the average runtime for all the compared methods on the UIEB dataset [25],
shown in Table 2. As can be seen, the AGC [45] and Retinex [44] runs faster than the other
methods. IBLA [10] is the slowest. Our proposed method takes 4.8 s on average.
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Table 2. Average runtime in seconds on the UIEB dataset [25].

Fusion Retinex IBLA AGC GDCP UWCNN BL-TM Proposed

Runtime ↓ 5.58 0.66 41.74 0.65 1.00 9.25 22.17 4.80

5.5. Application to Feature Matching

Figure 8 shows an example of feature-point matching. We match an underwater image
with its rotated version using SIFT [48] to demonstrate how an image enhancement helps
improve the image’s quality and increase the matching feature points. In Table 3, we can
see the number of feature matching points obtained using different enhancement methods,
where our method presents more key feature points.

Figure 8. An example of feature-point matching. We match an underwater image with its rotated
version using SIFT [48] to demonstrate how an image enhancement helps improve the image’s quality
and increase the matching feature points. (a) Original underwater image pair, and its enhanced
version using (b) Fusion-based [43], (c) Retinex-based [44], (d) IBLA [10], (e) AGC [45], (f) GDCP [9],
(g) UWCNN [26], (h) BL-TM [40], and (i) the proposed method.

Table 3. Numbers of matching feature points in Figure 8.

Input Fusion Retinex IBLA AGC GDCP UWCNN BL-TM Proposed

#Feature pts ↑ 134 747 923 473 303 591 180 290 1005

6. Conclusions

We proposed to enhance underwater images using a transformation function derived
by a convex combination of Histogram Equalization and Physics-based Dichromatic mod-
eling. The proposed method can generate visually pleasing results with restored color and
better contrast. The proposed method can outperform state-of-the-art underwater image
restoration approaches based on the qualitative and quantitative experimental results.
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