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Abstract: Iris segmentation plays a pivotal role in the iris recognition system. The deep learning
technique developed in recent years has gradually been applied to iris recognition techniques. As we
all know, applying deep learning techniques requires a large number of data sets with high-quality
manual labels. The larger the amount of data, the better the algorithm performs. In this paper,
we propose a self-supervised framework utilizing the pix2pix conditional adversarial network for
generating unlimited diversified iris images. Then, the generated iris images are used to train the
iris segmentation network to achieve state-of-the-art performance. We also propose an algorithm
to generate iris masks based on 11 tunable parameters, which can be generated randomly. Such
a framework can generate an unlimited amount of photo-realistic training data for down-stream
tasks. Experimental results demonstrate that the proposed framework achieved promising results
in all commonly used metrics. The proposed framework can be easily generalized to any object
segmentation task with a simple fine-tuning of the mask generation algorithm.

Keywords: data augmentation; iris segmentation; generative adversarial network; image semantic
segmentation; biometrics

1. Introduction

Over the past few years, iris recognition has emerged as one of the most suitable
and trustworthy biometric modalities among those currently available in the private
sector [1–4]. Automated iris recognition systems, therefore, have been extensively installed
in several biometrics applications, including [5], border-crossing control [6,7], citizenship
verification [8], digital forensic, and industrial products. Furthermore, iris authentication is
profoundly secure because no two irises are identical, even in indistinguishable twins, and
the iris is the most precise human identifier apart from Deoxyribonucleic acid (DNA) [9].
Nevertheless, the iris recognition system has now been operating globally, and it represents
one of the most developed categories of biometric recognition technology [10]. In addition,
it can solve technical obstacles when face recognition is failed or unavailable, peculiarly
when the user’s face is covered by masks, especially in the COVID-19 era. The iris recog-
nition framework proposed by Daugman [11–14] laid the foundation for the entire iris
recognition technology. A typical iris recognition system contains the subsequent steps: iris
image acquisition, image preprocessing, iris segmentation, feature extraction, and feature
matching. Iris segmentation plays an essential role in iris recognition to achieve a high
recognition rate. The accurate iris segmentation, combined with the best features and
effective recognition schemes, makes the iris recognition system more perfect. However, if
the iris segmentation is not accurate, the best feature extraction and recognition algorithms
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cannot compensate for such defects. As a consequence, the performance of the iris recogni-
tion system will drop sharply. Thus, the accuracy of the iris segmentation is enormously
significant [15]. Over the past decades, with the rapid development of deep learning, a
vast number of investigations employing CNNs have been introduced for iris segmenta-
tion [1,16–20], iris bounding box identification [19], and pupil center identification [21–23].
The latest image segmentation models are variants of encoder-decoder architectures such
as U-Net [24] and fully convolutional networks (FCN) [25].

At present, all deep learning (DL) models, such as those involving face recognition [26–31],
need a huge volume of data to enhance the accuracy of the model during training. Therefore,
collecting a large amount of diversified training data is very important for training robust and
accurate deep neural networks. The lack of training data negatively affects the performance
of the training process. In the iris databases, the CASIA-Iris-Thousand database published by
the Chinese Academy of Sciences is recently the biggest available database [32], but even for
this dataset, it includes only 20,000 images and cannot be called as large scale in the field of
deep learning. There is a great need for a database bigger than CASIA-Iris-Thousand to develop
deep-learning-based algorithms for iris segmentation and recognition. However, obtaining a
huge iris database like CASIA-Iris-Thousand already requires extensive human labor costs.

There is a recent trend in DL using the Self-Supervised Learning (SSL) framework to
train a model. Self-Supervision methods have shown great potential in various research
tasks ranging from computer vision to robotics [33–36]. SSL is different from supervised
learning, in which we need ground truths (labels for data) for every image in the dataset.
To obtain high-quality labeled data is an exhaustive and time-consuming task, especially for
complicated tasks, for instance, object detection and semantic segmentation, which require
highly precise annotations. On the other hand, with SSL, we only need label information
for just a small amount of data in the whole dataset. The motive behind SSL is to learn
valuable representations of input data from unlabeled data without relying on human
annotations [37]. In this work, we intend to propose a novel framework of SSL to apply
in iris segmentation networks. To our knowledge, this seminal study has applied the SSL
concept to iris segmentation network training.

Our study essentially is based on Generative Adversarial Networks (GAN) [38–40],
which gives a powerful framework to learn to produce examples from a provided distribu-
tion. The GAN framework consists of a generator model for producing new reasonable
synthetic images and a discriminator model that classifies the images as authentic (from
the data set) or fake (generated). The two models are trained simultaneously in an adver-
sarial process where the goal of the generative model is to generate a sample so that the
discriminative model cannot distinguish whether it is a generated sample or an original
one. The goal of the discriminative model is to successfully find the actual image without
being confused by the image generated by the generative model [41]. The Pix2Pix method
proposed by Isola et al. [42] is a GAN model designed for general purpose image-to-image
translation. The Pix2Pix model is a kind of conditional GANs (cGANs) [43] in which the
generation of the output image depends on the input image. The discriminator produces
both the source image and the target image and needs to learn whether the target is a
reasonable transformation of the source image. The Pix2Pix GAN has proven in a series of
image-to-image translation tasks, such as converting maps into satellite pictures, black and
white pictures into colors, and product sketches into product pictures.

In terms of the works for semantic segmentation for iris images, both feature-based
machine learning techniques and the recently popular DL techniques require a certain
number of iris images with manually marked pupil center and radius, iris center, radius,
and available iris regions to advance the performance of the algorithm. In this paper, we
use our proposed Pix2Pix conditional generative adversarial network to generate an iris
database with pre-conditioned information such as the exact location and shape of the
pupil center and radius, iris center and radius, and available iris region to improve the
performance of deep learning-based algorithms. We collected two challenging datasets for
training and evaluation of the proposed model: CASIA-Iris-Thousand and Iris Challenge
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Evaluation (ICE). Each iris image is manually annotated with the pupil center and the inner
and outer boundaries of the iris as an additional source of ground truth. For the iris mask,
we label the eyelashes and reflective points in eye images. For the periocular masks, the
region of the eye for each image is manually denoted. These datasets comprise several types
of noise, for example, blur, off-axis, occlusion, and specular reflection. One goal of this work
is to train a Pix2Pix cGAN model in order to generate iris images given pre-conditioned
periocular masks and iris masks. After such cGAN model is well trained, it is able to
generate (synthesize) as many iris images as we want, and these iris images, which come
with pre-conditioned periocular masks and iris masks, can be used to train the semantic
iris segmentation model. Because the size of the training set can be as big as we want, the
precision of the semantic iris segmentation model can be greatly enhanced compared to
the traditional training procedure for deep models. To evaluate whether the generated iris
image is useful, we further use the real iris images to test the segmentation model.

The main contribution of this paper is summarized as follows:

1. We introduce an improved version of the Pix2Pix-based conditional adversarial gen-
erative (cGAN) model, which can serve to generate a vast amount of iris images with
pre-defined iris masks and periocular masks. The size of the generated iris database
is unlimited and can be as big as we want.

2. Our approach can produce high-quality and diversified iris images, not only increas-
ing the amount of the data.

3. The creation of the pre-defined iris masks and periocular masks in our framework
is fully parameterized. Therefore, they can be automatically generated. It means
the generation process of iris images, iris masks, and periocular masks can be fully
automated in the proposed framework, and no human intervention is required. In this
proposed framework, since only a small number of images that require annotation
are needed, it can be seen as a self-supervised learning framework.

4. The proposed framework can be easily extended to image segmentation network
training for any specific target object, as long as the shape of the target object can be
parameterized. Therefore, the proposed framework has high generalization ability.

The rest of the paper is organized into the following sections. Section 2 describes the
related work. In Section 3, the proposed method is presented. Experimental results and
discussion are presented in Section 4. Finally, Section 5 draws the conclusion and directions
of future works.

2. Related Works

Generally, in most inherited iris segmentation approaches, the inner and outer iris
boundaries are detected first, later by further positioning the upper and lower eyelids,
a refined iris mask is taken (excluding any overlapping occlusions of shadows, glasses,
eyelashes, or reflections). It means that iris localization appears first, followed by narrow-
defined iris segmentation [44]. In general, segmentation approaches can be divided into
two main classes: boundary-based and pixel-based. The boundary-based strategy mainly
determines the pupil, edge, and eyelid boundary to quarantine the iris texture area. In con-
trast, the pixel-based approach immediately discriminates iris pixels from non-iris pixels
based on pixel-level features description [2].

2.1. Boundary-Based Segmentation Technique

For boundary-based approaches, Daugman’s integrodifferential operator [11] and
Wilde’s circular Hough transform [45] are the two widely used baseline algorithms. The most
significant and primary supposition made by these two approaches is that the pupil and edge
borders are circular shapes. The integrodifferential operator quests for the highest variation
in intensity in the parameter range ordinarily corresponding to the edge of the pupil and
the iris, while the Hough transform finds the best circle parameters in the binary edge
image through a voting method. Although these approaches have obtained immeasurable
segmentation success in iris images taken in self-restrained conditions, these are time-
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wasting and not appropriate for degenerate ocular iris images. Several techniques have been
introduced to address these challenges and to enhance the robustness and effectiveness of
bounding-based iris segmentation techniques, such as noise elimination [46,47], poor iris
location [48,49], and various models’ selection [50].

2.2. Pixel-Based Segmentation Technique

On the contrary, to directly identify the iris and non-iris regions, there are some
pixel-based iris segmentation methods. In most cases, they use the low-level visual de-
scription of each pixel (e.g., intensity and hue) to separate the pixels of interest from
the background image. The well-known pixel-level methods like Graph Cut [51,52] can
pre-process images, while conventional classification techniques such as Support Vector
Machine SVM [53] can classify iris pixels from non-iris pixels. Based on prior knowledge,
modern boundary-based and pixel-based approaches require a great deal of pre-processing
and post-processing. The iris segmentation method based on deep learning can directly
estimate the iris mask and automatically learn the best features but utilizes more high-
level semantic features. They are end-to-end prediction models in which classifiers and
features are jointly optimized, and no additional pre-processing and post-processing are
required. Li et al. [54] proposed an iris segmentation method based on deep learning,
which combines edge-based and learning-based algorithms. Liu et al. [16] introduced a
pixel-based iris segmentation model to automatically learn iris pixels. Later, researchers
utilized existing [55–58], customized [18,59], and fully connected networks (FCN) models
for iris segmentation and gained the best segmentation accuracy on several iris datasets.
Li et al. [1], Lian et al. [58], Lozej et al. [60], Wu and Zhao [61], and Zhang et al. [62], scholars
employed alternatives of U-Net [24] for iris segmentation.

2.3. Semantic Segmentation Technique

The semantic segmentation task can be examined as a pixel-by-pixel image classifica-
tion process, where every pixel within the image is assigned an object class.
Long et al. [25] first presented a Fully Convolutional Network (FCN) for semantic seg-
mentation in 2005. After that, many FCN-based semantic segmentation methods have
been introduced, for example DeepLab set [63,64], U-Net [24], and PSPNet [65], to enhance
the capability of semantic segmentation. U-Net [36] is an extensively employed network
for medical image segmentation examination. It is further enlarged to 3D U-Net [66],
TernausNet [67] and U-Net++ [68], and has good performance on general image segmen-
tation tasks. The FCN-based method takes the entire image as input and generates a
probability distribution map using a sequence of convolutional layers without including
fully connected layers. In this model, everything is fully automated, no manual effort
is required, and it takes advantage of the most advanced technology currently available.
Iris segmentation can be perceived as a particular binary semantic segmentation prob-
lem. Therefore, several FCN-based segmentation techniques can be directly applied to iris
images, such as [16–18,20].

2.4. Generative Adversarial Network (GAN)

Regarding the latest development in the research of GAN, several approaches have
been introduced to generate images. In [69] propose a convolutional GAN model for image
generation, which has excellent performance to fully connected networks. In 2018, Minaee
and Abdolrashidi [70] presented an iris image generation framework named Iris-GAN
was proposed, which uses a simple deep convolution GAN model to generate realistic
iris images that are indistinguishable from the actual iris image. Mirza and Osindero [43]
introduced a conditional GAN model, which is able to generate images conditioned on
class annotations. Zhu et al. [71] proposed an image-to-image conversion model based on
a cyclic consistent GAN model that learns to map a given image distribution to a target
domain. Ledig et al. [72] proposed a GAN-based image super-resolution approach, which
attempts to produce a high-resolution (HR) variant of images that seem related to the target
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HR. The concept of adversarial training has also been implemented in the autoencoder
framework to present an unsupervised feature learning approach [73]. In 2019, a model
named RaSGAN [74] was proposed, which accentuates the relativistic of the GAN to be
further generalized by updating its loss function. Several other works extend the GAN
model in different approaches.

3. Proposed Method
3.1. Framework Overview

Inspired by the success of Pix2Pix on learning to map the input image to the output
image, the overall design of our framework is depicted in Figure 1. Our proposed frame-
work contains two networks: the iris image generation network and the iris segmentation
network. Our goal is to train a robust iris segmentation network, which is able to deal with
all kinds of iris images, including irises with different shapes, rotation angles, different
sizes of pupil, among other aspects. To achieve this, first, we train the iris image generation
network to generate immense diversified iris images, given a set of diversified iris masks
and periocular masks, which can be fully parameterized. Then, the generated images are
applied as a training set to train the iris segmentation network.

Figure 1. An overview of our framework.

3.2. Iris Image Generation Network

The initial Generative Adversarial Network (GAN) is to learn a mapping from random
noise to the output image. On the contrary, in this study, we propose a network which
is able to learn a conditioned mapping from pre-defined iris and periocular masks to the
real iris images, as shown in Figure 2. The network consists of two competing networks.
The generator G, which attempts to generate the most authentic appearance of iris images
and the discriminator D, which learns to distinguish the real and synthetic iris images.
To train the network, first, we use the iris mask and periocular mask combined as a set
of two-channel images to be the input, and generator G generates a realistic iris image
to deceive the discriminator D. Then, we merged the iris mask, periocular mask, and iris
image into a set of three-channel images and let the discriminator D determine whether
this set of images is real (iris images from real-world) or false (iris images generated by G).
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Figure 2. Proposed method training architecture.

For the generator network G, we propose a network structure modified from U-Net
architecture with two main parts: the encoder, which learns the feature embedding from
the input images and the decoder, which hallucinates the output images based on the
given embedding. The overall structure of the generator network is shown in Figure 3.
The encoder part consists of eight convolutional layers followed by instance-normalization
and LeakyReLU as the activation function. The input is an image pair spatial resolution
256 × 256, the kernel size 4 × 4, and the stride is 2. The decoder part adopts 8 transpose
convolutional layers followed by instance normalization and ReLU as the non-linearity
to perform the process of image hallucination. The sigmoid function is applied to the
last convolution layer. In order to evade the loss of feature information, we adopted
skip connection to every convolutional layer, which incorporates the feature maps on the
encoder part with the decoder part. At the same time, dropout was added with a probability
of 0.5 to the first five layers of the decoder part.

Figure 3. The generator architecture in the proposed method.

The discriminator network D consists of five convolutional layers with a kernel size of
4 × 4 and strides of 2, followed by instance-normalization and leaky ReLU as the activation
function. After the fourth convolution layer, the size of the feature maps is reduced to
16 × 16. The discriminator network architecture is shown in Figure 4.
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Figure 4. The discriminator architecture in the proposed method.

3.3. Objective Function

The loss function of our network is defined as Equation (1).

LcGAN(G, D) = E(x,y)∼Pdata
[Log(D(x, y))] + Ex∼Pdata [Log(1− D(x, G(x))], (1)

where E(·) represents the expectation operator, G(·) represents output from the generator
network, D(·) represents the output from the discriminator network, x represents the mask
input to the network, y is the real iris image corresponding to x, Pdata is the distribution of
real data, (x, y) belongs to Pdata.

The objective function during the optimization process can be expressed by the
Equation (2):

G∗ = arg minGmaxDLcGAN(G, D). (2)

Earlier methods have discovered that it is advantageous to join the GAN goal with
a more popular loss, for example, L2 distance [75]. The discriminator retains its role, but
the generator is modified not just to mislead the discriminator further to approximate
the ground-truth output in an L2 sense. Furthermore, we investigate the alternative by
applying L1 distance instead of L2 because L1 tends to cause scarcer obscure. It is described
in Equation (3):

LL1(G) = E(x,y)∼Pdata
[‖y− G(x)‖]. (3)

Therefore, our final objective function is expressed by Equation (4), where λ is the
weight for L1 norm (λ = 100):

G∗ = arg minGmaxDLGAN(G, D) + λLL1(G). (4)

3.4. Iris Segmentation Network

For the training of the image segmentation, we employed the same architecture as
the generator from the iris image generation network and modified the input channel to
one. Since most iris biometrics operates on grayscale images, the input to the network is
defined to be a grayscale image with spatial resolution 256 × 256. The detailed architecture
is shown in Figure 3. The goal of the semantic segmentation network can be described
as classifying each pixel on the input image into different categories. Instead of utilizing
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the commonly used cross-entropy loss, we adopted the loss function of FCN as expressed
by Equation (5) to add up the loss function at all pixel positions.

L(P, Q) = −
w

∑
i=1

h

∑
j=1

n

∑
k=1

Qk(i, j) log Pk(i, j), (5)

where w, h represents the width and height in the image, respectively; n represents the
total number of categories to be classified; Pk(i, j) represents the probability value of the kth
category for the pixel located on the position (i, j); Qk(x, y) is the label of the kth category
on the x-axis at position i and the y-axis at position j, which is equivalent to adding up the
cross-entropy loss on each pixel to get the final overall loss value.

In order to optimize this semantic segmentation, we used mini-batch SGD and Adam
optimizer. The learning rate is set to 1e−5; the momentum is set to β_1 = 0.5, β_2 = 0.99;
batch size is set to 64, and Gaussian distribution is used to initialize the parameters in the
network. A total of 10 epochs are iterated.

3.5. Automatic Mask Generator

In response to the fact that there are not many manually labeled ground-truth masks
for the test data, we designed a process to generate the iris mask and the periocular mask
as the input of the neural network to facilitate the use of automated methods to generate
an unlimited amount of data. As shown in Figure 5, in the first step, we assumed that the
iris mask is composed of two nearly concentric circles, one large and one small, and the
periocular mask is composed of an ellipse. To diversify the appearance of the output images
of the network, we parameterized each of these basic components (shapes) so that all the
important factors of the eye (e.g., the position, size, and rotational angles) can be specified
by random parameters. In this way, the output images of the proposed network will have a
random appearance, and it mimics the random distribution of the eye images, which can be
collected in practical situations. As shown in Figure 6, we define the following parameters:

1. PupilX: the X-axis coordinate of the pupil center in the iris image
2. PupilY: the Y-axis coordinate of the pupil center in the iris image.
3. PupilR: the radius of the pupil in the iris image.
4. IrisX: the X-axis coordinate of the iris center in the iris image.
5. IrisY: the Y-axis coordinate of the iris center in the iris image.
6. IrisR: the radius of the iris in the iris image.
7. (xOffset, yOffset): a set of vectors representing the displacement of the centers of the

eye and the iris.
8. xRatio: we use the shape of the ellipse to approximate the shape of eyes. An ellipse

can be described by its center position, semi-major and semi-minor axis. The center
position is parametrized by (xOffset, yOffset). xRatio is the value computed from the
semi-major axis length divided by the iris radius.

9. yRatio: the value computed from the semi-minor axis length divided by the iris radius.
10. Degree: the angle of rotation of the ellipse.

To calculate the range of the 11 parameters, we performed statistical analysis on the
ground truth information in the CASIA-Iris-Thousand dataset of training data to observe
the parameter distribution and calculate the mean and standard deviation, as the parameter
range. Since the size of the training images is 640 × 480, the range of X and Y coordinate
value are [0, 640], and [0, 480], respectively. Table 1 shows the statistics of the 11 parameters.
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Figure 5. The process of automatic mask generation.

Figure 6. A pictorial explanation to determine the 11 parameters to generate the masks.

Table 1. The statistics of the 11 parameters used for generating the iris mask and periocular mask.

Parameter Name Average Value Standard Deviation Minimum Value Maximum Value

PupilX 363.18 48.78 137.65 383.09
PupilY 222.68 41.93 75 383.09
PupilR 35.87 8.03 16.86 70.39
IrisX 360.28 48.85 135.35 546.27
IrisY 222.28 42.11 70.17 384.45
IrisR 94.57 7.41 71.31 124.97

xOffset −2.59 17.24 −88.11 79.44
yOffset 8.03 9.5 −29.11 51.13
xRatio 2.08 0.16 0.054 2.7
yRatio 0.76 0.1 0.04 1.14
Degree 2.24 4.07 −16.2 19.38

Based on Table 1, the value range for pupilR and irisR are set to [20, 60] and [70, 120],
respectively. Because the value of xRatio and yRatio cannot be zero (otherwise the ellipse
of the periocular mask will disappear), the xRatio is set to [1.3, 2.5] and the yRatio is set
to [0.4, 1.1]. Besides, if the value of xOffset and yOffset are too large, the iris mask will
be eliminated. A good choice is to set them to be smaller than the half distance between
the long and short axis of the ellipse. Thus, the value of xOffset and yOffset are set to
[−xRatio*irisR/2, +xRatio*irisR/2] and [−yRatio*irisR/2, +yRatio*irisR/2], respectively.
Lastly, we set the value of degree to be within [−15, +15]. The example result of generated
masks is shown in Figure 7.
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Figure 7. A pictorial example of generated masks for iris images. (a) The generated iris mask; (b) the
generated periocular mask; (c) the generated iris image; (d) the overlay of iris mask, periocular mask
and the generated image. It shows that the generated masks perfectly fit the iris image.

4. Experimental Results and Discussion
4.1. Experimental Details

To train the iris image generation network, we initially pre-process the data by ran-
domly cropping an image of size 608 × 456 from the original image (size 640 × 480), which
will make the iris size larger in disguise and increase the generation network’s ability to
generate targets with a larger radius. In addition, the data of the left eye and the right eye
can be mutually augmented through the horizontal flip operation, and finally, the image
size is down-sampled to 256 × 256 to match the network input.

The proposed method is trained and tested using PyTorch deep learning framework.
We performed our experiments on a machine with an NVIDIA 1080Ti GPU and 11 GB of
memory, mini-batch SGD, and Adam optimizer with the learning rate 1e−4, and the mo-
mentum β1 = 0.5, β2 = 0.99. A Gaussian distribution is applied to initialize the parameters
in the network with a batch size of 64. We performed the experiments for non-glasses and
with-glasses data separately.

4.2. Iris Databases and Data Augmentation

This experiment used the CASIA-Iris-Thousands database [76] as well as the ICE iris
database [77]. The Institute of Automation at the Chinese Academy of Sciences established
the CASIA-Iris-Thousands. This database contains 20,000 images spanning a wide range
of subjects. There are the same number of images in each subject’s right and left eyes.
The image resolution for this database is 640 × 480. The total number of images of
with-glasses and without-glasses are 5338 and 14,662, respectively. The National Institute
of Standards and Technology (NIST) conducts and manages the ICE database, which
contains 2953 images covering 124 subjects.

In order to improve the generalization capability of the iris generation model, we
performed data augmentation on the iris datasets used for experiments. We applied the
following methods for data augmentation.

1. Randomly flip horizontally with the probability of 0.5.
2. Randomly crop the image with resolution 432 × 576.
3. Resize the image to a resolution of 256 × 256.

4.3. Performance Evaluation

To assess the performance of the proposed method, we use evaluation metrics, which
were commonly used in image segmentation works, as described below.
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1. mIoU (mean Intersection over Union) is a commonly used metric in semantic seg-
mentation, which is the average ratio of the intersection and union of the two sets of
real and predicted values. The values of IoU are limited to the [0, 1] interval, with 1
representing the accurate results (100% accuracy), while 0 indicates 0% accuracy.

2. PA (Pixel Accuracy) and mPA (mean Pixel Accuracy) are the percentage of correctly
marked pixels to the total pixels and the average over all classes. The value of mPA
is in the range of [0, 1]. The closer the value is to one, the higher the accuracy of
segmentation is.

3. Frequency Weighted Intersection over Union (FWIoU) is a metric to compensate
the impact from the class imbalances issues, which is calculated using Equation (6).
The pij represents the pixels that belong to the ith category but are predicted to be the
jth category, pii represents the true positive value, and pji represents the false positive
value.

FWIoU =
1

∑k
i=0 ∑k

j=0 pij
∑k

i=0
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
. (6)

4.4. Experimental Results and Analysis

Since there is no objective evaluation method to examine whether the generated image
is true, and our goal is to improve the deep learning algorithm for iris segmentation task by
hallucinating training data, we assess the performance of generated images by analyzing
the segmentation accuracy of the down-stream segmentation networks. In our experiment,
5000 iris images from CASIA-Iris-Thousands are randomly chosen as the initial training
set and another 5000 are randomly chosen as testing set. With the proposed iris image
generation network, we generated a lot of iris images which serve as additional training
data for training the segmentation network. A detailed description of the three sets of
training data is given as follows:

1. The 5000 iris images randomly chosen from CASIA-Iris-Thousands.
2. The 15,000 iris images consisted of training set 1 and 10,000 additional iris images

produced from the proposed iris image generation network.
3. The 25,000 iris images consisted of training set 2 and 10,000 additional iris images

generated from the proposed iris image generation network.

Table 2 shows the performance of the segmentation model U-Net [24] trained with
the three training datasets. As can be seen, the performance of iris segmentation increases
when the number of training data increases. The results on mIoU show a large margin
when the number of training data grows from 5000 images to 25,000 images (from 88.9%
to 92.4%). For the results on other evaluation metrics, the number of training data clearly
affects the performance of the segmentation model. This means the proposed method
successfully generates high-quality and realistic images which are applicable to the iris
segmentation task. Figure 8 shows the trend during the training on three different sets of
data. Figures 9–12 show the pixels accuracy curves, mean pixels accuracy curves, mean IoU
curve, and frequency weight IoU curve for different sets of training data, respectively. From
those figures, we can see that the optimization of the segmentation model converges faster
with the increasing number of epochs in the training process. The curves are relatively
stable without oscillations, indicating that the model is trained well. By comparing the
loss and accuracy between the training and testing, we can see that there is no overfitting
phenomenon. The examplar images from the iris image generation network are shown
in Figures 13 and 14.
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Table 2. The comparison of segmentation accuracy on the U-Net trained with different number of
training images generated by the proposed image generation network.

Number of Data PA mPA mIoU FwIoU

5k (real data) 98.7216% 95.2517% 88.9159% 97.6204%

5k (real data) + 10k
(generated data) 99.0971% 95.9337% 91.7642% 98.2756%

5k (real data) + 20k
(generated data) 99.1622% 96.9423% 92.4142% 98.4049%

Figure 8. The loss curve of the proposed method on training data and testing data.

Figure 9. The pixel accuracy curve on training data and testing data.



Sensors 2022, 22, 2133 13 of 25

Figure 10. The mean pixel accuracy curve on training data and testing data.

Figure 11. The mean intersection over union curve on training data and testing data.

Figure 12. The frequency weight intersection over union curve on training data and testing data.
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Figure 13. The examples of generated images (trained with CASIA-Iris-Thousands, without glasses)
using the proposed iris image generation network.

Figure 14. The examples of generated images (trained with CASIA-Iris-Thousands, with glasses)
using the proposed iris image generation network.

4.5. Experimental Results and Analysis on ICE Database

In our experiment on the ICE database, we used two different sets of masks as the
input to the network, one is to use the ICE database ground-truth label as the conditional
input to the network, and the other is to use the mask generated by the proposed algo-
rithm mentioned in Section 3.5 as the conditional input for iris image generation network.
The sample of generated images using the ground-truth label for images with glasses and
without glasses are manifested in Figures 15 and 16, accordingly. The proposed framework
clearly generated realistic images for irises in both with-glasses and without-glasses cases.
The following generated images using the algorithm in Section 3.5 for both cases can be seen
in Figure 17. As can be seen, the proposed mask generation algorithm successfully helps
to generate very realistic images. Therefore, the conditional mask input to the proposed
network can be fully automated and so is the whole process of the iris image generation.
With the proposed image generation network, the amount of training datasets can be
increased to any predefined size, which greatly enlarges the training resources needed for
semantic segmentation.
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Figure 15. The examples of generated images (trained with ICE dataset, with glasses). (a) original
iris image; (b) ground-truth label for iris; (c) ground-truth label for periocular region; (d) generated
images using (b,c) as the conditional inputs to the proposed image generation network.
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Figure 16. The examples of generated images (trained with ICE dataset, without glasses). (a) original
iris image; (b) ground-truth label for iris; (c) ground-truth label for periocular region; (d) generated
images using (b,c) as the conditional inputs to the proposed image generation network.
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Figure 17. The examples of generated images (trained with ICE dataset, with and without glasses).
(a,d) generated iris mask; (b,e) generated periocular mask; (c) generated image with glasses;
(f) generated image without glasses.

4.6. Comparison with Existing Segmentation Algorithms

Towards the objective of examining the performance of the introduced method, we
employed the current state-of-the-art (SOTA) segmentation model U-Net [24], FCN [25],
and Deeplab [64] as the down-stream semantic segmentation networks. In this experiment,
we utilized FCN network with VGG-16 backbone and Deeplab with ResNet101 backbone
for the purpose of comparison. The models were trained and tested under the same
configuration with the learning rate, batch size, and epoch equal to 0.001, 64, and 10,
respectively. The results were evaluated on evaluation metrics from Section 4.3 shown in
Table 3. As can be seen, the performance of each SOTA model trained with generated data
achieves promising results. It shows that the generated images by the proposed network
can improve the performance and are applicable for training the semantic segmentation
task. Figures 18 and 19 show the detailed performance of FCN and Deeplab networks
evaluated on various metrics.
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Table 3. The evaluation result of different algorithms on the customized dataset.

Model Number of Data PA mPA mIoU FwIoU

U-Net [24]
5k (real data) 98.7216% 95.2517% 88.9159% 97.6204%

5k (real data) + 10k (gen. data) 99.0971% 95.9337% 91.7642% 98.2756%
5k (real data) + 20k (gen. data) 99.1622% 96.9423% 92.4142% 98.4049%

FCN [25]
5k (real data) 99.4497% 96.8995% 94.7542% 98.9245%

5k (real data) + 10k (gen. data) 99.4866% 97.5631% 95.1388% 98.9994%
5k (real data) + 20k (gen. data) 99.5164% 97.6801% 95.4050% 99.0558%

Deeplab [64]
5k (real data) 99.1217% 96.8730% 92.0923% 98.3326%

5k (real data) + 10k (gen. data) 99.3034% 97.3882% 93.4433% 98.6379%
5k (real data) + 20k (gen. data) 99.4051% 97.3951% 94.4271% 98.8472%

Figure 18. The performance of FCN network on customized dataset based on the value of:
(a) Pixel Accuracy (PA); (b) Mean Pixel Accuracy (MPA); (c) Mean Intersection over Union (MIoU);
(d) Frequency Weight IoU (FWIoU).
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Figure 19. The performance of Deeplab network on customized dataset based on the value of:
(a) Pixel Accuracy (PA); (b) Mean Pixel Accuracy (MPA); (c) Mean Intersection over Union (MIoU);
(d) Frequency Weight IoU (FWIoU).

4.7. Analysis on Generated Image Quality

In order to measure the diversity and quality of the proposed model, we calculated
the Frechet Inception Distance (FID) [78] on the generated iris images. The FID compares
the statistics of the generated images to the real images:

FID = ‖µr − µg‖2 + Tr
(
∑r +∑g−2

√
∑r ∑g

)
, (7)

where µr and ∑r represents the statistics of the real image distribution, µg and ∑g represents
the statistics of the generated image distribution, and Tr is the trace of the covariance
matrix

(
∑r +∑g−2

√
∑r ∑g

)
. The FID score is measured as the distance between two

distributions; the lower the score, the higher similarity between the generated images
and real images. In our experiment, we compared the quality of the generated images
by our proposed network with the prior works from Minaee and Abdolrashidi [70] and
Yadav et al. [74] on the CASIA-Iris-Thousands database under the same configuration as
mentioned in Section 4.1. The FID scores of both networks are shown in Table 4.
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Table 4. Frechet Inception Distance (FID) score of CASIA-Iris-Thousands database.

Network FID

Proposed 60.25
Minaee and Abdolrashidi [70] 112.70

Yadav et al. [74] 110.56

As shown in Table 4, the proposed network achieved a lower FID score compared to
the prior works. Hence, we can conclude that the generated images by the proposed method
closely resemble the real images and are applicable to train the iris segmentation network.
Moreover, compared to the prior works, the strength of the proposed network for the
down-stream tasks are listed in Table 5. The sample of generated images by the proposed
method and the prior works by Minaee and Abdolrashidi [70] and Yadav et al. [74] are
shown in Figures 20–22, respectively.

Table 5. The strength and weakness of the proposed method compared to the prior work on down-
stream tasks.

Properties Proposed Minaee and Abdolrashidi
[70]

Yadav et al.
[74]

Is it suitable for Presentation Attack Detection task? Yes Yes Yes

Is it suitable for iris segmentation task? Yes No No

Can it generate iris images based on specified iris center and radius? Yes No No

Can it generate iris images based on specified pupil center and radius? Yes No No

Can it generate iris images at any specified coordinate on the whole image? Yes No No

Can it generate iris images with or without glasses according to the prior specification? Yes No No

Can it generate iris images based on different eyelid shape? Yes No No

Figure 20. The examples of generated images by the proposed network.
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Figure 21. The example of generated images by Minaee and Abdolrashidi [70].

Figure 22. The example of generated images by Yadav et al. [74].

In Figure 20, we can see that the proposed network can generate more realistic iris
images. Compared with the generated images by the prior works in Figures 21 and 22, the
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generated iris images by the proposed network look much more natural with high quality,
which looks like genuine images extracted from the dataset. The iris images generated
by the prior works showed an unnatural appearance, such as images with more than one
irises, pupils outside the eye, blurry images, and even images with two eyes. From these
observations, we can conclude that the proposed network outperforms the state-of-the-art,
and the results are suitable for the down-stream tasks such as presentation attack, iris
detection, iris segmentation . . . etc.

5. Conclusions

We proposed a self-supervised framework overcoming the problem of data scarcity
for the purpose of training an accurate segmentation network. In this paper, we proposed a
Pix2Pix-based conditional generative adversarial network architecture to generate photo-
realistic iris images. We utilized both iris mask and periocular mask as the condition for
the proposed image generation network. The generated images are used as the additional
training data to train the iris segmentation network. For the conditional input (masks of
iris and eyes) of the image generation network, we proposed an analytic method based on
11 programmable parameters, which can be randomly generated. In the experiments, a
few large-scale experiments are designed and executed to evaluate the performance of the
proposed framework. The performance of the trained image segmentors grows linearly
with the size of the overall training data, which shows the feasibility and effectiveness of
the proposed framework.

The proposed framework can be easily extended to be utilized in semantic segmen-
tation for any specific target. By modifying the parametric mask generation algorithm in
Section 3.5 to adapt to the properties of the target object, such framework can be gener-
alized to any specific target relevant to interesting specific domains in computer vision.
An example is that it can be applied to face image generation by modifying the mask
generation algorithm to be a parametric method to generate the facial landmark.

For future work, as stated above, we plan to apply the proposed framework to other
popular domains in computer vision such as faces, cars or street views. Another direction
is to re-design the backbone of the image generation models in order to generate more
details for the target object, like iris patterns. Spatial attention or channel attention models
are possible choices to be considered.
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